/usr/mipsisa64r6-linux-gnuabi64/include/tgmath.h is in libc6-dev-mips64r6-cross 2.27-3ubuntu1cross1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 | /* Copyright (C) 1997-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/*
* ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
*/
#ifndef _TGMATH_H
#define _TGMATH_H 1
#define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
#include <bits/libc-header-start.h>
/* Include the needed headers. */
#include <bits/floatn.h>
#include <math.h>
#include <complex.h>
/* There are two variant implementations of type-generic macros in
this file: one for GCC 8 and later, using __builtin_tgmath and
where each macro expands each of its arguments only once, and one
for older GCC, using other compiler extensions but with macros
expanding their arguments many times (so resulting in exponential
blowup of the size of expansions when calls to such macros are
nested inside arguments to such macros). */
#define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0)
#if __GNUC_PREREQ (2, 7)
# if __HAVE_BUILTIN_TGMATH
# if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define __TG_F16_ARG(X) X ## f16,
# else
# define __TG_F16_ARG(X)
# endif
# if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define __TG_F32_ARG(X) X ## f32,
# else
# define __TG_F32_ARG(X)
# endif
# if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define __TG_F64_ARG(X) X ## f64,
# else
# define __TG_F64_ARG(X)
# endif
# if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define __TG_F128_ARG(X) X ## f128,
# else
# define __TG_F128_ARG(X)
# endif
# if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define __TG_F32X_ARG(X) X ## f32x,
# else
# define __TG_F32X_ARG(X)
# endif
# if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define __TG_F64X_ARG(X) X ## f64x,
# else
# define __TG_F64X_ARG(X)
# endif
# if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define __TG_F128X_ARG(X) X ## f128x,
# else
# define __TG_F128X_ARG(X)
# endif
# define __TGMATH_FUNCS(X) X ## f, X, X ## l, \
__TG_F16_ARG (X) __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \
__TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
# define __TGMATH_RCFUNCS(F, C) __TGMATH_FUNCS (F) __TGMATH_FUNCS (C)
# define __TGMATH_1(F, X) __builtin_tgmath (__TGMATH_FUNCS (F) (X))
# define __TGMATH_2(F, X, Y) __builtin_tgmath (__TGMATH_FUNCS (F) (X), (Y))
# define __TGMATH_2STD(F, X, Y) __builtin_tgmath (F ## f, F, F ## l, (X), (Y))
# define __TGMATH_3(F, X, Y, Z) __builtin_tgmath (__TGMATH_FUNCS (F) \
(X), (Y), (Z))
# define __TGMATH_1C(F, C, X) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) (X))
# define __TGMATH_2C(F, C, X, Y) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) \
(X), (Y))
# else /* !__HAVE_BUILTIN_TGMATH. */
# ifdef __NO_LONG_DOUBLE_MATH
# define __tgml(fct) fct
# else
# define __tgml(fct) fct ## l
# endif
/* __floating_type expands to 1 if TYPE is a floating type (including
complex floating types), 0 if TYPE is an integer type (including
complex integer types). __real_integer_type expands to 1 if TYPE
is a real integer type. __complex_integer_type expands to 1 if
TYPE is a complex integer type. All these macros expand to integer
constant expressions. All these macros can assume their argument
has an arithmetic type (not vector, decimal floating-point or
fixed-point), valid to pass to tgmath.h macros. */
# if __GNUC_PREREQ (3, 1)
/* __builtin_classify_type expands to an integer constant expression
in GCC 3.1 and later. Default conversions applied to the argument
of __builtin_classify_type mean it always returns 1 for real
integer types rather than ever returning different values for
character, boolean or enumerated types. */
# define __floating_type(type) \
(__builtin_classify_type (__real__ ((type) 0)) == 8)
# define __real_integer_type(type) \
(__builtin_classify_type ((type) 0) == 1)
# define __complex_integer_type(type) \
(__builtin_classify_type ((type) 0) == 9 \
&& __builtin_classify_type (__real__ ((type) 0)) == 1)
# else
/* GCC versions predating __builtin_classify_type are also looser on
what counts as an integer constant expression. */
# define __floating_type(type) (((type) 1.25) != 1)
# define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1)
# define __complex_integer_type(type) \
(((type) (1.25 + _Complex_I)) == (1 + _Complex_I))
# endif
/* Whether an expression (of arithmetic type) has a real type. */
# define __expr_is_real(E) (__builtin_classify_type (E) != 9)
/* The tgmath real type for T, where E is 0 if T is an integer type
and 1 for a floating type. If T has a complex type, it is
unspecified whether the return type is real or complex (but it has
the correct corresponding real type). */
# define __tgmath_real_type_sub(T, E) \
__typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
: (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
/* The tgmath real type of EXPR. */
# define __tgmath_real_type(expr) \
__tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
__floating_type (__typeof__ (+(expr))))
/* The tgmath complex type for T, where E1 is 1 if T has a floating
type and 0 otherwise, E2 is 1 if T has a real integer type and 0
otherwise, and E3 is 1 if T has a complex type and 0 otherwise. */
# define __tgmath_complex_type_sub(T, E1, E2, E3) \
__typeof__ (*(0 \
? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0 \
: (__typeof__ (0 \
? (__typeof__ (0 \
? (double *) 0 \
: (void *) (!(E2)))) 0 \
: (__typeof__ (0 \
? (_Complex double *) 0 \
: (void *) (!(E3)))) 0)) 0))
/* The tgmath complex type of EXPR. */
# define __tgmath_complex_type(expr) \
__tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
__floating_type (__typeof__ (+(expr))), \
__real_integer_type (__typeof__ (+(expr))), \
__complex_integer_type (__typeof__ (+(expr))))
# if (__HAVE_DISTINCT_FLOAT16 \
|| __HAVE_DISTINCT_FLOAT32 \
|| __HAVE_DISTINCT_FLOAT64 \
|| __HAVE_DISTINCT_FLOAT32X \
|| __HAVE_DISTINCT_FLOAT64X \
|| __HAVE_DISTINCT_FLOAT128X)
# error "Unsupported _FloatN or _FloatNx types for <tgmath.h>."
# endif
/* Expand to text that checks if ARG_COMB has type _Float128, and if
so calls the appropriately suffixed FCT (which may include a cast),
or FCT and CFCT for complex functions, with arguments ARG_CALL. */
# if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# if (!__HAVE_FLOAT64X \
|| __HAVE_FLOAT64X_LONG_DOUBLE \
|| !__HAVE_FLOATN_NOT_TYPEDEF)
# define __TGMATH_F128(arg_comb, fct, arg_call) \
__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
? fct ## f128 arg_call :
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
? (__expr_is_real (arg_comb) \
? fct ## f128 arg_call \
: cfct ## f128 arg_call) :
# else
/* _Float64x is a distinct type at the C language level, which must be
handled like _Float128. */
# define __TGMATH_F128(arg_comb, fct, arg_call) \
(__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
|| __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float64x)) \
? fct ## f128 arg_call :
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
(__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
|| __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), \
_Float64x)) \
? (__expr_is_real (arg_comb) \
? fct ## f128 arg_call \
: cfct ## f128 arg_call) :
# endif
# else
# define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing. */
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */
# endif
# endif /* !__HAVE_BUILTIN_TGMATH. */
/* We have two kinds of generic macros: to support functions which are
only defined on real valued parameters and those which are defined
for complex functions as well. */
# if __HAVE_BUILTIN_TGMATH
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
__TGMATH_2 (Fct, (Val1), (Val2))
# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
__TGMATH_2STD (Fct, (Val1), (Val2))
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
__TGMATH_2 (Fct, (Val1), (Val2))
# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
__TGMATH_2STD (Fct, (Val1), (Val2))
# define __TGMATH_BINARY_REAL_RET_ONLY(Val1, Val2, Fct) \
__TGMATH_2 (Fct, (Val1), (Val2))
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
__TGMATH_1C (Fct, Cfct, (Val))
# define __TGMATH_UNARY_IMAG(Val, Cfct) __TGMATH_1 (Cfct, (Val))
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
__TGMATH_1C (Fct, Cfct, (Val))
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
__TGMATH_1 (Cfct, (Val))
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
__TGMATH_2C (Fct, Cfct, (Val1), (Val2))
# else /* !__HAVE_BUILTIN_TGMATH. */
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
(__extension__ ((sizeof (+(Val)) == sizeof (double) \
|| __builtin_classify_type (Val) != 8) \
? (__tgmath_real_type (Val)) Fct (Val) \
: (sizeof (+(Val)) == sizeof (float)) \
? (__tgmath_real_type (Val)) Fct##f (Val) \
: __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct, \
(Val)) \
(__tgmath_real_type (Val)) __tgml(Fct) (Val)))
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \
(__extension__ ((sizeof (+(Val)) == sizeof (double) \
|| __builtin_classify_type (Val) != 8) \
? Fct (Val) \
: (sizeof (+(Val)) == sizeof (float)) \
? Fct##f (Val) \
: __TGMATH_F128 ((Val), Fct, (Val)) \
__tgml(Fct) (Val)))
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8) \
? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
: (sizeof (+(Val1)) == sizeof (float)) \
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
: __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \
(Val1, Val2)) \
(__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8) \
? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
: (sizeof (+(Val1)) == sizeof (float)) \
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
: (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? __TGMATH_F128 ((Val1) + (Val2), \
(__typeof \
((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) Fct, \
(Val1, Val2)) \
(__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2) \
: (sizeof (+(Val1)) == sizeof (double) \
|| sizeof (+(Val2)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2)))
# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2) \
: (sizeof (+(Val1)) == sizeof (double) \
|| sizeof (+(Val2)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2)))
# define __TGMATH_BINARY_REAL_RET_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? __TGMATH_F128 ((Val1) + (Val2), Fct, (Val1, Val2)) \
__tgml(Fct) (Val1, Val2) \
: (sizeof (+(Val1)) == sizeof (double) \
|| sizeof (+(Val2)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? Fct (Val1, Val2) \
: Fct##f (Val1, Val2)))
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? __TGMATH_F128 ((Val1) + (Val2), \
(__typeof \
((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) Fct, \
(Val1, Val2, Val3)) \
(__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2, Val3) \
: (sizeof (+(Val1)) == sizeof (double) \
|| sizeof (+(Val2)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2, Val3) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2, Val3)))
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double) \
&& __builtin_classify_type ((Val1) + (Val2) + (Val3)) \
== 8) \
? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \
(__typeof \
((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) Fct, \
(Val1, Val2, Val3)) \
(__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
__tgml(Fct) (Val1, Val2, Val3) \
: (sizeof (+(Val1)) == sizeof (double) \
|| sizeof (+(Val2)) == sizeof (double) \
|| sizeof (+(Val3)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8 \
|| __builtin_classify_type (Val3) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
Fct (Val1, Val2, Val3) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
Fct##f (Val1, Val2, Val3)))
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8) \
? Fct (Val1, Val2, Val3) \
: (sizeof (+(Val1)) == sizeof (float)) \
? Fct##f (Val1, Val2, Val3) \
: __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3)) \
__tgml(Fct) (Val1, Val2, Val3)))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? (__expr_is_real (Val) \
? (__tgmath_complex_type (Val)) Fct (Val) \
: (__tgmath_complex_type (Val)) Cfct (Val)) \
: (sizeof (+__real__ (Val)) == sizeof (float)) \
? (__expr_is_real (Val) \
? (__tgmath_complex_type (Val)) Fct##f (Val) \
: (__tgmath_complex_type (Val)) Cfct##f (Val)) \
: __TGMATH_CF128 ((Val), \
(__tgmath_complex_type (Val)) Fct, \
(__tgmath_complex_type (Val)) Cfct, \
(Val)) \
(__expr_is_real (Val) \
? (__tgmath_complex_type (Val)) __tgml(Fct) (Val) \
: (__tgmath_complex_type (Val)) __tgml(Cfct) (Val))))
# define __TGMATH_UNARY_IMAG(Val, Cfct) \
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) Cfct (Val) \
: (sizeof (+__real__ (Val)) == sizeof (float)) \
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) Cfct##f (Val) \
: __TGMATH_F128 (__real__ (Val), \
(__typeof__ \
((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) Cfct, (Val)) \
(__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) __tgml(Cfct) (Val)))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? (__expr_is_real (Val) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Fct (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Cfct (Val)) \
: (sizeof (+__real__ (Val)) == sizeof (float)) \
? (__expr_is_real (Val) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Fct##f (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Cfct##f (Val)) \
: __TGMATH_CF128 ((Val), \
(__typeof__ \
(__real__ \
(__tgmath_real_type (Val)) 0)) Fct, \
(__typeof__ \
(__real__ \
(__tgmath_real_type (Val)) 0)) Cfct, \
(Val)) \
(__expr_is_real (Val) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
__tgml(Fct) (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
__tgml(Cfct) (Val))))
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
__TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct)
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
(__extension__ ((sizeof (__real__ (Val1) \
+ __real__ (Val2)) > sizeof (double) \
&& __builtin_classify_type (__real__ (Val1) \
+ __real__ (Val2)) == 8) \
? __TGMATH_CF128 ((Val1) + (Val2), \
(__typeof \
((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
Fct, \
(__typeof \
((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
Cfct, \
(Val1, Val2)) \
(__expr_is_real ((Val1) + (Val2)) \
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2) \
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
__tgml(Cfct) (Val1, Val2)) \
: (sizeof (+__real__ (Val1)) == sizeof (double) \
|| sizeof (+__real__ (Val2)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val1)) != 8 \
|| __builtin_classify_type (__real__ (Val2)) != 8) \
? (__expr_is_real ((Val1) + (Val2)) \
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
Cfct (Val1, Val2)) \
: (__expr_is_real ((Val1) + (Val2)) \
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
Fct##f (Val1, Val2) \
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
+ (__tgmath_complex_type (Val2)) 0)) \
Cfct##f (Val1, Val2))))
# endif /* !__HAVE_BUILTIN_TGMATH. */
#else
# error "Unsupported compiler; you cannot use <tgmath.h>"
#endif
/* Unary functions defined for real and complex values. */
/* Trigonometric functions. */
/* Arc cosine of X. */
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
/* Arc sine of X. */
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
/* Arc tangent of X. */
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
/* Arc tangent of Y/X. */
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
/* Cosine of X. */
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
/* Sine of X. */
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
/* Tangent of X. */
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
/* Hyperbolic functions. */
/* Hyperbolic arc cosine of X. */
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
/* Hyperbolic arc sine of X. */
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
/* Hyperbolic arc tangent of X. */
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
/* Hyperbolic cosine of X. */
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
/* Hyperbolic sine of X. */
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
/* Hyperbolic tangent of X. */
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
/* Exponential and logarithmic functions. */
/* Exponential function of X. */
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
/* Break VALUE into a normalized fraction and an integral power of 2. */
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
/* X times (two to the EXP power). */
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
/* Natural logarithm of X. */
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
/* Base-ten logarithm of X. */
#ifdef __USE_GNU
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10)
#else
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
#endif
/* Return exp(X) - 1. */
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
/* Return log(1 + X). */
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
/* Return the base 2 signed integral exponent of X. */
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
/* Compute base-2 exponential of X. */
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
/* Compute base-2 logarithm of X. */
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
/* Power functions. */
/* Return X to the Y power. */
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
/* Return the square root of X. */
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
/* Return `sqrt(X*X + Y*Y)'. */
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
/* Return the cube root of X. */
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
/* Nearest integer, absolute value, and remainder functions. */
/* Smallest integral value not less than X. */
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
/* Absolute value of X. */
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
/* Largest integer not greater than X. */
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
/* Floating-point modulo remainder of X/Y. */
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
/* Round X to integral valuein floating-point format using current
rounding direction, but do not raise inexact exception. */
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
/* Round X to the integral value in floating-point format nearest but
not larger in magnitude. */
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
and magnitude congruent `mod 2^n' to the magnitude of the integral
quotient x/y, with n >= 3. */
#define remquo(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
/* Round X to nearest integral value according to current rounding
direction. */
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint)
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint)
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround)
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround)
/* Return X with its signed changed to Y's. */
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
/* Error and gamma functions. */
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
/* Return the integer nearest X in the direction of the
prevailing rounding mode. */
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Return X - epsilon. */
# define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown)
/* Return X + epsilon. */
# define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup)
#endif
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
#define nexttoward(Val1, Val2) \
__TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward)
/* Return the remainder of integer divison X / Y with infinite precision. */
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
/* Return X times (2 to the Nth power). */
#ifdef __USE_MISC
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb)
#endif
/* Return X times (2 to the Nth power). */
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
/* Return X times (2 to the Nth power). */
#define scalbln(Val1, Val2) \
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
/* Return the binary exponent of X, which must be nonzero. */
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb)
/* Return positive difference between X and Y. */
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
/* Return maximum numeric value from X and Y. */
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
/* Return minimum numeric value from X and Y. */
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
/* Multiply-add function computed as a ternary operation. */
#define fma(Val1, Val2, Val3) \
__TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Round X to nearest integer value, rounding halfway cases to even. */
# define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven)
# define fromfp(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp)
# define ufromfp(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp)
# define fromfpx(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx)
# define ufromfpx(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx)
/* Like ilogb, but returning long int. */
# define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb)
/* Return value with maximum magnitude. */
# define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag)
/* Return value with minimum magnitude. */
# define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag)
/* Total order operation. */
# define totalorder(Val1, Val2) \
__TGMATH_BINARY_REAL_RET_ONLY (Val1, Val2, totalorder)
/* Total order operation on absolute values. */
# define totalordermag(Val1, Val2) \
__TGMATH_BINARY_REAL_RET_ONLY (Val1, Val2, totalordermag)
#endif
/* Absolute value, conjugates, and projection. */
/* Argument value of Z. */
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, carg)
/* Complex conjugate of Z. */
#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
/* Projection of Z onto the Riemann sphere. */
#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
/* Decomposing complex values. */
/* Imaginary part of Z. */
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, cimag)
/* Real part of Z. */
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, creal)
#endif /* tgmath.h */
|