This file is indexed.

/usr/share/perl5/Bio/PopGen/HtSNP.pm is in libbio-perl-perl 1.7.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
# module Bio::PopGen::HtSNP.pm
# cared by Pedro M. Gomez-Fabre <pgf18872-at-gsk-dot-com>
#
#

=head1 NAME

Bio::PopGen::HtSNP.pm- Select htSNP from a haplotype set

=head1 SYNOPSIS

    use Bio::PopGen::HtSNP;

    my $obj = Bio::PopGen::HtSNP->new($hap,$snp,$pop);

=head1 DESCRIPTION

Select the minimal set of SNP that contains the full information about
the haplotype without redundancies.

Take as input the followin values:

=over 4

=item - the haplotype block (array of array).

=item - the snp id (array).

=item - family information and frequency (array of array).

=back

The final haplotype is generated in a numerical format and the SNP's
sets can be retrieve from the module.

B<considerations:>


- If you force to include a family with indetermination, the SNP's
with indetermination will be removed from the analysis, so consider
before to place your data set what do you really want to do.

- If two families have the same information (identical haplotype), one
of them will be removed and the removed files will be stored classify
as removed.

- Only are accepted for calculation A, C, G, T and - (as deletion) and
their combinations. Any other value as n or ? will be considered as
degenerations due to lack of information.

=head2 RATIONALE

On a haplotype set is expected that some of the SNP and their
variations contribute in the same way to the haplotype. Eliminating
redundancies will produce a minimal set of SNP's that can be used as
input for a taging selection process. On the process SNP's with the
same variation are clustered on the same group.

The idea is that because the tagging haplotype process is
exponential. All redundant information we could eliminate on the
tagging process will help to find a quick result.

=head2 CONSTRUCTORS

  my $obj = Bio::PopGen::HtSNP->new
    (-haplotype_block => \@haplotype_patterns,
     -snp_ids         => \@snp_ids,
     -pattern_freq    => \@pattern_name_and_freq);

where  $hap, $snp and $pop are in the format:

  my $hap = [
             'acgt',
             'agtc',
             'cgtc'
            ];                     # haplotype patterns' id

  my $snp = [qw/s1 s2 s3 s4/];     # snps' Id's

  my $pop = [
             [qw/ uno    0.20/],
             [qw/ dos    0.20/],
             [qw/ tres   0.15/],
            ];                     # haplotype_pattern_id    Frequency

=head2 OBJECT METHODS

    See Below for more detailed summaries.


=head1 DETAILS

=head2 How the process is working with one example

Let's begin with one general example of the code.

Input haplotype:

  acgtcca-t
  cggtagtgc
  cccccgtgc
  cgctcgtgc

The first thing to to is to B<split the haplotype> into characters.

  a       c       g       t       c       c       a       -       t
  c       g       g       t       a       g       t       g       c
  c       c       c       c       c       g       t       g       c
  c       g       c       t       c       g       t       g       c

Now we have to B<convert> the haplotype to B<Upercase>. This
will produce the same SNP if we have input a or A.

  A       C       G       T       C       C       A       -       T
  C       G       G       T       A       G       T       G       C
  C       C       C       C       C       G       T       G       C
  C       G       C       T       C       G       T       G       C

The program admit as values any combination of ACTG and - (deletions).
The haplotype is B<converted to number>, considering the first variation
as zero and the alternate value as 1 (see expanded description below).

  0       0       0       0       0       0       0       0       0
  1       1       0       0       1       1       1       1       1
  1       0       1       1       0       1       1       1       1
  1       1       1       0       0       1       1       1       1

Once we have the haplotype converted to numbers we have to generate the
snp type information for the haplotype.


B<SNP code = SUM ( value * multiplicity ^ position );>

    where:
      SUM is the sum of the values for the SNP
      value is the SNP number code (0 [generally for the mayor allele],
                                    1 [for the minor allele].
      position is the position on the block.

For this example the code is:

  0       0       0       0       0       0       0       0       0
  1       1       0       0       1       1       1       1       1
  1       0       1       1       0       1       1       1       1
  1       1       1       0       0       1       1       1       1
 ------------------------------------------------------------------
  14      10      12      4       2       14      14      14      14

  14 = 0*2^0 + 1*2^1 + 1*2^2 + 1*2^3
  12 = 0*2^0 + 1*2^1 + 0*2^2 + 1*2^3
  ....

Once we have the families classify. We will B<take> just the SNP's B<not
redundant>.

  14      10      12      4       2

This information will be B<passed to the tag module> is you want to tag
the htSNP.

Whatever it happens to one SNPs of a class will happen to a SNP of
the same class. Therefore you don't need to scan redundancies

=head2 Working with fuzzy data.

This module is designed to work with fuzzy data. As the source of the
haplotype is diverse. The program assume that some haplotypes can be
generated using different values. If there is any indetermination (? or n)
or any other degenerated value or invalid. The program will take away
This SNP and will leave that for a further analysis.

On a complex situation:

  a       c       g       t       ?       c       a       c       t
  a       c       g       t       ?       c       a       -       t
  c       g       ?       t       a       g       ?       g       c
  c       a       c       t       c       g       t       g       c
  c       g       c       t       c       g       t       g       c
  c       g       g       t       a       g       ?       g       c
  a       c       ?       t       ?       c       a       c       t

On this haplotype everything is happening. We have a multialelic variance.
We have indeterminations. We have deletions and we have even one SNP
which is not a real SNP.

The buiding process will be the same on this situation.

Convert the haplotype to uppercase.

  A       C       G       T       ?       C       A       C       T
  A       C       G       T       ?       C       A       -       T
  C       G       ?       T       A       G       ?       G       C
  C       A       C       T       C       G       T       G       C
  C       G       C       T       C       G       T       G       C
  C       G       G       T       A       G       ?       G       C
  A       C       ?       T       ?       C       A       C       T

All columns that present indeterminations will be removed from the analysis
on this Step.

hapotype after remove columns:

  A       C       T       C       C       T
  A       C       T       C       -       T
  C       G       T       G       G       C
  C       A       T       G       G       C
  C       G       T       G       G       C
  C       G       T       G       G       C
  A       C       T       C       C       T

All changes made on the haplotype matrix, will be also made on the SNP list.

  snp_id_1 snp_id_2 snp_id_4 snp_id_6 snp_id_8 snp_id_9

now the SNP that is not one SNP will be removed from the analysis.
SNP with Id snp_id_4 (the one with all T's).


because of the removing. Some of the families will become the same and will
be clustered. A posteriori analysis will diference these families.
but because of the indetermination can not be distinguish.

  A       C       C       C       T
  A       C       C       -       T
  C       G       G       G       C
  C       A       G       G       C
  C       G       G       G       C
  C       G       G       G       C
  A       C       C       C       T

The result of the mergering will go like:

  A       C       C       C       T
  A       C       C       -       T
  C       G       G       G       C
  C       A       G       G       C

Once again the changes made on the families and we merge the frequency (I<to be
implemented>)

Before to convert the haplotype into numbers we consider how many variations
we have on the set. On this case the variations are 3.

The control code will use on this situation base three as mutiplicity

  0       0       0       0       0
  0       0       0       1       0
  1       1       1       2       1
  1       2       1       2       1
 -----------------------------------
  36      63      36      75      36

And the minimal set for this combination is

  0       0       0
  0       0       1
  1       1       2
  1       2       2

B<NOTE:> this second example is a remote example an on normal conditions. This
conditions makes no sense, but as the haplotypes, can come from many sources
we have to be ready for all kind of combinations.


=head1 FEEDBACK

=head2 Mailing Lists

User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list.  Your participation is much appreciated.

  bioperl-l@bioperl.org                  - General discussion
  http://bioperl.org/wiki/Mailing_lists  - About the mailing lists

=head2 Support 

Please direct usage questions or support issues to the mailing list:

I<bioperl-l@bioperl.org>

rather than to the module maintainer directly. Many experienced and 
reponsive experts will be able look at the problem and quickly 
address it. Please include a thorough description of the problem 
with code and data examples if at all possible.

=head2 Reporting Bugs

Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:

  https://github.com/bioperl/bioperl-live/issues

=head1 AUTHOR - Pedro M. Gomez-Fabre

Email pgf18872-at-gsk-dot-com


=head1 APPENDIX

The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _

=cut

# Let the code begin...

package Bio::PopGen::HtSNP;
use Data::Dumper;
use Storable qw(dclone);

use vars qw ();
use strict;


use base qw(Bio::Root::Root);

my $USAGE = 'Usage:

    Bio::PopGen::HtSNP->new(-haplotype_block -ids -pattern_freq)

';

=head2 new

 Title   : new
 Function: constructor of the class.
 Usage   : $obj-> Bio::PopGen::HtSNP->new(-haplotype_block
                                          -snp_ids
                                          -pattern_freq)
 Returns : self hash
 Args    : input haplotype (array of array)
           snp_ids         (array)
           pop_freq        (array of array)
 Status  : public

=cut

sub new {
    my($class, @args) = @_;

    my $self = $class->SUPER::new(@args);
    my ($haplotype_block,
        $snp_ids,
        $pattern_freq    ) = $self->_rearrange([qw(HAPLOTYPE_BLOCK 
                                                   SNP_IDS
                                                   PATTERN_FREQ)],@args);

    if ($haplotype_block){
        $self->haplotype_block($haplotype_block);
    }
    else{
        $self->throw("Haplotype block has not been defined.
                      \n$USAGE");
    }
    if ($snp_ids){
        $self->snp_ids($snp_ids);
    }
    else{
        $self->throw("Array with ids has not been defined.
                      \n$USAGE");
    }
    if ($pattern_freq){
        $self->pattern_freq($pattern_freq);
    }
    else{
        $self->throw("Array with pattern id and frequency has not been defined.
                      \n$USAGE");
    }

    # if the input values are not well formed complained and exit.
    _check_input($self);

    _do_it($self);

    return $self;
}

=head2 haplotype_block 

 Title   : haplotype_block 
 Usage   : my $haplotype_block = $HtSNP->haplotype_block();
 Function: Get the haplotype block for a haplotype tagging selection
 Returns : reference of array 
 Args    : reference of array with haplotype pattern 


=cut

sub haplotype_block{
    my ($self) =shift;
    return $self->{'_haplotype_block'} = shift if @_;
    return $self->{'_haplotype_block'};
}

=head2 snp_ids 

 Title   : snp_ids 
 Usage   : my $snp_ids = $HtSNP->$snp_ids();
 Function: Get the ids for a haplotype tagging selection
 Returns : reference of array
 Args    : reference of array with SNP ids


=cut

sub snp_ids{
    my ($self) =shift;
    return $self->{'_snp_ids'} = shift if @_;
    return $self->{'_snp_ids'};
}


=head2 pattern_freq

 Title   : pattern_freq
 Usage   : my $pattern_freq = $HtSNP->pattern_freq();
 Function: Get the pattern id and frequency  for a haplotype
           tagging selection
 Returns : reference of array
 Args    : reference of array with SNP ids

=cut

sub pattern_freq{
    my ($self) =shift;
    return $self->{'_pattern_freq'} = shift if @_;
    return $self->{'_pattern_freq'};
}

=head2 _check_input

 Title   : _check_input
 Usage   : _check_input($self)
 Function: check for errors on the input
 Returns : self hash
 Args    : self
 Status  : internal

=cut

#------------------------
sub _check_input{
#------------------------

    my $self = shift;

    _haplotype_length_error($self);
    _population_error($self);

}

=head2 _haplotype_length_error

 Title   : _haplotype_length_error
 Usage   : _haplotype_length_error($self)
 Function: check if the haplotype length is the same that the one on the
           SNP id list. If not break and exit
 Returns : self hash
 Args    : self
 Status  : internal

=cut


#------------------------
sub _haplotype_length_error{
#------------------------

    my $self = shift;

    my $input_block = $self->haplotype_block();
    my $snp_ids     = $self->snp_ids();


    #############################
    # define error list
    #############################
    my $different_haplotype_length = 0;

    ##############################
    # get parameters used to find
    # the errors
    ##############################

    my $snp_number         = scalar @$snp_ids;
    my $number_of_families = scalar @$input_block;
    my $h                  = 0; # haplotype position


    ############################
    # haplotype length
    #
    # if the length differs from the number of ids
    ############################

    for ($h=0; $h<$#$input_block+1 ; $h++){
        if (length $input_block->[$h]  != $snp_number){
            $different_haplotype_length = 1;
            last;
        }
    }

    # haploytypes does not have the same length
    if ($different_haplotype_length){
       $self->throw("The number of snp ids is $snp_number and ".
            "the length of the family (". ($h+1) .") [".
             $input_block->[$h]."] is ".
             length $input_block->[$h], "\n");
    }
}

=head2 _population_error


 Title   : _population_error
 Usage   : _population_error($self)
 Function: use input_block and pop_freq test if the number of elements
           match. If doesn't break and quit.
 Returns : self hash
 Args    : self
 Status  : internal

=cut


#------------------------
sub _population_error{
#------------------------

    my $self = shift;

    my $input_block = $self->haplotype_block();
    my $pop_freq    = $self->pattern_freq();

    #############################
    # define error list
    #############################
    my $pop_freq_elements_error    = 0;  # matrix bad formed

    ##############################
    # get parameters used to find
    # the errors
    ##############################
    my $number_of_families = scalar @$input_block;

    my $pf         = 0; # number of elements on population frequency
    my $frequency  = 0; # population frequency
    my $p_f_length = 0;

    # check if the pop_freq array is well formed and if the number
    # of elements fit with the number of families

    #############################
    # check population frequency
    #
    # - population frequency matrix need to be well formed
    # - get the frequency
    # - calculate number of families on pop_freq
    #############################

    for  ($pf=0; $pf<$#$pop_freq+1; $pf++){
        $frequency += $pop_freq->[$pf]->[1];

        if ( scalar @{$pop_freq->[$pf]} !=2){
            $p_f_length = scalar @{$pop_freq->[$pf]};
            $pop_freq_elements_error = 1;
            last;
        }
    }

    ###########################
    ## error processing
    ###########################


    # The frequency shouldn't be greater than 1
    if ($frequency >1) {
        $self->warn("The frequency for this set is $frequency (greater than 1)\n");
    }

    # the haplotype matix is not well formed
    if ($pop_freq_elements_error){
        $self->throw("the frequency matrix is not well formed\n".
             "\nThe number of elements for pattern ".($pf+1)." is ".
             "$p_f_length\n".
             "It should be 2 for pattern \"@{$pop_freq->[$pf]}\"\n".
             "\nFormat should be:\n".
             "haplotype_id\t frequency\n"
            );
    }

    # the size does not fit on pop_freq array
    #  with the one in haplotype (input_block)
    if ($pf != $number_of_families) {
        $self->throw("The number of patterns on frequency array ($pf)\n".
             "does not fit with the number of haplotype patterns on \n". 
             "haplotype array ($number_of_families)\n");
    }
}

=head2 _do_it


 Title   : _do_it
 Usage   : _do_it($self)
 Function: Process the input generating the results.
 Returns : self hash
 Args    : self
 Status  : internal

=cut

#------------------------
sub _do_it{
#------------------------

    my $self = shift;

    # first we are goinf to define here all variables we are going to use
    $self -> {'w_hap'}          = [];
    $self -> {'w_pop_freq'}     = dclone ( $self ->pattern_freq() );
    $self -> {'deg_pattern'}    = {};
    $self -> {'snp_type'}       = {};  # type of snp on the set. see below
    $self -> {'alleles_number'} = 0;   # number of variations (biallelic,...)
    $self -> {'snp_type_code'}  = [];
    $self -> {'ht_type'}        = [];  # store the snp type used on the htSet
    $self -> {'split_hap'}      = [];
    $self -> {'snp_and_code'}   = [];


    # we classify the SNP under snp_type
    $self->{snp_type}->{useful_snp} = dclone ( $self ->snp_ids() );
    $self->{snp_type}->{deg_snp}    = []; # deg snp
    $self->{snp_type}->{silent_snp} = []; # not a real snp

    # split the haplotype
    _split_haplo ($self);

    # first we convert to upper case the haplotype
    # to make A the same as a for comparison
    _to_upper_case( $self -> {w_hap} );

    #######################################################
    # check if any SNP has indetermination. If any SNP has
    # indetermination this value will be removed.
    #######################################################
    _remove_deg ( $self );

    #######################################################
    # depending of the families you use some SNPs can be
    # silent. This silent SNP's are not used on the
    # creation of tags and has to be skipped from the
    # analysis.
    #######################################################
    _rem_silent_snp ( $self );

    #######################################################
    # for the remaining SNP's we have to check if two
    # families have the same value. If this is true, the families
    # will produce the same result and therefore we will not find
    # any pattern. So, the redundant families need to be take
    # away from the analysis. But also considered for a further
    # run.
    #
    # When we talk about a normal haplotype blocks this situation
    # makes no sense but if we remove one of the snp because the
    # degeneration two families can became the same.
    # these families may be analised on a second round
    #######################################################

    _find_deg_pattern ( $self );

    #################################################################
    # if the pattern list length is different to the lenght of the w_hap
    # we can tell that tow columns have been considered as the same one
    # and therefore we have to start to remove the values.
    # remove all columns with degeneration
    #
    # For this calculation we don't use the pattern frequency.
    # All patterns are the same, This selection makes
    # sense when you have different frequency.
    #
    # Note: on this version we don't classify the haplotype by frequency
    # but if you need to do it. This is the place to do it!!!!
    #
    # In reality you don't need to sort the values because you will remove
    # the values according to their values.
    #
    # But as comes from a hash, the order could be different and as a
    # consequence the code generate on every run of the same set could
    # differ. That is not important. In fact, does not matter but could
    # confuse people.
    #################################################################

    my @tmp =sort { $a <=> $b}
         keys %{$self -> {deg_pattern}}; # just count the families

    # if the size of the list is different to the size of the degenerated
    # family. There is degeneration. And the redundancies will be
    # removed.
    if($#tmp != $#{$self -> { w_hap } } ){
        _keep_these_patterns($self->{w_hap}, \@tmp);
        _keep_these_patterns($self->{w_pop_freq}, \@tmp);
    }

    #################################################################
    # the steps made before about removing snp and cluster families
    # are just needed pre-process the haplotype before.
    #
    # Now is when the fun starts.
    #
    #
    # once we have the this minimal matrix, we have to calculate the
    # max multipliticy for the values. The max number of alleles found
    # on the set. A normal haplotype is biallelic but we can not
    # reject multiple variations.
    ##################################################################

    _alleles_number ( $self );

    ##################################################################
    # Now we have to convert the haplotype into number
    #
    # A       C       C       -       T
    # C       A       G       G       C
    # A       C       C       C       T
    # C       G       G       G       C
    #
    # one haplotype like this transformed into number produce this result
    #
    # 0       0       0       0       0
    # 1       1       1       1       1
    # 0       0       0       2       0
    # 1       2       1       1       1
    #
    ##################################################################

    _convert_to_numbers( $self );

    ###################################################################
    # The next step is to calculate the type of the SNP.
    # This process is made based on the position of the SNP, the value
    # and its multiplicity.
    ###################################################################

    _snp_type_code( $self );

    ###################################################################
    # now we have all information we need to calculate the haplotype
    # tagging SNP htSNP
    ###################################################################

    _htSNP( $self );

    ###################################################################
    # patch:
    #
    # all SNP have a code. but if the SNP is not used this code must
    # be zero in case of silent SNP. This looks not to informative
    # because all the information is already there. But this method
    # compile the full set.
    ###################################################################

    _snp_and_code_summary( $self );
}

=head2 input_block

 Title   : input_block
 Usage   : $obj->input_block()
 Function: returns input block
 Returns : reference to array of array
 Args    : none
 Status  : public

=cut

#------------------------
sub input_block{
#------------------------

    my $self = shift;
    return $self -> {input_block};
}

=head2 hap_length

 Title   : hap_length
 Usage   : $obj->hap_length()
 Function: get numbers of SNP on the haplotype
 Returns : scalar
 Args    : none
 Status  : public

=cut

#------------------------
sub hap_length{
#------------------------

    my $self = shift;
    return scalar @{$self -> {'_snp_ids'}};
}


=head2 pop_freq

 Title   : pop_freq
 Usage   : $obj->pop_freq()
 Function: returns population frequency
 Returns : reference to array
 Args    : none
 Status  : public

=cut

#------------------------
sub pop_freq{
#------------------------

    my $self = shift;
    return $self -> {pop_freq}
}


=head2 deg_snp


 Title   : deg_snp
 Usage   : $obj->deg_snp()
 Function: returns snp_removes due to indetermination on their values
 Returns : reference to array
 Args    : none
 Status  : public

=cut

#------------------------
sub deg_snp{
#------------------------
    my $self = shift;
    return $self -> {snp_type} ->{deg_snp};
}


=head2 snp_type


 Title   : snp_type
 Usage   : $obj->snp_type()
 Function: returns hash with SNP type
 Returns : reference to hash
 Args    : none
 Status  : public

=cut

#------------------------
sub snp_type{
#------------------------
    my $self = shift;
    return $self -> {snp_type};
}


=head2 silent_snp


 Title   : silent_snp
 Usage   : $obj->silent_snp()
 Function: some SNP's are silent (not contibuting to the haplotype)
           and are not considering for this analysis
 Returns : reference to a array
 Args    : none
 Status  : public

=cut

#------------------------
sub silent_snp{
#------------------------
    my $self = shift;
    return $self -> {snp_type} ->{silent_snp};
}


=head2 useful_snp


 Title   : useful_snp
 Usage   : $obj->useful_snp()
 Function: returns list of SNP's that are can be used as htSNP. Some
           of them can produce the same information. But this is
           not considered here.
 Returns : reference to a array
 Args    : none
 Status  : public

=cut

#------------------------
sub useful_snp{
#------------------------
    my $self = shift;
    return $self -> {snp_type} ->{useful_snp};
}


=head2 ht_type


 Title   : ht_type
 Usage   : $obj->ht_type()
 Function: every useful SNP has a numeric code dependending of its
           value and position. For a better description see
           description of the module.
 Returns : reference to a array
 Args    : none
 Status  : public

=cut

#------------------------
sub ht_type{
#------------------------
    my $self = shift;
    return $self -> {ht_type};
}
=head2 ht_set


 Title   : ht_set
 Usage   : $obj->ht_set()
 Function: returns the minimal haplotype in numerical format. This
           haplotype contains the maximal information about the
           haplotype variations but with no redundancies. It's the
           minimal set that describes the haplotype.
 Returns : reference to an array of arrays
 Args    : none
 Status  : public

=cut

#------------------------
sub ht_set{
#------------------------
    my $self = shift;
    return $self -> {w_hap};
}

=head2 snp_type_code


 Title   : snp_type_code
 Usage   : $obj->snp_type_code()
 Function: returns the numeric code of the SNPs that need to be
           tagged that correspond to the SNP's considered in ht_set.
 Returns : reference to an array
 Args    : none
 Status  : public

=cut

#------------------------
sub snp_type_code{
#------------------------
    my $self = shift;
    return $self -> {snp_type_code};
}

=head2 snp_and_code


 Title   : snp_and_code
 Usage   : $obj->snp_and_code()
 Function: Returns the full list of SNP's and the code associate to
           them. If the SNP belongs to the group useful_snp it keep
           this code. If the SNP is silent the code is 0. And if the
           SNP is degenerated the code is -1.
 Returns : reference to an array of array
 Args    : none
 Status  : public

=cut

#------------------------
sub snp_and_code{
#------------------------
    my $self = shift;
    return $self -> {'snp_and_code'};
}

=head2 deg_pattern


 Title   : deg_pattern
 Usage   : $obj->deg_pattern()
 Function: Returns the a list with the degenerated haplotype.
           Sometimes due to degeneration some haplotypes looks
           the same and if we don't remove them it won't find
           any tag.
 Returns : reference to a hash of array
 Args    : none
 Status  : public

=cut

#------------------------
sub deg_pattern{
#------------------------
    my $self = shift;

    return $self -> {'deg_pattern'};
}

=head2 split_hap


 Title   : split_hap
 Usage   : $obj->split_hap()
 Function: simple representation of the haplotype base by base
           Same information that input haplotype but base based.
 Returns : reference to an array of array
 Args    : none
 Status  : public

=cut

#------------------------
sub split_hap{
#------------------------
    my $self = shift;
    return $self -> {'split_hap'};
}

=head2 _split_haplo

 Title   : _split_haplo
 Usage   : _split_haplo($self)
 Function: Take a haplotype and split it into bases
 Returns : self
 Args    : none
 Status  : internal

=cut

#------------------------
sub _split_haplo {
#------------------------
    my $self = shift;

    my $in  = $self ->{'_haplotype_block'};
    my $out = $self ->{'w_hap'};

    # split every haplotype and store the result into $out
    foreach (@$in){
        push @$out, [split (//,$_)];
    }

    $self -> {'split_hap'} = dclone ($out);
}

# internal method to convert the haplotype to uppercase


=head2 _to_upper_case


 Title   : _to_upper_case
 Usage   : _to_upper_case()
 Function: make SNP or in-dels Upper case
 Returns : self
 Args    : an AoA ref
 Status  : private

=cut

#------------------------
sub _to_upper_case {
#------------------------
    my ($arr) =@_;

    foreach my $aref (@$arr){
        foreach my $value (@{$aref} ){
            $value = uc $value;
        }
    }
}


=head2 _remove_deg


 Title   : _remove_deg
 Usage   : _remove_deg()
 Function: when have a indetermination or strange value this SNP
           is removed
 Returns : haplotype family set and degeneration list
 Args    : ref to an AoA and a ref to an array
 Status  : internal

=cut

#------------------------
sub _remove_deg {
#------------------------
    my $self = shift;

    my $hap         = $self->{w_hap};
    my $snp         = $self->{snp_type}->{useful_snp};
    my $deg_snp     = $self->{snp_type}->{deg_snp};

    my $rem = [];  # take the position of the array to be removed

    # first we work on the columns we have void values
    $rem = _find_indet($hap,$rem);  # find degenerated columns

    if (@$rem){

        # remove column on haplotype
        _remove_col($hap,$rem); # remove list

        # now remove the values from SNP id
        _remove_snp_id($snp,$deg_snp,$rem); # remove list
    }
}


=head2 _rem_silent_snp


 Title   : _rem_silent_snp
 Usage   : _rem_silent_snp()
 Function: there is the remote possibility that one SNP won't be a
           real SNP on this situation we have to remove this SNP,
           otherwise the program won't find any tag
 Returns : nonthing
 Args    : ref to an AoA and a ref to an array
 Status  : internal

=cut

#------------------------
sub _rem_silent_snp {
#------------------------
    my $self = shift;

    my $hap         = $self->{w_hap};
    my $snp         = $self->{snp_type}->{useful_snp};
    my $silent_snp  = $self->{snp_type}->{silent_snp};

    my $rem = [];   # store the positions to be removed

    #find columns with no variation on the SNP, Real snp?
    $rem = _find_silent_snps($hap);

    if (@$rem){

        # remove column on haplotype
        _remove_col($hap,$rem);

        # remove the values from SNP id
        _remove_snp_id($snp,$silent_snp,$rem);
    }
}


=head2 _find_silent_snps


 Title   : _find_silent_snps
 Usage   :
 Function: list of snps that are not SNPs. All values for that
           SNPs on the set is the same one. Look stupid but can
           happened and if this happend you will not find any tag
 Returns : nothing
 Args    :
 Status  :

=cut

#------------------------
sub _find_silent_snps{
#------------------------
    my ($arr)=@_;

    my $list =[]; # no snp list;

    # determine the number of snp by the length of the first row.
    # we assume that the matrix is squared.
    my $colsn= @{$arr->[0]};

    for (my $i=0;$i<$colsn;$i++){
        my $different =0;  # check degeneration

        for my $r (1..$#$arr){
            if($arr->[0][$i] ne $arr->[$r][$i]){
                $different =1;
                last;
            }
        }

        if(!$different){
            push (@$list, $i);
        }
    }

    return $list;
}


=head2 _find_indet


 Title   : _find_indet
 Usage   :
 Function: find column (SNP) with invalid or degenerated values
           and store this values into the second parameter supplied.
 Returns : nothing
 Args    : ref to AoA and ref to an array
 Status  : internal

=cut

#------------------------
sub _find_indet{
#------------------------
    my ($arr, $list)=@_;

    foreach my $i(0..$#$arr){
        foreach my $j(0..$#{$arr->[$i]}){
            unless ($arr->[$i][$j] =~ /[ACTG-]/){
                if ($#$list<0){
                    push(@$list,$j);
                }
                else{
                    my $found =0;   # check if already exist the value
                    foreach my $k(0..$#$list){
                        $found =1 if ($list->[$k] eq $j);
                        last if ($found);
                    }
                    if(!$found){
                        push(@$list,$j);
                    }
                }
            }
        }
    }

    @$list = sort { $a <=> $b} @$list;

    return $list;
}

=head2 _remove_col

 Title   : _remove_col
 Usage   :
 Function: remove columns contained on the second array from
           the first arr
 Returns : nothing
 Args    : array of array reference and array reference
 Status  : internal

=cut

#------------------------
sub _remove_col{
#------------------------
    my ($arr,$rem)=@_;

    foreach my $col (reverse @$rem){
        splice @$_, $col, 1 for @$arr;
    }
}


=head2 _remove_snp_id

 Title   : _remove_snp_id
 Usage   :
 Function: remove columns contained on the second array from
           the first arr
 Returns : nothing
 Args    : array of array reference and array reference
 Status  : internal

=cut

#------------------------
sub _remove_snp_id{
#------------------------
    my ($arr,$removed,$rem_list)=@_;

    push @$removed, splice @$arr, $_, 1 foreach reverse @$rem_list;
}


=head2 _find_deg_pattern

 Title   : _find_deg_pattern
 Usage   :
 Function: create a list with the degenerated patterns
 Returns : @array
 Args    : a ref to AoA
 Status  : public

=cut

#------------------------
sub _find_deg_pattern{
#------------------------
    my $self  = shift;

    my $arr   = $self ->{w_hap};          # the working haplotype
    my $list  = $self ->{'deg_pattern'};  # degenerated patterns 

    # we have to check all elements
    foreach my $i(0..$#$arr){
        # is the element has not been used create a key
        unless  ( _is_on_hash ($list,\$i) ) {
            $list->{$i}=[$i];
        };

        foreach my $j($i+1..$#$arr){
            my $comp = compare_arrays($arr->[$i],$arr->[$j]);

            if($comp){
                # as we have no elements we push this into the list
                # check for the first element
                my $key = _key_for_value($list,\$i);

                push (@{$list->{$key}},$j);

                last;
            }
        }
    }

}

#------------------------
sub _key_for_value{
#------------------------
    my($hash,$value)=@_;

    foreach my $key (keys %$hash){
        if( _is_there(\@{$hash->{$key}},$value)){
            return $key;
        }
    }
}

#------------------------
sub _is_on_hash{
#------------------------
    my($hash,$value)=@_;

    foreach my $key (keys %$hash){
        if( _is_there(\@{$hash->{$key}},$value)){
            return 1;
        }
    }
}

#------------------------
sub _is_there{
#------------------------

    my($arr,$value)=@_;

    foreach my $el (@$arr){
        if ($el eq $$value){
            return 1;
        }
    }
}


=head2 _keep_these_patterns


 Title   : _keep_these_patterns
 Usage   :
 Function: this is a basic approach, take a LoL and a list,
           keep just the columns included on the list
 Returns : nothing
 Args    : an AoA and an array
 Status  : public

=cut

#------------------------
sub _keep_these_patterns{
#------------------------
    my ($arr,$list)=@_;

    # by now we just take one of the repetitions but you can weight
    # the values by frequency

    my @outValues=();

    foreach my $k (@$list){
        push @outValues, $arr->[$k];
    }

    #make arr to hold the new values
    @$arr= @{dclone(\@outValues)};

}


=head2 compare_arrays


 Title   : compare_arrays
 Usage   :
 Function: take two arrays and compare their values
 Returns : 1 if the two values are the same
           0 if the values are different
 Args    : an AoA and an array
 Status  : public

=cut

#------------------------
sub compare_arrays {
#------------------------
    my ($first, $second) = @_;
    return 0 unless @$first == @$second;
    for (my $i = 0; $i < @$first; $i++) {
        return 0 if $first->[$i] ne $second->[$i];
    }
    return 1;
}


=head2 _convert_to_numbers


 Title   : _convert_to_numbers
 Usage   : _convert_to_numbers()
 Function: transform the haplotype into numbers. before to do that
           we have to consider the variation on the set.
 Returns : nonthing
 Args    : ref to an AoA and a ref to an array
 Status  : internal

=cut

#------------------------
sub _convert_to_numbers{
#------------------------
    my $self = shift;

    my $hap_ref = $self->{w_hap};
    my $mm      = $self->{alleles_number};

    # the first element is considered as zero. The first modification
    # is consider as one and so on.

    my $length = @{ @$hap_ref[0]};    #length of the haplotype

    for (my $c = 0; $c<$length;$c++){

        my @al=();

        for my $r (0..$#$hap_ref){

            push @al,$hap_ref->[$r][$c]
                unless _is_there(\@al,\$hap_ref->[$r][$c]);

            $hap_ref->[$r][$c] = get_position(\@al,\$hap_ref->[$r][$c]);
        }
    }
}


=head2 _snp_type_code


 Title   : _snp_type_code
 Usage   :
 Function:
           we have to create the snp type code for each version.
           The way the snp type is created is the following:

           we take the number value for every SNP and do the
           following calculation

           let be a SNP set as follow:

           0    0
           1    1
           1    2

           and multiplicity 3
           on this case the situation is:

           sum (value * multiplicity ^ position) for each SNP

           0 * 3 ^ 0 + 1 * 3 ^ 1 + 1 * 3 ^ 2 = 12
           0 * 3 ^ 0 + 1 * 3 ^ 1 + 2 * 3 ^ 2 = 21
 Returns : nothing
 Args    : $self
 Status  : private

=cut

#------------------------
sub _snp_type_code{
#------------------------
    my $self = shift;

    my $hap = $self->{w_hap};
    my $arr = $self->{snp_type_code};
    my $al  = $self->{alleles_number};

    my $length = @{ $hap->[0]};    #length of the haplotype

    for (my $c=0; $c<$length; $c++){
        for my $r (0..$#$hap){
            $arr->[$c] += $hap->[$r][$c] * $al ** $r;
        }
    }
}

#################################################
# return the position of an element in one array
# The element is always present on the array
#################################################

#------------------------
sub get_position{
#------------------------

    my($array, $value)=@_;

    for my $i(0..$#$array) {
        if ($array->[$i] eq $$value){
            return $i;
        }
    }

}


=head2 _alleles_number


 Title   : _alleles_number
 Usage   :
 Function: calculate the max number of alleles for a haplotype and
           if the number. For each SNP the number is stored and the
           max number of alleles for a SNP on the set is returned
 Returns : max number of alleles (a scalar storing a number)
 Args    : ref to AoA
 Status  : public

=cut

#------------------------
sub _alleles_number{
#------------------------

    my $self = shift;

    my $hap_ref = $self ->{w_hap};          # working haplotype

    my $length = @{ @$hap_ref[0]};    # length of the haplotype

    for (my $c = 0; $c<$length;$c++){

        my %alleles=();

        for my $r (0..$#$hap_ref){
            $alleles{ $hap_ref->[$r][$c] } =1; # new key for every new snp
        }

        # if the number of alleles for this column is
        # greater than before set $m value as allele number
        if ($self->{alleles_number} < keys %alleles) {
            $self->{alleles_number} = keys %alleles;
        }
    }
}


=head2 _htSNP


 Title   : _htSNP
 Usage   : _htSNP()
 Function: calculate the minimal set that contains all information of the
           haplotype.
 Returns : nonthing
 Args    : ref to an AoA and a ref to an array
 Status  : internal

=cut

#------------------------
sub _htSNP{
#------------------------
    my $self = shift;

    my $hap           = $self->{'w_hap'};
    my $type          = $self->{'snp_type_code'};
    my $set           = $self->{'ht_type'};
    my $out           = [];     # store the minimal set

    my $nc=0;        # new column for the output values

    # pass for every value of the snp_type_code
    for my $c (0..$#$type){

        my $exist =0;

        # every new value (not present) is pushed into set
        if ( ! _is_there( $set,\$type->[$c] ) ){
            push @$set, $type->[$c];

            $exist =1;

            for my $r(0..$#$hap){
                #save value of the snp for every SNP
                $out->[$r][$nc]= $hap->[$r][$c];
            }
        }

        if ($exist){ $nc++ };
    }

    @$hap = @{dclone $out};
}

=head2 _snp_and_code_summary

 Title   : _snp_and_code_summary
 Usage   : _snp_and_code_summary()
 Function: compile on a list all SNP and the code for each. This
           information can be also obtained combining snp_type and
           snp_type_code but on these results the information about
           the rest of SNP's are not compiled as table.

           0 will be silent SNPs
           -1 are degenerated SNPs
           and the rest of positive values are the code for useful SNP

 Returns : nonthing
 Args    : ref to an AoA and a ref to an array
 Status  : internal

=cut

#------------------------
sub _snp_and_code_summary{
#------------------------
    my $self = shift;

    my $snp_type_code = $self->{'snp_type_code'};
    my $useful_snp    = $self->{'snp_type'}->{'useful_snp'};
    my $silent_snp    = $self->{'snp_type'}->{'silent_snp'};
    my $deg_snp       = $self->{'snp_type'}->{'deg_snp'};
    my $snp_ids       = $self->snp_ids();
    my $snp_and_code  = $self->{'snp_and_code'};

    # walk all SNP's and generate code for each

    # do a practical thing. Consider all snp silent
    foreach my $i (0..$#$snp_ids){

        # assign zero to silent
        my $value=0;

        # active SNPs
        foreach my $j (0..$#$useful_snp){
            if ($snp_ids->[$i] eq $useful_snp->[$j]){
                $value = $snp_type_code->[$j];
                last;
            }
        }

        # assign -1 to degenerated
        foreach my $j (0..$#$deg_snp){
            if ($snp_ids->[$i] eq $deg_snp->[$j]){
                $value = -1;
                last;
            }
        }

        push @$snp_and_code, [$snp_ids->[$i], $value];

    }
}


1;