This file is indexed.

/usr/share/kalzium/data/knowledge.xml is in kalzium-data 4:17.12.3-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
<?xml version="1.0" encoding="UTF-8"?>
<wissen>
	<item>
		<name>State of matter</name>
		<desc>Form of a substance; dependant on form stability and whether it takes up a definite volume: solid, liquid or gaseous.</desc>
	</item>
	<item>
		<name>Chemical Symbol</name>
		<desc>One, two, or three letter abbreviation; set through international convention.</desc>
		<references>
			<refitem>Element</refitem>
		</references>
	</item>
	<item>
		<name>Chromatography</name>
		<desc>Matter separation in a moving medium (mobile phase) through differentiated absorption on a static medium (stationary phase).</desc>
	</item>
	<item>
		<name>Distillation</name>
		<desc>Separation of a liquid solution (homogeneous mix) into its components through evaporation and condensation. In a fractionary distillation the process is repeated several times in a column.</desc>
	</item>
	<item>
		<name>Element</name>
		<desc>Matter that cannot be broken down into simpler matter. Chemical elements are cornerstones of Materials. Elements consist of atoms that consist of a nucleus of positive protons, neutral neutrons, and a shell of electrons.</desc>
	</item>
	<item>
		<name>Emulsion</name>
		<desc>Heterogeneous mix of two liquids.</desc>
	</item>
	<item>
		<name>Extraction</name>
		<desc>Processing a homogeneous or heterogeneous mix to get pure matter.</desc>
		<references>
			<refitem>Mix</refitem>
		</references>
	</item>
	<item>
		<name>Filtering</name>
		<desc>Separation of a solid matter from a liquid matter or gaseous matter with a filter (porous separation wall).</desc>
	</item>
	<item>
		<name>Mix</name>
		<desc>Matter consisting of differentiated matter, combined in non-set ratios. [i]Homogeneous mixes[/i] have a coherent look, [i]heterogeneous mixes[/i] consist of multiple phases.</desc>
	</item>
	<item>
		<name>Accuracy</name>
		<desc>Consisting of accidental and systematic errors.</desc>
	</item>
	<item>
		<name>Law of Conservation of Mass</name>
		<desc>During a chemical reaction mass is neither lost nor gained. The sum mass of the material going into the reaction equals the sum of the mass of the products of the reaction.</desc>
	</item>
	<item>
		<name>Law of multiple proportions</name>
		<desc>An alloy always contains the same elements in the same mass ratio. Should two or more elements bind together then the mass ratio is constant.</desc>
	</item>
	<item>
		<name>Crystallization</name>
		<desc>Separation of solid, crystalline matter from a solution, or the liquid or gaseous phases.</desc>
	</item>
	<item>
		<name>Solution</name>
		<desc>Homogeneous mix of multiple pure materials</desc>
	</item>
	<item>
		<name>Mass</name>
		<desc>Measurement of an amount of matter.</desc>
	</item>
	<item>
		<name>Matter</name>
		<desc>All that takes up space and has mass.</desc>
	</item>
	<item>
		<name>Phase</name>
		<desc>Through chemical composition and physical attributes, homogeneous portion of matter that separated from its environment in its expansion through a surface.</desc>
	</item>
	<item>
		<name>Accuracy and precision</name>
		<desc>Expressed through standard deviation: Values given over accidental errors.</desc>
	</item>
	<item>
		<name>Correctness</name>
		<desc>Values given over accidental errors.</desc>
	</item>
	<item>
		<name>SI-Unit</name>
		<desc>Measurement unit using International Symbols.</desc>
	</item>
	<item>
		<name>Significant figures</name>
		<desc>The number of digits which are meaningful in a number.</desc>
	</item>
	<item>
		<name>Standard deviation</name>
		<desc>An amount with which the precision of a measurement can be estimated.</desc>
	</item>
	<item>
		<name>Suspension</name>
		<desc>Heterogeneous mix consisting of a liquid and solid matter.</desc>
	</item>
	<item>
		<name>Alloys</name>
		<desc>Pure matter consisting of multiple elements in a set ratio.</desc>
	</item>
	<item>
		<name>Alpha rays</name>
		<desc>Rays consisting of alpha particles, consisting of two protons and two neutrons that are emitted from the Atoms of certain radioactive elements.</desc>
	</item>
	<item>
		<name>Atom</name>
		<desc>Atoms are chemically inseparable and building blocks of matter. Atoms of one kind are called an Element.</desc>
		<references>
			<refitem>Element</refitem>
			<refitem>Electron</refitem>
			<refitem>Proton</refitem>
			<refitem>Neutron</refitem>
		</references>
	</item>
	<item>
		<name>Atomic nucleus</name>
		<desc>The small, positively-charged center of an Atom, in which Protons and Neutrons are found.</desc>
		<references>
			<refitem>Atom</refitem>
		</references>
	</item>
	<item>
		<name>Atomic Mass</name>
		<desc>Mass of an atom, taken on a scale where the mass of a carbon atom is 12u. In elements that consist of different isotopes the mid-range mass of the isotope mix is given.</desc>
		<references>
			<refitem>Atom</refitem>
			<refitem>Mass</refitem>
		</references>
	</item>
	<item>
		<name>Isotope</name>
		<desc>Isotopes are forms of a chemical element whose nuclei have the same atomic number, Z, but different atomic masses, A. The word isotope, meaning at the same place, comes from the fact that all isotopes of an element are located at the same place on the periodic table.</desc>
		<references>
			<refitem>Atom</refitem>
		</references>
	</item>
	<item>
		<name>Spin</name>
		<desc>The spin is an intrinsic angular momentum associated with microscopic particles. It is a purely quantum mechanical phenomenon without any analogy in classical mechanics. Whereas classical angular momentum arises from the rotation of an extended object, spin is not associated with any rotating internal masses, but is intrinsic to the particle itself.</desc>
		<references>
			<refitem>Isotope</refitem>
		</references>
	</item>
	<item>
		<name>Magnetic Moment</name>
		<desc>The magnetic moment of an object is a vector relating the aligning torque in a magnetic field experienced by the object to the field vector itself. It is measured in units of the nuclear magneton µ[sub]n[/sub]=(5.0507866 ± 0.0000017) 10[sup]-27[/sup] JT[sup]-1[/sup]</desc>
		<references>
			<refitem>Isotope</refitem>
		</references>
	</item>
	<item>
		<name>Decay Mode</name>
		<desc>The decay mode describes a particular way a particle decays. For radioactive decay (the decay of nuclides) the decay modes are:[br] -> alpha decay (emission of a Helium-4 nucleus).[br] -> ß[sup]-[/sup] decay (emission of an electron)[br] -> ß[sup]+[/sup] decay (emission of a positron) [br] -> electron capture (EC) [br] -> proton emission [br] -> spontaneous fission [br] Typically one decay mode predominates for a particular nuclide.</desc>
		<references>
			<refitem>Isotope</refitem>
		</references>
	</item>
	<item>
		<name>Decay Energy</name>
		<desc>The decay energy is the energy released by a nuclear decay.</desc>
		<references>
			<refitem>Isotope</refitem>
		</references>
	</item>
	<item>
		<name>Nuclides</name>
		<desc>[i]see isotopes[/i]</desc>
		<references>
			<refitem>Isotope</refitem>
			<refitem>Isotone</refitem>
			<refitem>Nuclear Isomer</refitem>
			<refitem>Isobars</refitem>
		</references>
	</item>
	<item>
		<name>Isotone</name>
		<desc>Two nuclides are isotones if they have the same number N of neutrons.</desc>
		<references>
			<refitem>Isotope</refitem>
			<refitem>Nuclear Isomer</refitem>
			<refitem>Isobars</refitem>
		</references>
	</item>
	<item>
		<name>Isobars</name>
		<desc>Isobars are nuclides having the same mass number, i.e. sum of protons plus neutrons.</desc>
		<references>
			<refitem>Isotope</refitem>
			<refitem>Isotone</refitem>
			<refitem>Nuclear Isomer</refitem>
		</references>
	</item>
	<item>
		<name>Nuclear Isomer</name>
		<desc>A nuclear isomer is a metastable or isomeric state of an atom caused by the excitation of a proton or neutron in its nucleus so that it requires a change in spin before it can release its extra energy. They decay to lower energy states of the nuclide through two isomeric transitions:[br] -> γ- emission (emission of a high-energy photon)[br] -> internal conversion (the energy is used to ionize the atom)[br] Contrast this with the definition of a chemical isomer, the more common use of the word. Also contrast with the meaning of isotope, in which the difference is the number of neutrons in the nucleus. Metastable isomers of a particular atom are usually designated with an "m" (or, in the case of atoms with more than one isomer, 2m, 3m, and so on). This designation is usually placed after the atomic symbol and number of the atom (e.g., Co-58m), but is sometimes placed as a superscript before (e.g., [sup]m[/sup]Co-58 or [sup]58m[/sup]Co).</desc>
		<references>
			<refitem>Isotope</refitem>
			<refitem>Isobars</refitem>
			<refitem>Isotone</refitem>
		</references>
	</item>
	<item>
		<name>Beta rays</name>
		<desc>Rays consisting of electrons that are emitted from Atoms of radioactive elements.</desc>
	</item>
	<item>
		<name>Electron</name>
		<desc>The electron is a subatomic particle with a mass of m[sub]e[/sub]=(9.1093897 ± 0.0000054)e-31 kg and a negative charge of [i]e[/i]=(1.60217733 ± 0.00000049)e-19 C
		</desc>
		<references>
			<refitem>Atom</refitem>
		</references>
	</item>
	<item>
		<name>Proton</name>
		<desc>The proton is a subatomic particle with a mass of m[sub]e[/sub]=(1.6726231 ± 0.0000010) 10[sup]-27[/sup] kg and a positive charge of [i]e[/i]=(1.60217733 ± 0.00000049) 10[sup]-19[/sup] C which occurs in the nucleus of an atom.</desc>
		<references>
			<refitem>Atom</refitem>
			<refitem>Electron</refitem>
			<refitem>Neutron</refitem>
		</references>
	</item>
	<item>
		<name>Neutron</name>
		<desc>The neutron is a subatomic particle with a mass of m[sub]e[/sub]=(1.6749286 ± 0.0000010) 10[sup]-27[/sup] kg which occurs in the nucleus of an atom.</desc>
		<references>
			<refitem>Atom</refitem>
			<refitem>Electron</refitem>
			<refitem>Proton</refitem>
		</references>
	</item>
	<item>
		<name>Cathode Rays</name>
		<desc>Cathode rays are streams of electrons observed in vacuum tubes, i.e. evacuated glass tubes that are equipped with at least two electrodes, a cathode (negative electrode) and an anode (positive electrode) in a configuration known as a diode.</desc>
		<references>
			<refitem>Electron</refitem>
		</references>
	</item>
	<item>
		<name>Ionic Radius</name>
		<desc>The Ionic Radius is the radius of a charged atom, known as an ion. The ion can have a positive or a negative charge. The charge of the ion with the radius shown is also displayed in Kalzium. A positive ion has fewer electrons in its shell than the atom, a negative ion has more electrons. Therefore, a positive ion has a smaller radius than its atom and vice versa.</desc>
		<references>
			<refitem>Covalent Radius</refitem>
			<refitem>Atomic Radius</refitem>
			<refitem>Van der Waals Radius</refitem>
		</references>
	</item>
	<item>
		<name>Van der Waals Radius</name>
		<desc>The van der Waals radius of an atom is the radius of an imaginary hard sphere which can be used to model the atom for many purposes. Van der Waals radii are determined from measurements of atomic spacing between pairs of unbonded atoms in crystals.</desc>
		<references>
			<refitem>Covalent Radius</refitem>
			<refitem>Atomic Radius</refitem>
			<refitem>Ionic Radius</refitem>
		</references>
	</item>
	<item>
		<name>Atomic Radius</name>
		<desc>The atomic radius is the distance from the atomic nucleus to the outmost stable electron orbital in a atom that is at equilibrium.</desc>
		<references>
			<refitem>Covalent Radius</refitem>
			<refitem>Van der Waals Radius</refitem>
			<refitem>Ionic Radius</refitem>
		</references>
	</item>
	<item>
		<name>Covalent Radius</name>
		<desc>The covalent radius in chemistry corresponds to half of the distance between two identical atomic nuclei, bound by a covalent bond.</desc>
		<references>
			<refitem>Atomic Radius</refitem>
			<refitem>Ionic Radius</refitem>
			<refitem>Van der Waals Radius</refitem>
		</references>
	</item>
</wissen>