This file is indexed.

/usr/share/perl5/Attean/API/QueryPlanner.pm is in libattean-perl 0.019-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
use v5.14;
use warnings;

=head1 NAME

Attean::API::IDPJoinPlanner - Iterative dynamic programming query planning role

=head1 VERSION

This document describes Attean::API::IDPJoinPlanner version 0.019

=head1 SYNOPSIS

  extends 'Attean::QueryPlanner';
  with 'Attean::API::IDPJoinPlanner';

=head1 DESCRIPTION

The Attean::API::IDPJoinPlanner role provides a query planner the
C<< joins_for_plan_alternatives >> method, as well as the cost estimation
methods that consume the L<Attean::API::CostPlanner> role.

=head1 ATTRIBUTES

=over 4

=back

=head1 METHODS

=over 4

=cut

package Attean::API::QueryPlanner 0.019 {
	use Types::Standard qw(CodeRef);

	use Moo::Role;
	
	requires 'plan_for_algebra'; # plan_for_algebra($algebra, $model, \@default_graphs)
}

package Attean::API::CostPlanner 0.019 {
	use Scalar::Util qw(refaddr);
	use Types::Standard qw(CodeRef);

	use Moo::Role;
	use namespace::clean;
	with 'Attean::API::QueryPlanner';
	
	requires 'plans_for_algebra'; # plans_for_algebra($algebra, $model, \@active_graphs, \@default_graphs)
	requires 'cost_for_plan'; # cost_for_plan($plan, $model)
	
	before 'cost_for_plan' => sub {
		my $self	= shift;
		my $plan	= shift;
		my $model	= shift;
		
		if (refaddr($self) == refaddr($model)) {
			Carp::confess "Model and planner objects cannot be the same in call to cost_for_plan";
		} elsif ($self->does('Attean::API::Model') and $model->does('Attean::API::Model')) {
			Carp::confess "Model and planner objects cannot both consume Attean::API::Model in call to cost_for_plan";
		}
	};
	
	sub plan_for_algebra {
		my $self			= shift;
		my $algebra			= shift;
		my $model			= shift;
		my $default_graphs	= shift;
		my $active_graphs	= $default_graphs;
		my @plans			= sort { $self->cost_for_plan($a, $model) <=> $self->cost_for_plan($b, $model) } $self->plans_for_algebra($algebra, $model, $active_graphs, $default_graphs);
		my $plan			= shift(@plans);
		return $plan;
	}
}

package Attean::API::JoinPlanner 0.019 {
	use Moo::Role;
	requires 'joins_for_plan_alternatives';
}

package Attean::API::NaiveJoinPlanner 0.019 {
	use Math::Cartesian::Product;

	use Moo::Role;

	with 'Attean::API::JoinPlanner';
	with 'Attean::API::QueryPlanner';

	sub joins_for_plan_alternatives {
		my $self			= shift;
		my $model			= shift;
		my $active_graphs	= shift;
		my $default_graphs	= shift;
		my $interesting		= shift;
		my @args			= @_; # each $args[$i] here is an array reference containing alternate plans for element $i
		
		my $plans	= shift(@args);
		while (scalar(@args)) {
			my $next	= shift(@args);
			my @plans	= $self->join_plans($model, $active_graphs, $default_graphs, $plans, $next, 'inner');
			$plans		= \@plans;
		}
		
		my @plans	= @$plans;
		return @plans;
	}
}

package Attean::API::SimpleCostPlanner 0.019 {
	use Types::Standard qw(Int);
	use Scalar::Util qw(blessed);

	use Moo::Role;

	with 'Attean::API::CostPlanner';
	with 'MooX::Log::Any';

	has 'keep' => (is => 'ro', isa => Int, default => 5);
	
	around 'joins_for_plan_alternatives' => sub {
		my $orig	= shift;
		my $self	= shift;
		my $model			= shift;
		my @plans	= $orig->($self, $model, @_);
		return $self->prune_plans($model, [], \@plans);
	};
	
	sub prune_plans {
		my $self		= shift;
		my $model		= shift;
		my $interesting	= shift;
		my @plans		= @{ shift || [] };
		no  sort 'stable';
		my @sorted	= map { $_->[1] } sort { $a->[0] <=> $b->[0] } map { [$self->cost_for_plan($_, $model), $_] } @plans;
		
		return ($self->keep) ? splice(@sorted, 0, $self->keep) : @sorted;
	}
	
	sub cost_for_plan {
		my $self	= shift;
		my $plan	= shift;
		my $model	= shift;
		Carp::confess "No model given" unless (blessed($model) and $model->does('Attean::API::Model'));
		
		if ($plan->has_cost) {
			return $plan->cost;
		} else {
			if ($model->does('Attean::API::CostPlanner')) {
				if (defined(my $cost = $model->cost_for_plan($plan, $self))) {
					$plan->cost($cost);
					$self->log->info('Model \''.ref($model).'\' did cost planning for \''.ref($plan).'\' and got cost '.$cost);
					return $cost;
				}
			}

			my $cost	= 1;
			my @children	= @{ $plan->children };
			if ($plan->isa('Attean::Plan::Quad')) {
				my @vars	= map { $_->value } grep { blessed($_) and $_->does('Attean::API::Variable') } $plan->values;
				return scalar(@vars);
			} elsif ($plan->isa('Attean::Plan::Table')) {
				my $rows	= $plan->rows;
				$cost		= scalar(@$rows);
			} elsif ($plan->isa('Attean::Plan::NestedLoopJoin')) {
				my $lcost		= $self->cost_for_plan($children[0], $model);
				my $rcost		= $self->cost_for_plan($children[1], $model);
				if ($lcost == 0) {
					$cost	= $rcost;
				} elsif ($rcost == 0) {
					$cost	= $lcost;
				} else {
					$cost	= $lcost * $rcost;
				}
				
				# a cartesian nested loop join is bad, but the algorithm already
				# has to check for all possible joins, so it's not as bad as
				# a cartesian hash join (below)
				$cost	*= 10 unless ($plan->children_are_variable_connected);
			} elsif ($plan->isa('Attean::Plan::HashJoin')) {
				my $joined		= $plan->children_are_variable_connected;
				my $lcost		= $self->cost_for_plan($children[0], $model);
				my $rcost		= $self->cost_for_plan($children[1], $model);
				$cost	= ($lcost + $rcost);
				$cost += ($lcost < $rcost); # To let the plan with cheaper rhs win
				$cost	*= 100 unless ($plan->children_are_variable_connected);
			} elsif ($plan->isa('Attean::Plan::Service')) {
				my $scost	= 10;
				foreach my $c (@{ $plan->children }) {
					$scost	+= $self->cost_for_plan($c, $model);
				}
				$cost	= 5 * $scost;
			} elsif ($plan->isa('Attean::Plan::Unique')) {
				$cost	= 0; # consider a filter on the iterator (like unique) to be essentially free
				foreach my $c (@{ $plan->children }) {
					$cost	+= $self->cost_for_plan($c, $model);
				}
			} else {
				foreach my $c (@{ $plan->children }) {
					$cost	+= $self->cost_for_plan($c, $model);
				}
			}
			
			$plan->cost($cost);
			if ($self->log->is_trace) {
				$self->log->trace("Cost $cost estimated for\n".$plan->as_string);
			} else {
				$self->log->debug('Estimated cost for \''.ref($plan).'\' is '.$cost);
			}
			return $cost;
		}
	}
}

package Attean::API::IDPJoinPlanner 0.019 {
	use Encode qw(encode);
	use Attean::RDF;
	use LWP::UserAgent;
	use Scalar::Util qw(blessed reftype);
	use List::Util qw(reduce);
	use List::MoreUtils qw(all any);
	use Types::Standard qw(Int ConsumerOf InstanceOf);
	use URI::Escape;
	use Algorithm::Combinatorics qw(subsets);
	use List::Util qw(min);
	use Math::Cartesian::Product;

	use Moo::Role;

	with 'Attean::API::JoinPlanner';
	with 'Attean::API::SimpleCostPlanner';

	sub joins_for_plan_alternatives {
		my $self			= shift;
		my $model			= shift;
		my $active_graphs	= shift;
		my $default_graphs	= shift;
		my $interesting		= shift;
		my @args			= @_; # each $args[$i] here is an array reference containing alternate plans for element $i

		my $k				= 3; # this is the batch size over which to do full dynamic programming
		
		# initialize $optPlan{$i} to be a set of alternate plans for evaluating element $i
		my %optPlan;
		foreach my $i (0 .. $#args) {
			$optPlan{$i}	= [$self->prune_plans($model, $interesting, $args[$i])];
		}
		
		my @todo	= (0 .. $#args); # initialize the todo list to all elements
		my $next_symbol	= 'a'; # when we start batching together sub-plans, we'll rename them with letters (e.g. elements 1, 2, and 4 might become 'a', and then 3, 5, and 'a' become 'b')
		
		# until we've joined all the elements in todo and are left with a set of plans for the join of all elements
		while (scalar(@todo) > 1) {
			$k	= ($k < scalar(@todo)) ? $k : scalar(@todo); # in case we're joining fewer than the batch size
			foreach my $i (2 .. $k) { # we've already initialized plans for evaluating single elements; now consider plans for groups of elements (with group sizes 2, 3, ..., $k)
				foreach my $s (subsets(\@todo, $i)) { # pick a subset of size $i of the elements that need to be planned
					my $s_key	= join('.', sort @$s);
					$optPlan{$s_key}	= [];
					foreach my $o (subsets($s)) { # partition the subset s into two (o and not_o)
						next if (scalar(@$o) == 0); # only consider proper, non-empty subsets
						next if (scalar(@$o) == scalar(@$s)); # only consider proper, non-empty subsets
						my $o_key	= join('.', sort @$o);
						my %o		= map { $_ => 1 } @$o;
						my $not_o_key	= join('.', sort grep { not exists $o{$_} } @$s);
						
						my $lhs		= $optPlan{$o_key}; # get the plans for evaluating o
						my $rhs		= $optPlan{$not_o_key}; # get the plans for evaluating not_o
						
						# compute and store all the possible ways to evaluate s (o ⋈ not_o)
						push(@{ $optPlan{$s_key} }, $self->join_plans($model, $active_graphs, $default_graphs, $lhs, $rhs, 'inner'));
						$optPlan{$s_key}	= [$self->prune_plans($model, $interesting, $optPlan{$s_key})];
					}
				}
			}
			
			# find the minimum cost plan $p that computes the join over $k elements (the elements end up in @v)
			my %min_plans;
			foreach my $w (subsets(\@todo, $k)) {
				my $w_key		= join('.', sort @$w);
				my $plans		= $optPlan{$w_key};
				my @costs		= map { $self->cost_for_plan($_, $model) => [$_, $w] } @$plans;
				my %costs		= @costs;
				my $min			= min keys %costs;
				my @min_plans;
				while (my ($cost, $data) = splice(@costs, 0, 2)) {
					if ($cost == $min) {
						push(@min_plans, $data);
					}
				}
				$min_plans{ $min }	= \@min_plans;
			}
			my $min_cost	= min keys %min_plans;
			my $min_plans	= $min_plans{$min_cost};
			my @min_plans;
			my $min_key;
			foreach my $d (@$min_plans) {
				my ($p, $v)		= @$d;
				my $v_key		= join('.', sort @$v);
				if (not(defined($min_key)) or $min_key eq $v_key) {
					push(@min_plans, $p);
					$min_key	= $v_key;
				}
			}
# 			my ($p, $v)		= @$min_plan;
# 			my $v_key		= join('.', sort @$v);
# 			warn "Choosing join for $v_key\n";
			
			# generate a new symbol $t to stand in for $p, the join over the elements in @v
			my $t	= $next_symbol++;
			
			# remove elements in @v from the todo list, and replace them by the new composite element $t
			$optPlan{$t}	= [@min_plans];
			my %v	= map { $_ => 1 } split(/[.]/, $min_key);
			push(@todo, $t);
			@todo	= grep { not exists $v{$_} } @todo;
			
			# also remove subsets of @v from the optPlan hash as they are now covered by $optPlan{$t}
			foreach my $o (subsets([keys %v])) {
				my $o_key	= join('.', sort @$o);
# 				warn "deleting $o_key\n";
				delete $optPlan{$o_key};
			}
		}
		
		my $final_key	= join('.', sort @todo);
# 		use Data::Dumper;
# 		warn Dumper($optPlan{$final_key});
		return $self->prune_plans($model, $interesting, $optPlan{$final_key});
	}
	
	sub prune_plans {
		my $self		= shift;
		my $model		= shift;
		my $interesting	= shift;
		my @plans		= @{ shift || [] };
		no  sort 'stable';
		my @sorted	= map { $_->[1] } sort { $a->[0] <=> $b->[0] } map { [$self->cost_for_plan($_, $model), $_] } @plans;
		if ($self->log->is_trace) {
			$self->log->trace('============= Plan iteration separator ==============');
			foreach my $plan (@sorted){
				$self->log->trace("Cost: " . $self->cost_for_plan($plan, $model) . " for plan:\n". $plan->as_string);
			}
		}
		return splice(@sorted, 0, 5);
	}
	
	# Return a cost value for $plan. This value is basically opaque, except
	# that it will be used to sort plans by cost when determining which is the
	# cheapest plan to evaluate.
	sub cost_for_plan {
		my $self	= shift;
		my $plan	= shift;
		my $model	= shift;
		Carp::confess "No model given" unless (blessed($model) and $model->does('Attean::API::Model'));
		
		if ($plan->has_cost) {
			return $plan->cost;
		} else {
			if ($model->does('Attean::API::CostPlanner')) {
				if (defined(my $cost = $model->cost_for_plan($plan, $self))) {
					$plan->cost($cost);
					$self->log->info('Model \''.ref($model).'\' did cost planning for \''.ref($plan).'\' and got cost '.$cost);
					return $cost;
				}
			}

			my $cost	= 1;
			my @children	= @{ $plan->children };
			if ($plan->isa('Attean::Plan::Quad')) {
				my @vars	= map { $_->value } grep { blessed($_) and $_->does('Attean::API::Variable') } $plan->values;
				# This gives a cost increasing at a reasonable pace
				$cost	= $self->_hsp_heuristic_triple_sum($plan) * scalar(@vars);
			} elsif ($plan->isa('Attean::Plan::Table')) {
				my $rows	= $plan->rows;
				$cost		= scalar(@$rows);
			} elsif ($plan->isa('Attean::Plan::NestedLoopJoin')) {
				my $lcost		= $self->cost_for_plan($children[0], $model);
				my $rcost		= $self->cost_for_plan($children[1], $model);
				if ($lcost == 0) {
					$cost	= $rcost;
				} elsif ($rcost == 0) {
					$cost	= $lcost;
				} else {
					my $mult = $self->_penalize_joins($plan);
# 					warn "$mult * ($lcost * $rcost) [$children[0] $children[1]]";
					$cost	= $mult * $lcost * $rcost;
				}
			} elsif ($plan->isa('Attean::Plan::HashJoin')) {
				my $lcost		= $self->cost_for_plan($children[0], $model);
				my $rcost		= $self->cost_for_plan($children[1], $model);
				if ($lcost == 0) {
					$cost	= $rcost;
				} elsif ($rcost == 0) {
					$cost	= $lcost;
				} else {
					my $mult = $self->_penalize_joins($plan);
# 					warn "$mult * ($lcost + $rcost)";
					$cost	= $mult * ($lcost + $rcost);
					$cost += ($lcost < $rcost); # To let the plan with cheaper rhs win
				}
			} elsif ($plan->isa('Attean::Plan::Service')) {
				my $scost	= 10;
				foreach my $c (@{ $plan->children }) {
					$scost	+= $self->cost_for_plan($c, $model);
				}
				$cost	= 5 * $scost;
			} elsif ($plan->isa('Attean::Plan::Unique')) {
				$cost	= 0; # consider a filter on the iterator (like unique) to be essentially free
				foreach my $c (@{ $plan->children }) {
					$cost	+= $self->cost_for_plan($c, $model);
				}
			} else {
				foreach my $c (@{ $plan->children }) {
					$cost	+= $self->cost_for_plan($c, $model);
				}
			}
			
			# Costs must be integers for comparisons to work in the IDP planning algorithm
			$cost	= int($cost);
			$plan->cost($cost);
			return $cost;
		}
	}
	
	
# The below function finds a number to aid sorting
# It takes into account Heuristic 1 and 4 of the HSP paper, see REFERENCES
# as well as that it was noted in the text that rdf:type is usually less selective.

# By assigning the integers to nodes, depending on whether they are in
# triple (subject, predicate, object), variables, rdf:type and
# literals, and sum them, they may be sorted. See code for the actual
# values used.

# Denoting s for bound subject, p for bound predicate, a for rdf:type
# as predicate, o for bound object and l for literal object and ? for
# variable, we get the following order, most of which are identical to
# the HSP:

# spl: 6
# spo: 8
# sao: 10
# s?l: 14
# s?o: 16
# ?pl: 25
# ?po: 27
# ?ao: 29
# sp?: 30
# sa?: 32
# ??l: 33
# ??o: 35
# s??: 38
# ?p?: 49
# ?a?: 51
# ???: 57

# Note that this number is not intended as an estimate of selectivity,
# merely a sorting key, but further research may possibly create such
# numbers.

	sub _hsp_heuristic_triple_sum {
		my ($self, $t) = @_;
		my $sum = 0;
		if ($t->subject->does('Attean::API::Variable')) {
			$sum = 20;
		} else {
			$sum = 1;
		}
		if ($t->predicate->does('Attean::API::Variable')) {
			$sum += 10;
		} else {
			if ($t->predicate->equals(iri('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'))) {
				$sum += 4;
			} else {
				$sum += 2;
			}
		}
		if ($t->object->does('Attean::API::Variable')) {
			$sum += 27;
		} elsif ($t->object->does('Attean::API::Literal')) {
			$sum += 3;
		} else {
			$sum += 5;
		}
		return $sum;
	}

	# The following method returns a factor used to penalize certain types of joins.
	# It penalizes cartesian joins heavily, but also uses HSP Heuristic 2 (see REFERENCES)
	sub _penalize_joins {
		my ($self, $plan) = @_;
		my $jv			= $plan->join_variables;
		my @children	= @{ $plan->children };
		my $mult		   = 1;
		if (scalar(@$jv)) {
			if ( all { $_->isa('Attean::Plan::Quad') } @children[0..1]) {
				my $var = ${$jv}[0]; # We will join on this
				my @lnodes = $children[0]->values;
				my @rnodes = $children[1]->values;
				# Now, find where the join variables are in the triple patterns
				my %joinpos;
				for (my $i = 0; $i <= 2; $i++) {
					if ($lnodes[$i]->does('Attean::API::Variable') && $lnodes[$i]->value eq $var) {
						$joinpos{l} = $i;
					}
					if ($rnodes[$i]->does('Attean::API::Variable') && $rnodes[$i]->value eq $var) {
						$joinpos{r} = $i;
					}
					last if scalar keys(%joinpos) >= 2; # Perhaps a bit premature optimization
				}
				my $joinpos = join("", sort values(%joinpos)); # We can now match on this string
				my %costs = ('12' => 1.1, # The penalty numbers come mostly out from thin air
								 '01' => 1.2,
								 '02' => 1.5,
								 '22' => 1.6,
								 '00' => 1.8,
								 '11' => 2);
				if (exists $costs{$joinpos}) {
					$mult = $costs{$joinpos};
				}
				#warn "Penalty: $mult for quads:\n" . $children[0]->as_string . $children[1]->as_string
			}
		} else {
			$mult = 5; # penalize cartesian joins
		}
		return $mult;
	}
}


1;

__END__

=back

=head1 BUGS

Please report any bugs or feature requests to through the GitHub web interface
at L<https://github.com/kasei/attean/issues>.

=head1 REFERENCES

The seminal reference for Iterative Dynamic Programming is "Iterative
dynamic programming: a new class of query optimization algorithms" by
D. Kossmann and K. Stocker, ACM Transactions on Database Systems
(2000).

The heuristics to order triple patterns in this module is
influenced by L<The ICS-FORTH Heuristics-based SPARQL Planner
(HSP)|http://www.ics.forth.gr/isl/index_main.php?l=e&c=645>.


=head1 SEE ALSO



=head1 AUTHOR

Gregory Todd Williams  C<< <gwilliams@cpan.org> >>

=head1 COPYRIGHT

Copyright (c) 2014--2018 Gregory Todd Williams.
This program is free software; you can redistribute it and/or modify it under
the same terms as Perl itself.

=cut