This file is indexed.

/usr/share/hol88-2.02.19940316/Library/pair/basic.ml is in hol88-library-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
% --------------------------------------------------------------------- %
% 		Copyright (c) Jim Grundy 1992				%
%               All rights reserved                                     %
%									%
% Jim Grundy, hereafter referred to as `the Author', retains the	%
% copyright and all other legal rights to the Software contained in	%
% this file, hereafter referred to as `the Software'.			%
% 									%
% The Software is made available free of charge on an `as is' basis.	%
% No guarantee, either express or implied, of maintenance, reliability	%
% or suitability for any purpose is made by the Author.			%
% 									%
% The user is granted the right to make personal or internal use	%
% of the Software provided that both:					%
% 1. The Software is not used for commercial gain.			%
% 2. The user shall not hold the Author liable for any consequences	%
%    arising from use of the Software.					%
% 									%
% The user is granted the right to further distribute the Software	%
% provided that both:							%
% 1. The Software and this statement of rights is not modified.		%
% 2. The Software does not form part or the whole of a system 		%
%    distributed for commercial gain.					%
% 									%
% The user is granted the right to modify the Software for personal or	%
% internal use provided that all of the following conditions are	%
% observed:								%
% 1. The user does not distribute the modified software. 		%
% 2. The modified software is not used for commercial gain.		%
% 3. The Author retains all rights to the modified software.		%
%									%
% Anyone seeking a licence to use this software for commercial purposes	%
% is invited to contact the Author.					%
% --------------------------------------------------------------------- %
% CONTENTS: basic functions for dealing with paired abstractions.	%
% --------------------------------------------------------------------- %
%$Id: basic.ml,v 3.1 1993/12/07 14:42:10 jg Exp $%

% ------------------------------------------------------------------------- %
%  |- a = a'   |- b = b'                                                    %
% ----------------------  MK_PAIR                                           %
%   |- (a,b) = (a',b')                                                      %
% ------------------------------------------------------------------------- %

let MK_PAIR = 
    let mk_fun(y1,y2) = mk_type(`fun`,[y1;y2]) in
    let comma(y1,y2) = mk_const(`,`,mk_fun(y1,mk_fun(y2,mk_prod(y1,y2)))) in
    \(t1,t2).
        let y1 = type_of (rand (concl t1))
        and y2 = type_of (rand (concl t2)) in
            MK_COMB ((AP_TERM (comma(y1,y2)) t1),t2);;

% ------------------------------------------------------------------------- %
% Paired abstraction                                                        %
%                                                                           %
%         A |- t1 = t2                                                      %
%     -----------------------  (provided p is not free in A)                %
%      A |- (\p.t1) = (\p.t2)                                               %
% ------------------------------------------------------------------------- %

letrec PABS p th =
    (if is_var p then
	ABS p th
    else % is_pair %
	let (p1, p2) = dest_pair p in
	    let t1 = PABS p2 th in
	    let t2 = PABS p1 t1 in
	    let pty = type_of p in
	    let p1ty = type_of p1 in
	    let p2ty = type_of p2 in
	    let cty = type_of (rand (concl th)) in
		AP_TERM
		(mk_const
		(`UNCURRY`,
		  mk_type
		  (`fun`,[mk_type(`fun`,[p1ty;mk_type(`fun`,[p2ty;cty])]);
			 mk_type(`fun`,[pty;cty])])))
		t2
    ) ? failwith `PABS`;;

% ----------------------------------------------------------------------- %
% PABS_CONV conv "\p. t[p]" applies conv to t[p]                          %
% ----------------------------------------------------------------------- %

let PABS_CONV conv tm =
    let (bp,body) = (dest_pabs tm ? failwith `PABS_CONV`) in
    let bodyth = conv body in
	(PABS bp bodyth ? failwith `PABS_CONV`);;

% ----------------------------------------------------------------------- %
% PSUB_CONV conv tm: applies conv to the subterms of tm.                  %
% ----------------------------------------------------------------------- %

let PSUB_CONV conv tm =
    if is_pabs tm then
	PABS_CONV conv tm
    else if is_comb tm then
	let (rator,rand) = dest_comb tm in
	    MK_COMB (conv rator, conv rand)
    else (ALL_CONV tm);;

% ------------------------------------------------------------------------- %
% CURRY_CONV "(\(x,y).f)(a,b)" = (|- ((\(x,y).f)(a,b)) = ((\x y. f) a b))   %
% ------------------------------------------------------------------------- %

let CURRY_CONV =
    let gfty = ":* -> (** -> ***)" 
    and gxty = ":*"
    and gyty = ":**"
    and gpty = ":*#**"
    and grange = ":***" in
    let gf = genvar gfty
    and gx = genvar gxty
    and gy = genvar gyty
    and gp = genvar gpty in
    let uncurry_thm = SPECL [gf;gx;gy] UNCURRY_DEF
    and pair_thm = SYM (SPEC gp PAIR) in
    let (fgp,sgp) = dest_pair (rand (concl pair_thm)) in
    let pair_uncurry_thm = 
	(CONV_RULE
	    ((RATOR_CONV o RAND_CONV o RAND_CONV) (K (SYM pair_thm))))
	    (SPECL [gf;fgp;sgp] UNCURRY_DEF) in
    \tm.
	(let (f,p) = (rand # I) (dest_comb tm) in
	let fty = type_of f in
	let range = hd(tl(snd(dest_type(hd(tl(snd(dest_type fty))))))) in
	let gfinst = mk_var(fst (dest_var gf), fty) in
	    if is_pair p then
		let (x,y) = dest_pair p in
		let xty = type_of x
		and yty = type_of y in
		let gxinst = mk_var(fst (dest_var gx), xty)
		and gyinst = mk_var(fst (dest_var gy), yty) in
		    INST_TY_TERM
			([(f,gfinst);(x,gxinst);(y,gyinst)],
			 [(xty,gxty);(yty,gyty);(range,grange)])
			uncurry_thm
	    else
		let pty = type_of p in
		let gpinst = mk_var(fst (dest_var gp), pty) in
		let (xty,yty) = dest_prod pty in
		    (INST_TY_TERM
			([(f,gfinst);(p,gpinst)],
			 [(xty,gxty);(yty,gyty);(range,grange)])
			pair_uncurry_thm)
	) ? failwith `CURRY_CONV` ;;

% ------------------------------------------------------------------------- %
% UNCURRY_CONV "(\x y. f) a b" = (|- ((\x y. f) a b) = ((\(x,y).f)(x,y)))   %
% ------------------------------------------------------------------------- %

let UNCURRY_CONV = 
    let gfty = ":* -> (** -> ***)" 
    and gxty = ":*"
    and gyty = ":**"
    and grange = ":***" in
    let gf = genvar gfty
    and gx = genvar gxty
    and gy = genvar gyty in
    let uncurry_thm = SYM (SPECL [gf;gx;gy] UNCURRY_DEF) in
    \tm.
	(let ((f,x),y) = (dest_comb # I) (dest_comb tm) in
	let fty = type_of f in
	let range = hd(tl(snd(dest_type(hd(tl(snd(dest_type fty))))))) in
	let gfinst = mk_var(fst (dest_var gf), fty) in
	let xty = type_of x
	and yty = type_of y in
	let gxinst = mk_var(fst (dest_var gx), xty)
	and gyinst = mk_var(fst (dest_var gy), yty) in
	    INST_TY_TERM
		([(f,gfinst);(x,gxinst);(y,gyinst)],
		 [(xty,gxty);(yty,gyty);(range,grange)])
		uncurry_thm
	) ? failwith `UNCURRY_CONV` ;;

% ------------------------------------------------------------------------- %
% PBETA_CONV "(\p1.t)p2" = (|- (\p1.t)p2 = t[p2/p1])                        %
% ------------------------------------------------------------------------- %

let PBETA_CONV =
    % pairlike p x: takes a pair structure p and a term x.		%
    % It returns the struture ((change, thm), assoclist)		%
    % where change is true if x does not have the same structure as p.  %
    % if changes is true then thm is a theorem of the form (|-x'=x) 	%
    % where x' is of the same structure as p, created by makeing terms	%
    % into pairs of the form (FST t,SND t).                             %
    % assoc thm list is a list of theorms for all the subpairs of x that%
    % required changing along the correspoing subpair from p.		%
    let pairlike =
	let mk_fun(y1,y2) = mk_type(`fun`,[y1;y2]) in
	let comma(y1,y2) = mk_const(`,`,mk_fun(y1,mk_fun(y2,mk_prod(y1,y2)))) in
	letrec int_pairlike p x =
	    if is_pair p then
		let (p1,p2) = dest_pair p in
		    if is_pair x then
			let (x1,x2) = dest_pair x in
			let ((cl,lt),pl) = (int_pairlike p1 x1)
			and ((cr,rt),pr) = (int_pairlike p2 x2) in
			let (c,t) =
			    if cl & cr then
				(true,MK_PAIR(lt,rt))
			    else if cl then
				let ty1 = type_of x1
				and ty2 = type_of x2 in
				let comm = comma(ty1,ty2) in
				    (true,AP_THM (AP_TERM comm lt) x2)
			    else if cr then
				let ty1 = type_of x1
				and ty2 = type_of x2 in
				let comm = comma(ty1,ty2) in
				    (true,AP_TERM (mk_comb(comm,x1)) rt)
			    else
				(false,TRUTH)
			in
			    if c then
				((true,t),(p,t).(pl@pr))
			    else
				((false,TRUTH),[])
		    else
			let th1 = ISPEC x PAIR in
			let x' = rand (rator (concl th1)) in
			let (x'1,x'2) = dest_pair x' in
			let ((cl,lt),pl) = (int_pairlike p1 x'1)
			and ((cr,rt),pr) = (int_pairlike p2 x'2) in
			let t =
			    if cl & cr then
				(MK_PAIR(lt,rt)) TRANS th1
			    else if cl then
				let ty1 = type_of x'1
				and ty2 = type_of x'2 in
				let comm = comma(ty1,ty2) in
				    (AP_THM (AP_TERM comm lt) x'2) TRANS th1
			    else if cr then
				let ty1 = type_of x'1
				and ty2 = type_of x'2 in
				let comm = comma(ty1,ty2) in
				    (AP_TERM (mk_comb(comm,x'1)) rt) TRANS th1
			    else
				th1
			in
			    ((true,t),(p,t).(pl@pr))
	    else 
		((false,TRUTH),[])
	in
	    int_pairlike
    % find_CONV mask assl:                                        	%
    % mask is the body of the original abstraction, containing 		%
    % instances of the bound pair p and it subcomponents.		%
    % assl is the theorem list generated by pairlike that will allow	%
    % us to find these pairs and map them back into nonpairs where	%
    % possible.								%
    and find_CONV mask assl =
	letrec search m pthl = 
	    (true, (K (snd (assoc m assl))))
	    ? if is_comb m then
		let (f,b) = dest_comb m in
		let (ff,fc) = search f pthl
		and (bf,bc) = search b pthl in
		    (if ff & bf then
			(true, (RATOR_CONV fc) THENC (RAND_CONV bc))
		    else if ff then
			(true, (RATOR_CONV fc))
		    else if bf then
			(true, (RAND_CONV bc))
		    else
			(false, ALL_CONV))
	    else if is_abs m then
		let (v,b) = dest_abs m in
		    let pthl' = filter (\(p,_). not (free_in v p)) pthl in
		    (if null pthl' then
			(false, ALL_CONV)
		    else
			(let (bf,bc) = search b pthl' in
			    if bf then
				(true, ABS_CONV bc)
			    else
				(false, ALL_CONV)))
	    else
		(false, ALL_CONV)
	in
		snd (search mask assl)
    in
    letrec INT_PBETA_CONV tm =
	let ((p,b),a) = (dest_pabs # I) (dest_comb tm) in
	    if is_var p then
		BETA_CONV tm
	    else % is_pair p %
		(   CURRY_CONV THENC
		    (RATOR_CONV INT_PBETA_CONV) THENC
		    INT_PBETA_CONV
		) tm
    in
    \tm.
	let ((p,b),a) = (dest_pabs # I) (dest_comb tm) in
	let ((dif,difthm),assl) = pairlike p a in
	if dif then
	    (   (RAND_CONV (K (SYM difthm))) THENC
		INT_PBETA_CONV THENC
		(find_CONV b assl)
	    ) tm
	else
	    INT_PBETA_CONV tm;;

let PBETA_RULE = CONV_RULE (DEPTH_CONV PBETA_CONV)
and PBETA_TAC = CONV_TAC (DEPTH_CONV PBETA_CONV) ;;

let RIGHT_PBETA th =
    TRANS th (PBETA_CONV (snd (dest_eq (concl th)))) ? failwith `RIGHT_PBETA`;;

letrec LIST_PBETA_CONV tm =
    (let (f,a) = dest_comb tm in
	RIGHT_PBETA (AP_THM (LIST_PBETA_CONV f) a)
    ) ? REFL tm;;

let RIGHT_LIST_PBETA th =
    TRANS th (LIST_PBETA_CONV (snd (dest_eq (concl th))));;

let LEFT_PBETA th =
    CONV_RULE (RATOR_CONV (RAND_CONV PBETA_CONV)) th ? failwith `LEFT_PBETA`;;

let LEFT_LIST_PBETA th =
    CONV_RULE (RATOR_CONV (RAND_CONV LIST_PBETA_CONV)) th ?
	failwith `LEFT_LIST_PBETA`;;

% ------------------------------------------------------------------------- %
% UNPBETA_CONV "p" "t" = (|- t = (\p.t)p)                                   %
% ------------------------------------------------------------------------- %

let UNPBETA_CONV v tm =
    (SYM (PBETA_CONV (mk_comb(mk_pabs(v,tm),v))))
    ? failwith `UNPBETA_CONV`;;

% ------------------------------------------------------------------------- %
% CURRY_UNCURRY_THM = |- !f. CURRY(UNCURRY f) = f                           %
% ------------------------------------------------------------------------- %

let CURRY_UNCURRY_THM =
    let th1 = prove
		("CURRY (UNCURRY (f:*->**->***)) x y = f x y",
		 REWRITE_TAC [UNCURRY_DEF; CURRY_DEF]) in
    let th2 = GEN "y:**" th1 in
    let th3 = EXT th2 in
    let th4 = GEN "x:*" th3 in
    let th4 = EXT th4 in
	GEN "f:*->**->***" th4;;

% ------------------------------------------------------------------------- %
% UNCURRY_CURRY_THM = |- !f. UNCURRY(CURRY f) = f                           %
% ------------------------------------------------------------------------- %

let UNCURRY_CURRY_THM =
    let th1 = prove
		("UNCURRY (CURRY (f:(*#**)->***)) (x,y) = f(x,y)",
		 REWRITE_TAC [CURRY_DEF; UNCURRY_DEF]) in
    let th2 = INST [("FST (z:*#**)", "x:*"); ("SND (z:*#**)", "y:**")] th1 in
    let th3 = CONV_RULE (RAND_CONV (RAND_CONV (K (ISPEC "z:*#**" PAIR)))) th2 in
    let th4 = CONV_RULE
		(RATOR_CONV (RAND_CONV (RAND_CONV (K (ISPEC "z:*#**" PAIR)))))
		th3 in
    let th5 = GEN "z:*#**" th4 in
    let th6 = EXT th5 in
	GEN "f:(*#**)->***" th6;;

% ------------------------------------------------------------------------- %
% PETA_CONV "\p. f p" = (|- (\p. f p) = t)                                  %
% ------------------------------------------------------------------------- %

let PETA_CONV tm =
    (let (p,fp) = dest_pabs tm in
    let (f,p') = dest_comb fp in
    let x = genvar (type_of p) in
    if (p = p') & (not (occs_in p f)) then
	EXT (GEN x (PBETA_CONV (mk_comb(tm,x))))
    else
	fail
    ) ? failwith `PETA_CONV`;;

% ------------------------------------------------------------------------- %
% PALPHA_CONV p2 "\p1. t" = (|- (\p1. t) = (\p2. t[p2/p1]))                 %
% ------------------------------------------------------------------------- %
    
letrec PALPHA_CONV np tm =
    (let (op,_) = dest_pabs tm in
	if is_var np then
	    if is_var op then
		ALPHA_CONV np tm
	    else % is_pair op %
		let np' = genvar (type_of np) in
		let t1 =  PBETA_CONV (mk_comb(tm, np')) in
		let t2 = ABS np' t1 in
		let t3 = CONV_RULE (RATOR_CONV (RAND_CONV ETA_CONV)) t2 in
		    CONV_RULE (RAND_CONV (ALPHA_CONV np)) t3
	else % is_pair np %
	    if is_var op then
		let np' = genlike np in
		let t1 = PBETA_CONV (mk_comb(tm, np')) in
		let t2 = PABS np' t1 in
		let th3 = CONV_RULE (RATOR_CONV (RAND_CONV PETA_CONV)) t2 in
		    CONV_RULE (RAND_CONV (PALPHA_CONV np)) th3 
	    else % is_pair op %
		let (np1,np2) = dest_pair np in
		    CONV_RULE
			(RAND_CONV (RAND_CONV (PABS_CONV (PALPHA_CONV np2))))
			((RAND_CONV (PALPHA_CONV np1)) tm)
    ) ? failwith `PALPHA_CONV` ;;

% ------------------------------------------------------------------------- %
% For any binder B:                                                         %
% GEN_PALPHA_CONV p2 "B p1. t" = (|- (B p1. t) = (B p2. t[p2/p1]))          %
% ------------------------------------------------------------------------- %

let GEN_PALPHA_CONV p tm = 
    (if is_pabs tm then
	PALPHA_CONV p tm
    else if is_binder (fst (dest_const (rator tm))) then
	AP_TERM (rator tm) (PALPHA_CONV p (rand tm))
    else
	fail
    ) ? failwith `GEN_PALPHA_CONV`;;

% ------------------------------------------------------------------------- %
% Iff t1 and t2 are alpha convertable then                                  %
% PALPHA t1 t2 = (|- t1 = t2)                                               %
%                                                                           %
% Note the PALPHA considers "(\x.x)" and "\(a,b).(a,b)" to be               %
%   alpha convertable where ALPHA does not.                                 %
% ------------------------------------------------------------------------- %

letrec PALPHA t1 t2 =
    (if t1 = t2 then
	REFL t1
    else if (is_pabs t1) & (is_pabs t2) then
	let (p1,b1) = dest_pabs t1 
	and (p2,b2) = dest_pabs t2 in
	    if is_var p1 then
		let th1 = PALPHA_CONV p1 t2 in
		let b2' = pbody (rand (concl th1)) in
		    (PABS p1 (PALPHA b1 b2')) TRANS (SYM th1)
	    else
		let th1 = PALPHA_CONV p2 t1 in
		let b1' = pbody (rand (concl th1)) in
		    th1 TRANS (PABS p2 (PALPHA b2 b1'))
    else if (is_comb t1) & (is_comb t2) then
	let (t1f,t1a) = dest_comb t1 in
	let (t2f,t2a) = dest_comb t2 in
	let thf = PALPHA t1f t2f in
	let tha = PALPHA t1a t2a in
	    (AP_THM thf t1a) TRANS (AP_TERM t2f tha)
    else
	fail
    ) ? failwith `PALPHA`;;

let paconv = curry (can (uncurry PALPHA));;

% ------------------------------------------------------------------------- %
% PAIR_CONV : conv -> conv                                                  %
%                                                                           %
% If the argument of the resulting conversion is a pair, this conversion    %
% recusively applies itself to both sides of the pair.                      %
% Otherwise the basic conversion is applied to the argument.                %
% ------------------------------------------------------------------------- %

letrec PAIR_CONV c t =
   if (is_pair t) then
       MK_PAIR (((PAIR_CONV c)#(PAIR_CONV c)) (dest_pair t))
    else
       c t;;

% ------------------------------------------------------------------------- %
% CURRY_ONE_ONE_THM = |- (CURRY f = CURRY g) = (f = g)                      %
% ------------------------------------------------------------------------- %

let CURRY_ONE_ONE_THM =
    let th1 = ASSUME "(f:(*#**)->***) = g" in
    let th2 = AP_TERM "CURRY:((*#**)->***)->(*->**->***)" th1 in
    let th3 = DISCH_ALL th2 in
    let thA = ASSUME "(CURRY (f:(*#**)->***)) = (CURRY g)" in
    let thB = AP_TERM "UNCURRY:(*->**->***)->((*#**)->***)" thA in
    let thC = PURE_REWRITE_RULE [UNCURRY_CURRY_THM] thB in
    let thD = DISCH_ALL thC in
	IMP_ANTISYM_RULE thD th3 ;;

% ------------------------------------------------------------------------- %
% UNCURRY_ONE_ONE_THM = |- (UNCURRY f = UNCURRY g) = (f = g)                %
% ------------------------------------------------------------------------- %

let UNCURRY_ONE_ONE_THM =
    let th1 = ASSUME "(f:*->**->***) = g" in
    let th2 = AP_TERM "UNCURRY:(*->**->***)->((*#**)->***)" th1 in
    let th3 = DISCH_ALL th2 in
    let thA = ASSUME "(UNCURRY (f:*->**->***)) = (UNCURRY g)" in
    let thB = AP_TERM "CURRY:((*#**)->***)->(*->**->***)" thA in
    let thC = PURE_REWRITE_RULE [CURRY_UNCURRY_THM] thB in
    let thD = DISCH_ALL thC in
	IMP_ANTISYM_RULE thD th3 ;;