/usr/share/perl5/Bio/Restriction/Analysis.pm is in libbio-perl-perl 1.7.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 | #
# BioPerl module Bio::Restriction::Analysis
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Rob Edwards <redwards@utmem.edu>
#
# You may distribute this module under the same terms as perl itself
## POD Documentation:
=head1 NAME
Bio::Restriction::Analysis - cutting sequences with restriction
enzymes
=head1 SYNOPSIS
# analyze a DNA sequence for restriction enzymes
use Bio::Restriction::Analysis;
use Bio::PrimarySeq;
use Data::Dumper;
# get a DNA sequence from somewhere
my $seq = Bio::PrimarySeq->new
(-seq =>'AGCTTAATTCATTAGCTCTGACTGCAACGGGCAATATGTCTC',
-primary_id => 'synopsis',
-molecule => 'dna');
# now start an analysis.
# this is using the default set of enzymes
my $ra = Bio::Restriction::Analysis->new(-seq=>$seq);
# find unique cutters. This returns a
# Bio::Restriction::EnzymeCollection object
my $enzymes = $ra->unique_cutters;
print "Unique cutters: ", join (', ',
map {$_->name} $enzymes->unique_cutters), "\n";
# AluI is one them. Where does it cut?
# This is will return an array of the sequence strings
my $enz = 'AluI';
my @frags = $ra->fragments($enz);
# how big are the fragments?
print "AluI fragment lengths: ", join(' & ', map {length $_} @frags), "\n";
# You can also bypass fragments and call sizes directly:
# to see all the fragment sizes
print "All sizes: ", join " ", $ra->sizes($enz), "\n";
# to see all the fragment sizes sorted by size like on a gel
print "All sizes, sorted ", join (" ", $ra->sizes($enz, 0, 1)), "\n";
# how many times does each enzyme cut
my $cuts = $ra->cuts_by_enzyme('BamHI');
print "BamHI cuts $cuts times\n";
# How many enzymes do not cut at all?
print "There are ", scalar $ra->zero_cutters->each_enzyme,
" enzymes that do not cut\n";
# what about enzymes that cut twice?
my $two_cutters = $ra->cutters(2);
print join (" ", map {$_->name} $two_cutters->each_enzyme),
" cut the sequence twice\n";
# what are all the enzymes that cut, and how often do they cut
printf "\n%-10s%s\n", 'Enzyme', 'Number of Cuts';
my $all_cutters = $ra->cutters;
map {
printf "%-10s%s\n", $_->name, $ra->cuts_by_enzyme($_->name)
} $all_cutters->each_enzyme;
# Finally, we can interact the restriction enzyme object by
# retrieving it from the collection object see the docs for
# Bio::Restriction::Enzyme.pm
my $enzobj = $enzymes->get_enzyme($enz);
=head1 DESCRIPTION
Bio::Restriction::Analysis describes the results of cutting a DNA
sequence with restriction enzymes.
To use this module you can pass a sequence object and optionally a
Bio::Restriction::EnzymeCollection that contains the enzyme(s) to cut the
sequences with. There is a default set of enzymes that will be loaded
if you do not pass in a Bio::Restriction::EnzymeCollection.
To cut a sequence, set up a Restriction::Analysis object with a sequence
like this:
use Bio::Restriction::Analysis;
my $ra = Bio::Restriction::Analysis->new(-seq=>$seqobj);
or
my $ra = Bio::Restriction::Analysis->new
(-seq=>$seqobj, -enzymes=>$enzs);
Then, to get the fragments for a particular enzyme use this:
@fragments = $ra->fragments('EcoRI');
Note that the naming of restriction enzymes is that the last numbers
are usually Roman numbers (I, II, III, etc). You may want to use
something like this:
# get a reference to an array of unique (single) cutters
$singles = $re->unique_cutters;
foreach my $enz ($singles->each_enzyme) {
@fragments = $re->fragments($enz);
... do something here ...
}
Note that if your sequence is circular, the first and last fragment
will be joined so that they are the appropriate length and sequence
for further analysis. This fragment will also be checked for cuts
by the enzyme(s). However, this will change the start of the
sequence!
There are two separate algorithms used depending on whether your
enzyme has ambiguity. The non-ambiguous algorithm is a lot faster,
and if you are using very large sequences you should try and use
this algorithm. If you have a large sequence (e.g. genome) and
want to use ambgiuous enzymes you may want to make separate
Bio::Restriction::Enzyme objects for each of the possible
alternatives and make sure that you do not set is_ambiguous!
This version should correctly deal with overlapping cut sites
in both ambiguous and non-ambiguous enzymes.
I have tried to write this module with speed and memory in mind
so that it can be effectively used for large (e.g. genome sized)
sequence. This module only stores the cut positions internally,
and calculates everything else on an as-needed basis. Therefore
when you call fragment_maps (for example), there may be another
delay while these are generated.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to one
of the Bioperl mailing lists. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
the bugs and their resolution. Bug reports can be submitted via the
web:
https://github.com/bioperl/bioperl-live/issues
=head1 AUTHOR
Rob Edwards, redwards@utmem.edu,
Steve Chervitz, sac@bioperl.org
=head1 CONTRIBUTORS
Heikki Lehvaslaiho, heikki-at-bioperl-dot-org
Mark A. Jensen, maj-at-fortinbras-dot-us
=head1 COPYRIGHT
Copyright (c) 2003 Rob Edwards. Some of this work is Copyright (c)
1997-2002 Steve A. Chervitz. All Rights Reserved.
This module is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=head1 SEE ALSO
L<Bio::Restriction::Enzyme>,
L<Bio::Restriction::EnzymeCollection>
=head1 APPENDIX
Methods beginning with a leading underscore are considered private and
are intended for internal use by this module. They are not considered
part of the public interface and are described here for documentation
purposes only.
=cut
package Bio::Restriction::Analysis;
use Bio::Restriction::EnzymeCollection;
use strict;
use Data::Dumper;
use base qw(Bio::Root::Root);
use Scalar::Util qw(blessed);
=head1 new
Title : new
Function : Initializes the restriction enzyme object
Returns : The Restriction::Analysis object
Arguments :
$re_anal->new(-seq=$seqobj,
-enzymes=>Restriction::EnzymeCollection object)
-seq requires a Bio::PrimarySeq object
-enzymes is optional.
If omitted it will use the default set of enzymes
This is the place to start. Pass in a sequence, and you will be able
to get the fragments back out. Several other things are available
like the number of zero cutters or single cutters.
=cut
sub new {
my($class, @args) = @_;
my $self = $class->SUPER::new(@args);
my ($seq,$enzymes) =
$self->_rearrange([qw(
SEQ
ENZYMES
)], @args);
$seq && $self->seq($seq);
$enzymes ? $self->enzymes($enzymes)
: ($self->{'_enzymes'} = Bio::Restriction::EnzymeCollection->new );
# keep track of status
$self->{'_cut'} = 0;
# left these here because we want to reforce a _cut if someone
# just calls new
$self->{maximum_cuts} = 0;
$self->{'_number_of_cuts_by_enzyme'} = {};
$self->{'_number_of_cuts_by_cuts'} = {};
$self->{'_fragments'} = {};
$self->{'_cut_positions'} = {}; # cut position is the real position
$self->{'_frag_map_list'} = {};
return $self;
}
=head1 Methods to set parameters
=cut
=head2 seq
Title : seq
Usage : $ranalysis->seq($newval);
Function : get/set method for the sequence to be cut
Example : $re->seq($seq);
Returns : value of seq
Args : A Bio::PrimarySeqI dna object (optional)
=cut
sub seq {
my $self = shift;
if (@_) {
my $seq = shift;
$self->throw('Need a sequence object ['. ref $seq. ']')
unless $seq->isa('Bio::PrimarySeqI');
$self->throw('Need a DNA sequence object ['. $seq->alphabet. ']')
unless $seq->alphabet eq 'dna';
$self->{'_seq'} = $seq;
$self->{'_cut'} = 0;
}
return $self->{'_seq'};
}
=head2 enzymes
Title : enzymes
Usage : $re->enzymes($newval)
Function : gets/Set the restriction enzyme enzymes
Example : $re->enzymes('EcoRI')
Returns : reference to the collection
Args : an array of Bio::Restriction::EnzymeCollection and/or
Bio::Restriction::Enzyme objects
The default object for this method is
Bio::Restriction::EnzymeCollection. However, you can also pass it a
list of Bio::Restriction::Enzyme objects - even mixed with Collection
objects. They will all be stored into one collection.
=cut
sub enzymes {
my $self = shift;
if (@_) {
$self->{'_enzymes'} = Bio::Restriction::EnzymeCollection->new (-empty => 1)
unless $self->{'_enzymes'};
$self->{'_enzymes'}->enzymes(@_);
$self->{'_cut'} = 0;
}
return $self->{'_enzymes'};
}
=head1 Perform the analysis
=cut
=head2 cut
Title : cut
Usage : $re->cut()
Function : Cut the sequence with the enzymes
Example : $re->cut(); $re->cut('single'); or $re->cut('multiple', $enzymecollection);
Returns : $self
Args : 'single' (optional), 'multiple' with enzyme collection.
An explicit cut method is needed to pass arguments to it.
There are two varieties of cut. Single is the default, and need
not be explicitly called. This cuts the sequence with each
enzyme separately.
Multiple cuts a sequence with more than one enzyme. You must pass
it a Bio::Restriction::EnzymeCollection object of the set
of enzymes that you want to use in the double digest. The results
will be stored as an enzyme named "multiple_digest", so you can
use all the retrieval methods to get the data.
If you want to use the default setting there is no need to call cut
directly. Every method in the class that needs output checks the
object's internal status and recalculates the cuts if needed.
Note: cut doesn't now re-initialize everything before figuring
out cuts. This is so that you can do multiple digests, or add more
data or whatever. You'll have to use new to reset everything.
See also the comments in above about ambiguous and non-ambiguous
sequences.
=cut
sub cut {
my ($self, $opt, $ec) = @_;
# for the moment I have left this as a separate routine so
# the user calls cut rather than _cuts. This also initializes
# some stuff we need to use.
$self->throw("A sequence must be supplied")
unless $self->seq;
if ($opt && uc($opt) eq "MULTIPLE") {
$self->throw("You must supply a separate enzyme collection for multiple digests") unless $ec;
$self->_multiple_cuts($ec); # multiple digests
} else {
# reset some of the things that we save
$self->{maximum_cuts} = 0;
$self->{'_number_of_cuts_by_enzyme'} = {};
$self->{'_number_of_cuts_by_cuts'} = {};
$self->{'_fragments'} = {};
$self->{'_cut_positions'} = {}; # cut position is the real position
$self->{'_frag_map_list'} = {};
$self->_cuts;
}
$self->{'_cut'} = 1;
return $self;
}
=head2 multiple_digest
Title : multiple_digest
Function : perform a multiple digest on a sequence
Returns : $self so you can go and get any of the other methods
Arguments : An enzyme collection
Multiple digests can use 1 or more enzymes, and the data is stored
in as if it were an enzyme called multiple_digest. You can then
retrieve information about multiple digests from any of the other
methods.
You can use this method in place of $re->cut('multiple', $enz_coll);
=cut
sub multiple_digest {
my ($self, $ec)=@_;
return $self->cut('multiple', $ec);
}
=head1 Query the results of the analysis
=cut
=head2 positions
Title : positions
Function : Retrieve the positions that an enzyme cuts at
Returns : An array of the positions that an enzyme cuts at
: or an empty array if the enzyme doesn't cut
Arguments: An enzyme name to retrieve the positions for
Comments : The cut occurs after the base specified.
=cut
sub positions {
my ($self, $enz) = @_;
$self->cut unless $self->{'_cut'};
$self->throw('no enzyme selected to get positions for')
unless $enz;
return defined $self->{'_cut_positions'}->{$enz} ?
@{$self->{'_cut_positions'}->{$enz}} :
();
}
=head2 fragments
Title : fragments
Function : Retrieve the fragments that we cut
Returns : An array of the fragments retrieved.
Arguments: An enzyme name to retrieve the fragments for
For example this code will retrieve the fragments for all enzymes that
cut your sequence
my $all_cutters = $analysis->cutters;
foreach my $enz ($$all_cutters->each_enzyme}) {
@fragments=$analysis->fragments($enz);
}
=cut
sub fragments {
my ($self, $enz) = @_;
$self->cut unless $self->{'_cut'};
$self->throw('no enzyme selected to get fragments for')
unless $enz;
my @fragments;
for ($self->fragment_maps($enz)) {push @fragments, $_->{seq}}
return @fragments;
}
=head2 fragment_maps
Title : fragment_maps
Function : Retrieves fragment sequences with start and end
points. Useful for feature construction.
Returns : An array containing a hash reference for each fragment,
containing the start point, end point and DNA
sequence. The hash keys are 'start', 'end' and
'seq'. Returns an empty array if not defined.
Arguments : An enzyme name, enzyme object,
or enzyme collection to retrieve the fragments for.
If passes an enzyme collection it will return the result of a multiple
digest. This : will also cause the special enzyme 'multiple_digest' to
be created so you can get : other information about this multiple
digest. (TMTOWTDI).
There is a minor problem with this and $self-E<gt>fragments that I
haven't got a good answer for (at the moment). If the sequence is not
cut, do we return undef, or the whole sequence?
For linear fragments it would be good to return the whole
sequence. For circular fragments I am not sure.
At the moment it returns the whole sequence with start of 1 and end of
length of the sequence. For example:
use Bio::Restriction::Analysis;
use Bio::Restriction::EnzymeCollection;
use Bio::PrimarySeq;
my $seq = Bio::PrimarySeq->new
(-seq =>'AGCTTAATTCATTAGCTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATCCAAAAAAGAGTGAGCTTCTGAT',
-primary_id => 'synopsis',
-molecule => 'dna');
my $ra = Bio::Restriction::Analysis->new(-seq=>$seq);
my @gel;
my @bam_maps = $ra->fragment_maps('BamHI');
foreach my $i (@bam_maps) {
my $start = $i->{start};
my $end = $i->{end};
my $sequence = $i->{seq};
push @gel, "$start--$sequence--$end";
@gel = sort {length $b <=> length $a} @gel;
}
print join("\n", @gel) . "\n";
=cut
sub fragment_maps {
my ($self, $enz) = @_;
$self->cut unless $self->{'_cut'};
$self->throw('no enzyme selected to get fragment maps for')
unless $enz;
# we are going to generate this on an as-needed basis rather than
# for every enzyme this should cut down on the amount of
# duplicated data we are trying to save in memory and make this
# faster and easier for large sequences, e.g. genome analysis
my @cut_positions;
if (ref $enz eq '' && exists $self->{'_cut_positions'}->{$enz}) {
@cut_positions=@{$self->{'_cut_positions'}->{$enz}};
} elsif ($enz->isa("Bio::Restriction::EnzymeI")) {
@cut_positions=@{$self->{'_cut_positions'}->{$enz->name}};
} elsif ($enz->isa("Bio::Restriction::EnzymeCollection")) {
$self->cut('multiple', $enz);
@cut_positions=@{$self->{'_cut_positions'}->{'multiple_digest'}};
}
unless (defined($cut_positions[0])) {
# it doesn't cut
# return the whole sequence
# this should probably have the is_circular command
my %map=(
'start' => 1,
'end' => $self->{'_seq'}->length,
'seq' => $self->{'_seq'}->seq
);
push (@{$self->{'_frag_map_list'}->{$enz}}, \%map);
return defined $self->{'_frag_map_list'}->{$enz} ?
@{$self->{'_frag_map_list'}->{$enz}} : ();
}
@cut_positions=sort {$a <=> $b} @cut_positions;
push my @cuts, $cut_positions[0];
foreach my $i (@cut_positions) {
push @cuts, $i if $i != $cuts[$#cuts];
}
my $start=1; my $stop; my %seq; my %stop;
foreach $stop (@cuts) {
next if !$stop; # cuts at beginning of sequence
$seq{$start}=$self->{'_seq'}->subseq($start, $stop);
$stop{$start}=$stop;
$start=$stop+1;
}
$stop=$self->{'_seq'}->length;
if ($start > $stop) {
# borderline case. The enzyme cleaved at the end of the sequence
# what do I do now?
}
else {
$seq{$start}=$self->{'_seq'}->subseq($start, $stop);
$stop{$start}=$stop;
}
if ($self->{'_seq'}->is_circular) {
# join the first and last fragments
$seq{$start}.=$seq{'1'};
delete $seq{'1'};
$stop{$start}=$stop{'1'};
delete $stop{'1'};
}
foreach my $start (sort {$a <=> $b} keys %seq) {
my %map=(
'start' => $start,
'end' => $stop{$start},
'seq' => $seq{$start}
);
push (@{$self->{'_frag_map_list'}->{$enz}}, \%map);
}
return defined $self->{'_frag_map_list'}->{$enz} ?
@{$self->{'_frag_map_list'}->{$enz}} : ();
}
=head2 sizes
Title : sizes
Function : Retrieves an array with the sizes of the fragments
Returns : Array that has the sizes of the fragments ordered from
largest to smallest like they would appear in a gel.
Arguments: An enzyme name to retrieve the sizes for is required and
kilobases to the nearest 0.1 kb, else it will be in
bp. If the optional third entry is set the results will
be sorted.
This is designed to make it easy to see what fragments you should get
on a gel!
You should be able to do these:
# to see all the fragment sizes,
print join "\n", $re->sizes($enz), "\n";
# to see all the fragment sizes sorted
print join "\n", $re->sizes($enz, 0, 1), "\n";
# to see all the fragment sizes in kb sorted
print join "\n", $re->sizes($enz, 1, 1), "\n";
=cut
sub sizes {
my ($self, $enz, $kb, $sort) = @_;
$self->throw('no enzyme selected to get fragments for')
unless $enz;
if (blessed($enz)) {
$self->throw("Enzyme must be enzyme name or a Bio::Restriction::EnzymeI, not ".ref($enz))
if !$enz->isa('Bio::Restriction::EnzymeI');
$enz = $enz->name;
}
$self->cut unless $self->{'_cut'};
my @frag; my $lastsite=0;
foreach my $site (@{$self->{'_cut_positions'}->{$enz}}) {
$kb ? push (@frag, (int($site-($lastsite))/100)/10)
: push (@frag, $site-($lastsite));
$lastsite=$site;
}
$kb ? push (@frag, (int($self->{'_seq'}->length-($lastsite))/100)/10)
: push (@frag, $self->{'_seq'}->length-($lastsite));
if ($self->{'_seq'}->is_circular) {
my $first=shift @frag;
my $last=pop @frag;
push @frag, ($first+$last);
}
$sort ? @frag = sort {$b <=> $a} @frag : 1;
return @frag;
}
=head1 How many times does enzymes X cut?
=cut
=head2 cuts_by_enzyme
Title : cuts_by_enzyme
Function : Return the number of cuts for an enzyme
Returns : An integer with the number of times each enzyme cuts.
Returns 0 if doesn't cut or undef if not defined
Arguments : An enzyme name string
=cut
sub cuts_by_enzyme {
my ($self, $enz)=@_;
$self->throw("Need an enzyme name")
unless defined $enz;
$self->cut unless $self->{'_cut'};
return $self->{'_number_of_cuts_by_enzyme'}->{$enz};
}
=head1 Which enzymes cut the sequence N times?
=cut
=head2 cutters
Title : cutters
Function : Find enzymes that cut a given number of times
Returns : a Bio::Restriction::EnzymeCollection
Arguments : 1. exact time or lower limit,
non-negative integer, optional
2. upper limit, non-negative integer,
larger or equalthan first, optional
If no arguments are given, the method returns all enzymes that do cut
the sequence. The argument zero, '0', is same as method
zero_cutters(). The argument one, '1', corresponds to unique_cutters.
If either of the limits is larger than number of cuts any enzyme cuts the
sequence, the that limit is automagically lowered. The method max_cuts()
gives the largest number of cuts.
See Also : L<unique_cutters|unique_cutters>,
L<zero_cutters|zero_cutters>, L<max_cuts|max_cuts>
=cut
sub cutters {
my ($self, $a, $z) = @_;
$self->cut unless $self->{'_cut'};
my ($start, $end);
if (defined $a) {
$self->throw("Need a non-zero integer [$a]")
unless $a =~ /^[+]?\d+$/;
$start = $a;
} else {
$start = 1;
}
$start = $self->{'maximum_cuts'} if $start > $self->{'maximum_cuts'};
if (defined $z) {
$self->throw("Need a non-zero integer no smaller than start [0]")
unless $z =~ /^[+]?\d+$/ and $z >= $a;
$end = $z;
}
elsif (defined $a) {
$end = $start;
} else {
$end = $self->{'maximum_cuts'};
}
$end = $self->{'maximum_cuts'} if $end > $self->{'maximum_cuts'};
my $set = Bio::Restriction::EnzymeCollection->new(-empty => 1);
#return an empty set if nothing cuts
return $set unless $self->{'maximum_cuts'};
for (my $i=$start; $i<=$end; $i++) {
$set->enzymes( @{$self->{_number_of_cuts_by_cuts}->{$i}} )
if defined $self->{_number_of_cuts_by_cuts}->{$i};
}
return $set;
}
=head2 unique_cutters
Title : unique_cutters
Function : A special case if cutters() where enzymes only cut once
Returns : a Bio::Restriction::EnzymeCollection
Arguments : -
See also: L<cutters>, L<zero_cutters>
=cut
sub unique_cutters {
shift->cutters(1);
}
=head2 zero_cutters
Title : zero_cutters
Function : A special case if cutters() where enzymes don't cut the sequence
Returns : a Bio::Restriction::EnzymeCollection
Arguments : -
See also: L<cutters>, L<unique_cutters>
=cut
sub zero_cutters {
shift->cutters(0);
}
=head2 max_cuts
Title : max_cuts
Function : Find the most number of cuts
Returns : The number of times the enzyme that cuts most cuts.
Arguments : None
This is not a very practical method, but if you are curious...
=cut
sub max_cuts { return shift->{maximum_cuts} }
=head1 Internal methods
=cut
=head2 _cuts
Title : _cuts
Function : Figures out which enzymes we know about and cuts the sequence.
Returns : Nothing.
Arguments : None.
Comments : An internal method. This will figure out where the sequence
should be cut, and provide the appropriate results.
=cut
sub _cuts {
my $self = shift;
my $target_seq=uc $self->{'_seq'}->seq; # I have been burned on this before :)
# first, find out all the enzymes that we have
foreach my $enz ($self->{'_enzymes'}->each_enzyme) {
my @all_cuts;
my @others = $enz->others if $enz->can("others");
foreach my $enzyme ($enz, @others) {
# cut the sequence
# _make_cuts handles all cases (amibiguous, non-ambiguous) X
# (palindromic X non-palindromic)
#
my $cut_positions = $self->_make_cuts($target_seq, $enzyme);
push @all_cuts, @$cut_positions;
#### need to refactor circular handling....
####
# deal with is_circular sequences
if ($self->{'_seq'}->is_circular) {
$cut_positions=$self->_circular($target_seq, $enzyme);
push @all_cuts, @$cut_positions;
}
# non-symmetric cutters (most external cutters, e.g.) need
# special handling
unless ($enzyme->is_symmetric) {
# do all of above with explicit use of the
# enzyme's 'complementary_cut'...
$cut_positions = $self->_make_cuts($target_seq, $enzyme, 'COMP');
push @all_cuts, @$cut_positions;
# deal with is_circular sequences
if ($self->{'_seq'}->is_circular) {
$cut_positions=$self->_circular($target_seq, $enzyme, 'COMP');
push @all_cuts, @$cut_positions;
}
}
}
if (defined $all_cuts[0]) {
# now just remove any duplicate cut sites
@all_cuts = sort {$a <=> $b} @all_cuts;
push @{$self->{'_cut_positions'}->{$enz->name}}, $all_cuts[0];
foreach my $i (@all_cuts) {
push @{$self->{'_cut_positions'}->{$enz->name}}, $i
if $i != ${$self->{'_cut_positions'}->{$enz->name}}[$#{$self->{'_cut_positions'}->{$enz->name}}];
}
} else {
# this just fixes an eror when @all_cuts is not defined!
@{$self->{'_cut_positions'}->{$enz->name}}=();
}
# note I have removed saving any other information except the
# cut_positions this should significantly decrease the amount
# of memory that is required for large sequences. It should
# also speed things up dramatically, because fragments and
# fragment maps are only calculated for those enzymes they are
# needed for.
# finally, save minimal information about each enzyme
my $number_of_cuts=scalar @{$self->{'_cut_positions'}->{$enz->name}};
# now just store the number of cuts
$self->{_number_of_cuts_by_enzyme}->{$enz->name}=$number_of_cuts;
push (@{$self->{_number_of_cuts_by_cuts}->{$number_of_cuts}}, $enz);
if ($number_of_cuts > $self->{maximum_cuts}) {
$self->{maximum_cuts}=$number_of_cuts;
}
}
}
=head2 _enzyme_sites
Title : _enzyme_sites
Function : An internal method to figure out the two sides of an enzyme
Returns : The sequence before the cut and the sequence after the cut
Arguments : A Bio::Restriction::Enzyme object,
$comp : boolean, calculate based on $enz->complementary_cut()
if true, $enz->cut() if false
Status : NOW DEPRECATED - maj
=cut
sub _enzyme_sites {
my ($self, $enz, $comp )=@_;
# get the cut site
# I have reworked this so that it uses $enz->cut to get the site
my $site= ( $comp ? $enz->complementary_cut : $enz->cut );
# split it into the two fragments for the sequence before and after.
$site=0 unless defined $site;
# the default values just stop an error from an undefined
# string. But they don't affect the split.
my ($beforeseq, $afterseq)= ('.', '.');
# extra-site cutting
# the before seq is going to be the entire site
# the after seq is empty
# BUT, need to communicate how to cut within the sample sequence
# relative to the end of the site (do through $enz->cut), and
# ALSO, need to check length of sample seq so that if cut falls
# outside the input sequence, we have a warning/throw. /maj
# pre-site cutting
# need to handle negative site numbers
if ($site <= 0) { # <= to handle pre-site cutting
$afterseq=$enz->string;
}
elsif ($site >= $enz->seq->length) { # >= to handle extrasite cutters/maj
$beforeseq=$enz->string;
}
else { # $site < $enz->seq->length
$beforeseq=$enz->seq->subseq(1, $site);
$afterseq=$enz->seq->subseq($site+1, $enz->seq->length);
}
# if the enzyme is ambiguous we need to convert this into a perl string
if ($enz->is_ambiguous) {
$beforeseq=$self->_expanded_string($beforeseq);
$afterseq =$self->_expanded_string($afterseq);
}
return ($beforeseq, $afterseq);
}
=head2 _non_pal_enz
Title : _non_pal_enz
Function : Analyses non_palindromic enzymes for cuts in both ways
(in fact, delivers only minus strand cut positions in the
plus strand coordinates/maj)
Returns : A reference to an array of cut positions
Arguments: The sequence to check and the enzyme object
NOW DEPRECATED/maj
=cut
sub _non_pal_enz {
my ($self, $target_seq, $enz) =@_;
# add support for non-palindromic sequences
# the enzyme is not the same forwards and backwards
my $site=$enz->complementary_cut;
# complementary_cut is in plus strand coordinates
# we are going to rc the sequence, so complementary_cut becomes length-complementary_cut
# I think this is wrong; cut sites are a matter of position with respect
# to the plus strand: the recognition site is double stranded and
# directly identifiable on the plus strand sequence. /maj
# what really needs doing is to keep track of plus strand and minus strand
# nicks separately./maj
my ($beforeseq, $afterseq)=('.', '.');
# now, for extra-site cuts, $site > length...so...?/maj
my $new_left_cut=$enz->seq->length-$site;
# there is a problem when this is actually zero
if ($new_left_cut == 0) {$afterseq=$enz->seq->revcom->seq}
elsif ($new_left_cut == $enz->seq->length) {$beforeseq=$enz->seq->revcom->seq}
else {
# this can't be right./maj
$beforeseq=$enz->seq->revcom->subseq(1, ($enz->seq->length-$site));
$afterseq=$enz->seq->revcom->subseq(($enz->seq->length-$site), $enz->seq->length);
}
# do this correctly, in the context of the current code design,
# by providing a "complement" argument to _ambig_cuts and _nonambig_cuts,
# use these explicitly rather than this wrapper./maj
my $results=[];
if ($enz->is_ambiguous) {
$results= $self->_ambig_cuts($beforeseq, $afterseq, $target_seq, $enz);
} else {
$results= $self->_nonambig_cuts($beforeseq, $afterseq, $target_seq, $enz);
}
# deal with is_circular
my $more_results=[];
$more_results=$self->_circular($beforeseq, $afterseq, $enz)
if ($self->{'_seq'}->is_circular);
return [@$more_results, @$results];
}
=head2 _ambig_cuts
Title : _ambig_cuts
Function : An internal method to localize the cuts in the sequence
Returns : A reference to an array of cut positions
Arguments : The separated enzyme site, the target sequence, and the enzyme object
Comments : This is a slow implementation but works for ambiguous sequences.
Whenever possible, _nonambig_cuts should be used as it is a lot faster.
=cut
# we have problems here when the cut is extrasite: $beforeseq/$afterseq do
# not define the cut site then! I am renaming this to _ambig_cuts_depr,
# providing a more compact method that correctly handles extrasite cuts
# below /maj
sub _ambig_cuts_depr {
my ($self, $beforeseq, $afterseq, $target_seq, $enz) = @_;
# cut the sequence. This is done with split so we can use
# regexp.
$target_seq = uc $target_seq;
my @cuts = split /($beforeseq)($afterseq)/i, $target_seq;
# now the array has extra elements --- the before and after!
# we have:
# element 0 sequence
# element 1 3' end
# element 2 5' end of next sequence
# element 3 sequence
# ....
# we need to loop through the array and add the ends to the
# appropriate parts of the sequence
my $i=0;
my @re_frags;
if ($#cuts) { # there is >1 element
while ($i<$#cuts) {
my $joinedseq;
# the first sequence is a special case
if ($i == 0) {
$joinedseq=$cuts[$i].$cuts[$i+1];
} else {
$joinedseq=$cuts[$i-1].$cuts[$i].$cuts[$i+1];
}
# now deal with overlapping sequences
# we can do this through a regular regexp as we only
# have a short fragment to look through
while ($joinedseq =~ /$beforeseq$afterseq/) {
$joinedseq =~ s/^(.*?$beforeseq)($afterseq)/$2/;
push @re_frags, $1;
}
push @re_frags, $joinedseq;
$i+=3;
}
# I don't think we want the last fragment in. It is messing up the _circular
# part of things. So I deleted this part of the code :)
} else {
# if we don't cut, leave the array empty
return [];
} # the sequence was not cut.
# now @re_frags has the fragments of all the sequences
# but some people want to have this return the lengths
# of the fragments.
# in theory the actual cut sites should be the length
# of the fragments in @re_frags
# note, that now this is the only data that we are saving. We
# will have to go back add regenerate re_frags. The reason is
# that we can use this in _circular easier
my @cut_positions = map {length($_)} @re_frags;
# the cut positions are right now the lengths of the sequence, but
# we need to add them all onto each other
for (my $i=1; $i<=$#cut_positions; $i++) {
$cut_positions[$i]+=$cut_positions[$i-1];
}
# in one of those oddities in life, 2 fragments mean an enzyme cut once
# so $#re_frags is the number of cuts
return \@cut_positions;
}
# new version/maj
sub _ambig_cuts {
my ($self, $before, $after, $target, $enz, $comp) = @_;
my $cut_site = ($comp ? $enz->complementary_cut : $enz->cut);
local $_ = uc $target;
my @cuts;
my $recog = $enz->recog;
my $site_re = qr/($recog)/;
push @cuts, pos while (/$site_re/g);
$_ = $_ - length($enz->recog) + $cut_site for @cuts;
return [@cuts];
}
=head2 _nonambig_cuts
Title : _nonambig_cuts
Function : Figures out which enzymes we know about and cuts the sequence.
Returns : Nothing.
Arguments : The separated enzyme site, the target sequence, and the enzyme object
An internal method. This will figure out where the sequence should be
cut, and provide the appropriate results. This is a much faster
implementation because it doesn't use a regexp, but it can not deal
with ambiguous sequences
=cut
# now, DO want the enzyme object.../maj
sub _nonambig_cuts {
my ($self, $beforeseq, $afterseq, $target_seq, $enz, $comp) = @_;
my $cut_site = ($comp ? $enz->complementary_cut : $enz->cut);
if ($beforeseq eq ".") {$beforeseq = ''}
if ($afterseq eq ".") {$afterseq = ''}
$target_seq = uc $target_seq;
# my $index_posn=index($target_seq, $beforeseq.$afterseq);
my $index_posn=index($target_seq, $enz->recog);
return [] if ($index_posn == -1); # there is no match to the sequence
# there is at least one cut site
my @cuts;
while ($index_posn > -1) {
# extrasite cutting issue here...
# think we want $index_posn+$enz->cut
# push (@cuts, $index_posn+length($beforeseq));
push (@cuts, $index_posn+$cut_site);
# $index_posn=index($target_seq, $beforeseq.$afterseq, $index_posn+1);
$index_posn=index($target_seq, $enz->recog, $index_posn+1);
}
return \@cuts;
}
=head2 _make_cuts
Title : _make_cuts
Usage : $an->_make_cuts( $target_sequence, $enzyme, $complement_q )
Function: Returns an array of cut sites on target seq, using enzyme
on the plus strand ($complement_q = 0) or minus strand
($complement_q = 1); follows Enzyme objects in
$enzyme->others()
Returns : array of scalar integers
Args : sequence string, B:R:Enzyme object, boolean
=cut
sub _make_cuts {
no warnings qw( uninitialized );
my ($self, $target, $enz, $comp) = @_;
local $_ = uc $target;
my @cuts;
my @enzs = map { $_ || () } ($enz, $enz->can('others') ? $enz->others : ());
ENZ:
foreach $enz (@enzs) {
my $recog = $enz->recog;
my $cut_site = ($comp ? $enz->complementary_cut : $enz->cut);
my @these_cuts;
if ( $recog =~ /[^\w]/ ) { # "ambig"
my $site_re = qr/($recog)/;
push @these_cuts, pos while (/$site_re/g);
$_ = $_ - length($enz->string) + $cut_site for @these_cuts;
if (!$enz->is_palindromic) {
pos = 0;
my @these_rev_cuts;
$recog = $enz->revcom_recog;
$cut_site = length($enz->string) - ($comp ? $enz->cut : $enz->complementary_cut);
$site_re = qr/($recog)/;
push @these_rev_cuts, pos while (/$site_re/g);
$_ = $_ - length($enz->string) + $cut_site for @these_rev_cuts;
push @these_cuts, @these_rev_cuts;
}
}
else { # "nonambig"
my $index_posn=index($_, $recog);
while ($index_posn > -1) {
push (@these_cuts, $index_posn+$cut_site);
$index_posn=index($_, $recog, $index_posn+1);
}
if (!$enz->is_palindromic) {
$recog = $enz->revcom_recog;
$cut_site = length($enz->string) - ($comp ? $enz->cut : $enz->complementary_cut);
$index_posn=index($_, $recog);
while ($index_posn > -1) {
push @these_cuts, $index_posn+$cut_site;
$index_posn=index($_, $recog, $index_posn+1);
}
}
}
push @cuts, @these_cuts;
}
return [@cuts];
}
=head2 _multiple_cuts
Title : _multiple_cuts
Function : Figures out multiple digests
Returns : An array of the cut sites for multiply digested DNA
Arguments : A Bio::Restriction::EnzymeCollection object
Comments : Double digests is one subset of this, but you can use
as many enzymes as you want.
=cut
sub _multiple_cuts {
my ($self, $ec)=@_;
$self->cut unless $self->{'_cut'};
# now that we are using positions rather than fragments
# this is really easy
my @cuts;
foreach my $enz ($ec->each_enzyme) {
push @cuts, @{$self->{'_cut_positions'}->{$enz->name}}
if defined $self->{'_cut_positions'}->{$enz->name};
}
@{$self->{'_cut_positions'}->{'multiple_digest'}}=sort {$a <=> $b} @cuts;
my $number_of_cuts;
$number_of_cuts=scalar @{$self->{'_cut_positions'}->{'multiple_digest'}};
$self->{_number_of_cuts_by_enzyme}->{'multiple_digest'}=$number_of_cuts;
push (@{$self->{_number_of_cuts_by_cuts}->{$number_of_cuts}}, 'multiple_digest');
if ($number_of_cuts > $self->{maximum_cuts}) {
$self->{maximum_cuts}=$number_of_cuts;
}
}
=head2 _circular
Title : _circular
Function : Identifies cuts at the join of the end of the target with
the beginning of the target
Returns : array of scalar integers ( cut sites near join, if any )
Arguments : scalar string (target sequence), Bio::Restriction::Enzyme obj
=cut
sub _circular {
my ($self, $target, $enz, $comp) = @_;
$target=uc $target;
my $patch_len = ( length $target > 20 ? 10 : int( length($target)/2 ) );
my ($first, $last) =
(substr($target, 0, $patch_len),substr($target, -$patch_len));
my $patch=$last.$first;
# now find the cut sites
my $cut_positions = $self->_make_cuts($patch, $enz, $comp);
# the enzyme doesn't cut in the new fragment
return [] if (!$cut_positions);
# now we are going to add things to _cut_positions
# in this shema it doesn't matter if the site is there twice -
# we will take care of that later. Because we are using position
# rather than frag or anything else, we can just
# remove duplicates.
my @circ_cuts;
foreach my $cut (@$cut_positions) {
if ($cut == length($last)) {
# the cut is actually at position 0, but we're going to call this the
# length of the sequence so we don't confuse no cuts with a 0 cut
# push (@circ_cuts, $self->{'_seq'}->length);
push (@circ_cuts, 0);
}
elsif ($cut < length($last)) {
# the cut is before the end of the sequence
#check
push (@circ_cuts, $self->{'_seq'}->length - (length($last) - $cut));
}
else {
# the cut is at the start of the sequence (position >=1)
# note, we put this at the beginning of the array rather than the end!
unshift (@circ_cuts, $cut-length($last));
}
}
return \@circ_cuts;
}
=head2 _expanded_string
Title : _expanded_string
Function : Expand nucleotide ambiguity codes to their representative letters
Returns : The full length string
Arguments : The string to be expanded.
Stolen from the original RestrictionEnzyme.pm
=cut
sub _expanded_string {
my ($self, $str) = @_;
$str =~ s/N|X/\./g;
$str =~ s/R/\[AG\]/g;
$str =~ s/Y/\[CT\]/g;
$str =~ s/S/\[GC\]/g;
$str =~ s/W/\[AT\]/g;
$str =~ s/M/\[AC\]/g;
$str =~ s/K/\[TG\]/g;
$str =~ s/B/\[CGT\]/g;
$str =~ s/D/\[AGT\]/g;
$str =~ s/H/\[ACT\]/g;
$str =~ s/V/\[ACG\]/g;
return $str;
}
1;
|