This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/reduct/rstc.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
%============================================================================%
%        FILE: rstc.ml                                                       %
%                                                                            %
% DESCRIPTION: Collection of theorems about (all combinations of) reflexive, %
%              symmetric and transitive closure of binary relations.         %
%                                                                            %
%      AUTHOR: John Harrison                                                 %
%              University of Cambridge Computer Laboratory                   %
%              New Museums Site                                              %
%              Pembroke Street                                               %
%              Cambridge CB2 3QG                                             %
%              England.                                                      %
%                                                                            %
%        DATE: 27th May 1993                                                 %
%============================================================================%

timer true;;

can unlink `RSTC.th`;;

new_theory `RSTC`;;

load_library `ind_defs`;;

map hide_constant [`I`; `K`; `S`];;

%----------------------------------------------------------------------------%
% Useful oddments                                                            %
%----------------------------------------------------------------------------%

let LAND_CONV = RATOR_CONV o RAND_CONV;;

let TAUT_CONV =
  let val w t = type_of t = ":bool" & can (find_term is_var) t & free_in t w in
  C (curry prove)
  (REPEAT GEN_TAC THEN (REPEAT o CHANGED_TAC o W)
   (C $THEN (REWRITE_TAC[]) o BOOL_CASES_TAC o hd o sort (uncurry free_in) o
    W(find_terms o val) o snd));;

let ANTE_RES_THEN ttac th = FIRST_ASSUM(ttac o C MATCH_MP th);;

let RULE_INDUCT_TAC = C W STRIP_ASSUME_TAC o RULE_INDUCT_THEN;;

%----------------------------------------------------------------------------%
% Little lemmas about equivalent forms of symmetry and transitivity.         %
%----------------------------------------------------------------------------%

let SYM_ALT = prove_thm(`SYM_ALT`,
  "!R:*->*->bool. (!x y. R x y ==> R y x) = (!x y. R x y = R y x)",
  GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
   [EQ_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC;
    FIRST_ASSUM(\th. GEN_REWRITE_TAC I [] [th])] THEN
  FIRST_ASSUM MATCH_ACCEPT_TAC);;

let TRANS_ALT = prove_thm(`TRANS_ALT`,
  "!(R:*->*->bool) (S:*->*->bool) U.
        (!x z. (?y. R x y /\ S y z) ==> U x z) =
        (!x y z. R x y /\ S y z ==> U x z)",
  REPEAT GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV LEFT_IMP_EXISTS_CONV) THEN
  EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;

%----------------------------------------------------------------------------%
% Reflexive closure                                                          %
%----------------------------------------------------------------------------%

let RC_CLAUSES,RC_INDUCT =
  let RC = "RC:(*->*->bool)->(*->*->bool)"
  and R = "R:*->*->bool" in
  new_inductive_definition false `RC`
  ("^RC ^R x y",["^R"])
  [                  ["^R x y"],"^RC ^R x y";
                             [],"^RC ^R x x"];;

let RC_INC = prove_thm(`RC_INC`,
  "!(R:*->*->bool) x y. R x y ==> RC R x y",
  REWRITE_TAC RC_CLAUSES);;

let RC_REFL = prove_thm(`RC_REFL`,
  "!(R:*->*->bool) x. RC R x x",
  REWRITE_TAC RC_CLAUSES);;

let RC_CASES = prove_thm(`RC_CASES`,
  "!(R:*->*->bool) x y. RC R x y = R x y \/ (x = y)",
  GEN_TAC THEN REWRITE_TAC[derive_cases_thm (RC_CLAUSES,RC_INDUCT)] THEN
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN DISJ_CASES_TAC THEN
  ASM_REWRITE_TAC[]);;

let RC_INDUCT = prove_thm(`RC_INDUCT`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) ==>
            (!x y. RC R x y ==> P x y)",
  MATCH_ACCEPT_TAC RC_INDUCT);;

let RC_MONO = prove_thm(`RC_MONO`,
  "!(R:*->*->bool) S.
        (!x y. R x y ==> S x y) ==>
            (!x y. RC R x y ==> RC S x y)",
  REWRITE_TAC[RC_CASES] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;

let RC_CLOSED = prove_thm(`RC_CLOSED`,
  "!R:*->*->bool. (RC R = R) = !x. R x x",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_ACCEPT_TAC RC_REFL;
    DISCH_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
    REWRITE_TAC[RC_CASES] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[]]);;

let RC_IDEMP = prove_thm(`RC_IDEMP`,
  "!R:*->*->bool. RC(RC R) = RC R",
  REWRITE_TAC[RC_CLOSED; RC_REFL]);;

let RC_SYM = prove_thm(`RC_SYM`,
  "!R:*->*->bool.
        (!x y. R x y ==> R y x) ==> (!x y. RC R x y ==> RC R y x)",
  REWRITE_TAC[RC_CASES] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC);;

let RC_TRANS = prove_thm(`RC_TRANS`,
  "!R:*->*->bool.
        (!x z. (?y. R x y /\ R y z) ==> R x z) ==>
        (!x z. (?y. RC R x y /\ RC R y z) ==> RC R x z)",
  REWRITE_TAC[RC_CASES] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[];
    FIRST_ASSUM(UNDISCH_TAC o assert is_eq o concl) THEN
    DISCH_THEN SUBST_ALL_TAC THEN ASM_REWRITE_TAC[]]);;

%----------------------------------------------------------------------------%
% Symmetric closure                                                          %
%----------------------------------------------------------------------------%

let SC_CLAUSES,SC_INDUCT =
  let SC = "SC:(*->*->bool)->(*->*->bool)"
  and R = "R:*->*->bool" in
  new_inductive_definition false `SC`
  ("^SC ^R x y",["^R"])
  [                  ["^R x y"],"^SC ^R x y";
                 ["^SC ^R x y"],"^SC ^R y x"];;

let SC_INC = prove_thm(`SC_INC`,
  "!(R:*->*->bool) x y. R x y ==> SC R x y",
  REWRITE_TAC SC_CLAUSES);;

let SC_SYM = prove_thm(`SC_SYM`,
  "!(R:*->*->bool) x y. SC R x y ==> SC R y x",
  REWRITE_TAC SC_CLAUSES);;

let SC_CASES = prove_thm(`SC_CASES`,
  "!R:*->*->bool. SC(R) x y = R x y \/ R y x",
  GEN_TAC THEN EQ_TAC THENL
   [RULE_INDUCT_TAC SC_INDUCT THEN
    ONCE_REWRITE_TAC[DISJ_SYM] THEN ASM_REWRITE_TAC[];
    DISCH_THEN DISJ_CASES_TAC THENL
     [ALL_TAC; MATCH_MP_TAC SC_SYM] THEN
    MATCH_MP_TAC SC_INC THEN ASM_REWRITE_TAC[]]);;

let SC_INDUCT = prove_thm(`SC_INDUCT`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x y. P x y ==> P y x) ==>
            (!x y. SC R x y ==> P x y)",
  MATCH_ACCEPT_TAC SC_INDUCT);;

let SC_MONO = prove_thm(`SC_MONO`,
  "!(R:*->*->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. SC R x y ==> SC S x y)",
  REWRITE_TAC[SC_CASES] THEN REPEAT STRIP_TAC THEN
  RES_TAC THEN ASM_REWRITE_TAC[]);;

let SC_CLOSED = prove_thm(`SC_CLOSED`,
  "!R:*->*->bool. (SC R = R) = !x y. R x y ==> R y x",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_ACCEPT_TAC SC_SYM;
    DISCH_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
    REWRITE_TAC[SC_CASES] THEN EQ_TAC THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;

let SC_IDEMP = prove_thm(`SC_IDEMP`,
  "!R:*->*->bool. SC(SC R) = SC R",
  REWRITE_TAC[SC_CLOSED; SC_SYM]);;

let SC_REFL = prove_thm(`SC_REFL`,
  "!R:*->*->bool. (!x. R x x) ==> (!x. SC R x x)",
  GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[SC_CASES] THEN
  ASM_REWRITE_TAC[]);;

%----------------------------------------------------------------------------%
% Transitive closure                                                         %
%----------------------------------------------------------------------------%

let TC_CLAUSES,TC_INDUCT =
  let TC = "TC:(*->*->bool)->(*->*->bool)"
  and R = "R:*->*->bool" in
  new_inductive_definition false `TC`
  ("^TC ^R x y",["^R"])
  [                  ["^R x y"],"^TC ^R x y";
   ["^TC ^R x y"; "^TC ^R y z"],"^TC ^R x z"];;

let TC_INC = prove_thm(`TC_INC`,
  "!(R:*->*->bool) x y. R x y ==> TC R x y",
  REWRITE_TAC TC_CLAUSES);;

let TC_TRANS = prove_thm(`TC_TRANS`,
  "!(R:*->*->bool) x z. (?y. TC R x y /\ TC R y z) ==> TC R x z",
  REWRITE_TAC TC_CLAUSES);;

let TC_CASES = prove_thm(`TC_CASES`,
  "!(R:*->*->bool) x z. TC R x z = R x z \/ (?y. TC R x y /\ TC R y z)",
  MATCH_ACCEPT_TAC (derive_cases_thm (TC_CLAUSES,TC_INDUCT)));;

let TC_INDUCT = prove_thm(`TC_INDUCT`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x z. (?y. P x y /\ P y z) ==> P x z) ==>
            (!x y. TC R x y ==> P x y)",
  MATCH_ACCEPT_TAC TC_INDUCT);;

let TC_MONO = prove_thm(`TC_MONO`,
  "!(R:*->*->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. TC R x y ==> TC S x y)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  RULE_INDUCT_TAC TC_INDUCT THENL
   [MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_MP_TAC;
    MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*"] THEN
  ASM_REWRITE_TAC[]);;

let TC_CLOSED = prove_thm(`TC_CLOSED`,
  "!R:*->*->bool. (TC R = R) = !x z. (?y. R x y /\ R y z) ==> R x z",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_ACCEPT_TAC TC_TRANS;
    DISCH_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN EQ_TAC THENL
     [RULE_INDUCT_TAC TC_INDUCT THEN FIRST_ASSUM MATCH_MP_TAC THEN
      EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[];
      MATCH_ACCEPT_TAC TC_INC]]);;

let TC_IDEMP = prove_thm(`TC_IDEMP`,
  "!R:*->*->bool. TC(TC R) = TC R",
  REWRITE_TAC[TC_CLOSED; TC_TRANS]);;

let TC_REFL = prove_thm(`TC_REFL`,
  "!R:*->*->bool. (!x. R x x) ==> (!x. TC R x x)",
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
  MATCH_MP_TAC TC_INC THEN ASM_REWRITE_TAC[]);;

let TC_SYM = prove_thm(`TC_SYM`,
  "!R:*->*->bool. (!x y. R x y ==> R y x) ==> (!x y. TC R x y ==> TC R y x)",
  GEN_TAC THEN DISCH_TAC THEN RULE_INDUCT_TAC TC_INDUCT THENL
   [MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_MP_TAC;
    MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*" THEN CONJ_TAC] THEN
  ASM_REWRITE_TAC[]);;

%----------------------------------------------------------------------------%
% Commutativity properties of the three basic closure operations             %
%----------------------------------------------------------------------------%

let RC_SC = prove_thm(`RC_SC`,
  "!R:*->*->bool. RC(SC R) = SC(RC R)",
  GEN_TAC THEN CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "x:*" THEN
  CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "y:*" THEN
  REWRITE_TAC[RC_CASES; SC_CASES] THEN
  SUBST1_TAC(ISPECL ["x:*"; "y:*"] EQ_SYM_EQ) THEN
  ASM_CASES_TAC "y:* = x" THEN ASM_REWRITE_TAC[]);;

let SC_RC = prove_thm(`SC_RC`,
  "!R:*->*->bool. SC(RC R) = RC(SC R)",
  MATCH_ACCEPT_TAC(GSYM RC_SC));;

let RC_TC = prove_thm(`RC_TC`,
  "!R:*->*->bool. RC(TC R) = TC(RC R)",
  GEN_TAC THEN CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "x:*" THEN
  CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "y:*" THEN EQ_TAC THENL
   [RULE_INDUCT_TAC RC_INDUCT THENL
     [POP_ASSUM MP_TAC THEN MATCH_MP_TAC TC_MONO THEN
      MATCH_ACCEPT_TAC RC_INC;
      MATCH_MP_TAC TC_REFL THEN MATCH_ACCEPT_TAC RC_REFL];
    RULE_INDUCT_TAC TC_INDUCT THENL
     [POP_ASSUM MP_TAC THEN MATCH_MP_TAC RC_MONO THEN
      MATCH_ACCEPT_TAC TC_INC;
      POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN
      MATCH_MP_TAC(REWRITE_RULE[TRANS_ALT] RC_TRANS) THEN
      MATCH_ACCEPT_TAC(REWRITE_RULE[TRANS_ALT] TC_TRANS)]]);;

let TC_RC = prove_thm(`TC_RC`,
  "!R:*->*->bool. TC(RC R) = RC(TC R)",
  MATCH_ACCEPT_TAC(GSYM RC_TC));;

let TC_SC = prove_thm(`TC_SC`,
  "!(R:*->*->bool) x y. SC(TC R) x y ==> TC(SC R) x y",
  REPEAT GEN_TAC THEN REWRITE_TAC[SC_CASES] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [MATCH_MP_TAC TC_MONO THEN MATCH_ACCEPT_TAC SC_INC;
    RULE_INDUCT_TAC TC_INDUCT THENL
     [MATCH_MP_TAC TC_INC THEN ASM_REWRITE_TAC[SC_CASES];
      MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*" THEN
      ASM_REWRITE_TAC[]]]);;

let SC_TC = prove_thm(`SC_TC`,
  "!(R:*->*->bool) x y. SC(TC R) x y ==> TC(SC R) x y",
  MATCH_ACCEPT_TAC TC_SC);;

%----------------------------------------------------------------------------%
% Useful to have "left" and "right" recursive versions of transitivity       %
%----------------------------------------------------------------------------%

let TCL_CLAUSES,TCL_INDUCT =
  let TC = "TCL:(*->*->bool)->(*->*->bool)"
  and R = "R:*->*->bool" in
  new_inductive_definition false `TCL`
  ("^TC ^R x y",["^R"])
  [                  ["^R x y"],"^TC ^R x y";
   ["^TC ^R x y"; "^R y z"],"^TC ^R x z"];;

let TCR_CLAUSES,TCR_INDUCT =
  let TC = "TCR:(*->*->bool)->(*->*->bool)"
  and R = "R:*->*->bool" in
  new_inductive_definition false `TC2`
  ("^TC ^R x y",["^R"])
  [                  ["^R x y"],"^TC ^R x y";
   ["^R x y"; "^TC ^R y z"],"^TC ^R x z"];;

%----------------------------------------------------------------------------%
% Prove them both equivalent to TC.                                          %
%----------------------------------------------------------------------------%

let TCL_TRANS = prove_thm(`TCL_TRANS`,
  "!(R:*->*->bool) x y z. TCL R x y /\ TCL R y z ==> TCL R x z",
  REPEAT GEN_TAC THEN
  REWRITE_TAC[TAUT_CONV "a /\ b ==> c = b ==> a ==> c"] THEN
  DISCH_TAC THEN SPEC_TAC("x:*","x:*") THEN
  POP_ASSUM MP_TAC THEN SPEC_TAC("z:*","z:*") THEN
  SPEC_TAC("y:*","y:*") THEN RULE_INDUCT_TAC TCL_INDUCT THENL
   [X_GEN_TAC "z:*" THEN DISCH_TAC THEN
    MATCH_MP_TAC (el 2 TCL_CLAUSES) THEN
    EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
    GEN_TAC THEN DISCH_TAC THEN
    MATCH_MP_TAC (el 2 TCL_CLAUSES) THEN
    EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;

let TCL_TC = prove_thm(`TCL_TC`,
  "TCL:(*->*->bool)->(*->*->bool) = TC",
  CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "R:*->*->bool" THEN
  CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "x:*" THEN
  CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "y:*" THEN
  EQ_TAC THENL
   [RULE_INDUCT_TAC TCL_INDUCT THENL
     [MATCH_MP_TAC TC_INC;
      MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*"] THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC TC_INC;
    RULE_INDUCT_TAC TC_INDUCT THENL
     [MATCH_MP_TAC (el 1 TCL_CLAUSES);
      MATCH_MP_TAC TCL_TRANS THEN EXISTS_TAC "y:*"]] THEN
  ASM_REWRITE_TAC[]);;

let TCR_TRANS = prove_thm(`TCR_TRANS`,
  "!(R:*->*->bool) x y z. TCR R x y /\ TCR R y z ==> TCR R x z",
  REPEAT GEN_TAC THEN
  REWRITE_TAC[TAUT_CONV "a /\ b ==> c = a ==> b ==> c"] THEN
  DISCH_TAC THEN SPEC_TAC("z:*","z:*") THEN
  POP_ASSUM MP_TAC THEN SPEC_TAC("y:*","y:*") THEN
  SPEC_TAC("x:*","x:*") THEN RULE_INDUCT_TAC TCR_INDUCT THENL
   [X_GEN_TAC "z:*" THEN DISCH_TAC THEN
    MATCH_MP_TAC (el 2 TCR_CLAUSES) THEN
    EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[];
    X_GEN_TAC "w:*" THEN DISCH_TAC THEN
    MATCH_MP_TAC (el 2 TCR_CLAUSES) THEN
    EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;

let TCR_TC = prove_thm(`TCR_TC`,
  "TCR:(*->*->bool)->(*->*->bool) = TC",
  CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "R:*->*->bool" THEN
  CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "x:*" THEN
  CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "y:*" THEN
  EQ_TAC THENL
   [RULE_INDUCT_TAC TCR_INDUCT THENL
     [MATCH_MP_TAC TC_INC;
      MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*"] THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC TC_INC;
    RULE_INDUCT_TAC TC_INDUCT THENL
     [MATCH_MP_TAC (el 1 TCR_CLAUSES);
      MATCH_MP_TAC TCR_TRANS THEN EXISTS_TAC "y:*"]] THEN
  ASM_REWRITE_TAC[]);;

%----------------------------------------------------------------------------%
% Really we just want these theorems, then we can forget TCL and TCR         %
%----------------------------------------------------------------------------%

let TC_TRANS_L = prove_thm(`TC_TRANS_L`,
  "!(R:*->*->bool) x z. (?y. TC R x y /\ R y z) ==> TC R x z",
  REWRITE_TAC[GSYM TCL_TC] THEN REWRITE_TAC TCL_CLAUSES);;

let TC_TRANS_R = prove_thm(`TC_TRANS_R`,
  "!(R:*->*->bool) x z. (?y. R x y /\ TC R y z) ==> TC R x z",
  REWRITE_TAC[GSYM TCR_TC] THEN REWRITE_TAC TCR_CLAUSES);;

let TC_INDUCT_L = prove_thm(`TC_INDUCT_L`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x z. (?y. P x y /\ R y z) ==> P x z) ==>
            (!x y. TC R x y ==> P x y)",
  REWRITE_TAC[GSYM TCL_TC] THEN MATCH_ACCEPT_TAC TCL_INDUCT);;

let TC_INDUCT_R = prove_thm(`TC_INDUCT_R`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x z. (?y. R x y /\ P y z) ==> P x z) ==>
            (!x y. TC R x y ==> P x y)",
  REWRITE_TAC[GSYM TCR_TC] THEN MATCH_ACCEPT_TAC TCR_INDUCT);;

let TC_CASES_L = prove_thm(`TC_CASES_L`,
  "!(R:*->*->bool) x z. TC R x z = R x z \/ (?y. TC R x y /\ R y z)",
  REWRITE_TAC[GSYM TCL_TC] THEN
  MATCH_ACCEPT_TAC (derive_cases_thm (TCL_CLAUSES,TCL_INDUCT)));;

let TC_CASES_R = prove_thm(`TC_CASES_R`,
  "!(R:*->*->bool) x z. TC R x z = R x z \/ (?y. R x y /\ TC R y z)",
  REWRITE_TAC[GSYM TCR_TC] THEN
  MATCH_ACCEPT_TAC (derive_cases_thm (TCR_CLAUSES,TCR_INDUCT)));;

%----------------------------------------------------------------------------%
% Reflexive symmetric closure                                                %
%----------------------------------------------------------------------------%

let RSC = new_definition(`RSC`,
  "!R:*->*->bool. RSC(R) = RC(SC R)");;

let RSC_INC = prove_thm(`RSC_INC`,
  "!(R:*->*->bool) x y. R x y ==> RSC R x y",
  REPEAT STRIP_TAC THEN REWRITE_TAC[RSC] THEN
  MATCH_MP_TAC RC_INC THEN MATCH_MP_TAC SC_INC THEN
  ASM_REWRITE_TAC[]);;

let RSC_REFL = prove_thm(`RSC_REFL`,
  "!(R:*->*->bool) x. RSC R x x",
  REWRITE_TAC[RSC; RC_REFL]);;

let RSC_SYM = prove_thm(`RSC_SYM`,
  "!(R:*->*->bool) x y. RSC R x y ==> RSC R y x",
  REWRITE_TAC[RSC; RC_SC; SC_SYM]);;

let RSC_CASES = prove_thm(`RSC_CASES`,
  "!(R:*->*->bool) x y. RSC R x y = (x = y) \/ R x y \/ R y x",
  REPEAT GEN_TAC THEN REWRITE_TAC[RSC; RC_CASES; SC_CASES] THEN
  CONV_TAC(AC_CONV(DISJ_ASSOC,DISJ_SYM)));;

let RSC_INDUCT = prove_thm(`RSC_INDUCT`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) /\
        (!x y. P x y ==> P y x) ==>
                !x y. RSC R x y ==> P x y",
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RSC] THEN
  RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC "SC(R:*->*->bool) x y" THEN
  RULE_INDUCT_TAC SC_INDUCT THEN ASM_REWRITE_TAC[] THEN
  FIRST_ASSUM(\th. MATCH_MP_TAC th THEN ASM_REWRITE_TAC[] THEN NO_TAC));;

let RSC_MONO = prove_thm(`RSC_MONO`,
  "!(R:*->*->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. RSC R x y ==> RSC S x y)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RSC] THEN
  MATCH_MP_TAC RC_MONO THEN MATCH_MP_TAC SC_MONO THEN
  FIRST_ASSUM MATCH_ACCEPT_TAC);;

let RSC_CLOSED = prove_thm(`RSC_CLOSED`,
  "!R:*->*->bool. (RSC R = R) = (!x. R x x) /\ (!x y. R x y ==> R y x)",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[RSC_REFL; RSC_SYM];
    STRIP_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
    REWRITE_TAC[RSC_CASES] THEN EQ_TAC THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;

let RSC_IDEMP = prove_thm(`RSC_IDEMP`,
  "!R:*->*->bool. RSC(RSC R) = RSC R",
  REWRITE_TAC[RSC_CLOSED; RSC_REFL; RSC_SYM]);;

%----------------------------------------------------------------------------%
% Reflexive transitive closure                                               %
%----------------------------------------------------------------------------%

let RTC = new_definition(`RTC`,
  "!R:*->*->bool. RTC(R) = RC(TC R)");;

let RTC_INC = prove_thm(`RTC_INC`,
  "!(R:*->*->bool) x y. R x y ==> RTC R x y",
  REPEAT STRIP_TAC THEN REWRITE_TAC[RTC] THEN
  MATCH_MP_TAC RC_INC THEN MATCH_MP_TAC TC_INC THEN
  ASM_REWRITE_TAC[]);;

let RTC_REFL = prove_thm(`RTC_REFL`,
  "!(R:*->*->bool) x. RTC R x x",
  REWRITE_TAC[RTC; RC_REFL]);;

let RTC_TRANS = prove_thm(`RTC_TRANS`,
  "!(R:*->*->bool) x z. (?y. RTC R x y /\ RTC R y z) ==> RTC R x z",
  REWRITE_TAC[RTC; RC_TC; TC_TRANS]);;

let RTC_TRANS_L = prove_thm(`RTC_TRANS_L`,
  "!(R:*->*->bool) x z. (?y. RTC R x y /\ R y z) ==> RTC R x z",
  REWRITE_TAC[RTC; RC_TC] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC "y:*" THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RC_INC THEN
  ASM_REWRITE_TAC[]);;

let RTC_TRANS_R = prove_thm(`RTC_TRANS_R`,
  "!(R:*->*->bool) x z. (?y. R x y /\ RTC R y z) ==> RTC R x z",
  REWRITE_TAC[RTC; RC_TC] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC TC_TRANS_R THEN EXISTS_TAC "y:*" THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RC_INC THEN
  ASM_REWRITE_TAC[]);;

let RTC_CASES = prove_thm(`RTC_CASES`,
  "!(R:*->*->bool) x z. RTC R x z = (x = z) \/ ?y. RTC R x y /\ RTC R y z",
  REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_CASES] THEN
  EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [DISJ2_TAC THEN EXISTS_TAC "x:*";
    DISJ1_TAC THEN MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*";
    DISJ1_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN
    FIRST_ASSUM MATCH_ACCEPT_TAC] THEN
  ASM_REWRITE_TAC[]);;

let RTC_CASES_L = prove_thm(`RTC_CASES_L`,
  "!(R:*->*->bool) x z. RTC R x z = (x = z) \/ ?y. RTC R x y /\ R y z",
  REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_CASES] THEN
  EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [FIRST_ASSUM(DISJ_CASES_TAC o ONCE_REWRITE_RULE[TC_CASES_L]) THENL
     [DISJ2_TAC THEN EXISTS_TAC "x:*";
      FIRST_ASSUM(X_CHOOSE_TAC "y:*") THEN DISJ2_TAC THEN EXISTS_TAC "y:*"];
    DISJ1_TAC THEN MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC "y:*";
    DISJ1_TAC THEN MATCH_MP_TAC TC_INC] THEN
  ASM_REWRITE_TAC[]);;

let RTC_CASES_R = prove_thm(`RTC_CASES_R`,
  "!(R:*->*->bool) x z. RTC R x z = (x = z) \/ ?y. R x y /\ RTC R y z",
  REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_CASES] THEN
  EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [FIRST_ASSUM(DISJ_CASES_TAC o ONCE_REWRITE_RULE[TC_CASES_R]) THENL
     [DISJ2_TAC THEN EXISTS_TAC "z:*";
      FIRST_ASSUM(X_CHOOSE_TAC "y:*") THEN DISJ2_TAC THEN EXISTS_TAC "y:*"];
    DISJ1_TAC THEN MATCH_MP_TAC TC_TRANS_R THEN EXISTS_TAC "y:*";
    DISJ1_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN
    MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_ACCEPT_TAC] THEN
  ASM_REWRITE_TAC[]);;

let RTC_INDUCT = prove_thm(`RTC_INDUCT`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) /\
        (!x z. (?y. P x y /\ P y z) ==> P x z) ==>
                !x y. RTC R x y ==> P x y",
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC] THEN
  RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC "TC(R:*->*->bool) x y" THEN
  RULE_INDUCT_TAC TC_INDUCT THEN
  FIRST_ASSUM(\th. MATCH_MP_TAC th THEN TRY(EXISTS_TAC "y:*") THEN
  ASM_REWRITE_TAC[] THEN NO_TAC));;

let RTC_INDUCT_L = prove_thm(`RTC_INDUCT_L`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) /\
        (!x z. (?y. P x y /\ R y z) ==> P x z) ==>
                !x y. RTC R x y ==> P x y",
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC] THEN
  RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC "TC(R:*->*->bool) x y" THEN
  RULE_INDUCT_TAC TC_INDUCT_L THEN
  FIRST_ASSUM(\th. MATCH_MP_TAC th THEN TRY(EXISTS_TAC "y:*") THEN
  ASM_REWRITE_TAC[] THEN NO_TAC));;

let RTC_INDUCT_R = prove_thm(`RTC_INDUCT_R`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) /\
        (!x z. (?y. R x y /\ P y z) ==> P x z) ==>
                !x y. RTC R x y ==> P x y",
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC] THEN
  RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC "TC(R:*->*->bool) x y" THEN
  RULE_INDUCT_TAC TC_INDUCT_R THEN
  FIRST_ASSUM(\th. MATCH_MP_TAC th THEN TRY(EXISTS_TAC "y:*") THEN
  ASM_REWRITE_TAC[] THEN NO_TAC));;

let RTC_MONO = prove_thm(`RTC_MONO`,
  "!(R:*->*->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. RTC R x y ==> RTC S x y)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RTC] THEN
  MATCH_MP_TAC RC_MONO THEN MATCH_MP_TAC TC_MONO THEN
  FIRST_ASSUM MATCH_ACCEPT_TAC);;

let RTC_CLOSED = prove_thm(`RTC_CLOSED`,
  "!R:*->*->bool. (RTC R = R) = (!x. R x x) /\
                                (!x z. (?y. R x y /\ R y z) ==> R x z)",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[RTC_REFL; RTC_TRANS];
    STRIP_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
    EQ_TAC THEN REWRITE_TAC[RTC_INC] THEN
    RULE_INDUCT_TAC RTC_INDUCT THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC "y:*" THEN
    ASM_REWRITE_TAC[]]);;

let RTC_IDEMP = prove_thm(`RTC_IDEMP`,
  "!R:*->*->bool. RTC(RTC R) = RTC R",
  REWRITE_TAC[RTC_CLOSED; RTC_REFL; RTC_TRANS]);;

let RTC_SYM = prove_thm(`RTC_SYM`,
  "!R:*->*->bool. (!x y. R x y ==> R y x) ==> (!x y. RTC R x y ==> RTC R y x)",
  GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RTC] THEN
  MATCH_MP_TAC RC_SYM THEN MATCH_MP_TAC TC_SYM THEN ASM_REWRITE_TAC[]);;

%----------------------------------------------------------------------------%
% Symmetric transitive closure                                               %
%----------------------------------------------------------------------------%

let STC = new_definition(`STC`,
  "!R:*->*->bool. STC(R) = TC(SC R)");;

let STC_INC = prove_thm(`STC_INC`,
  "!(R:*->*->bool) x y. R x y ==> STC R x y",
  REPEAT STRIP_TAC THEN REWRITE_TAC[STC] THEN
  MATCH_MP_TAC TC_INC THEN MATCH_MP_TAC SC_INC THEN
  ASM_REWRITE_TAC[]);;

let STC_SYM = prove_thm(`STC_SYM`,
  "!(R:*->*->bool) x y. STC R x y ==> STC R y x",
  GEN_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN
  MATCH_MP_TAC TC_SYM THEN REWRITE_TAC[SC_SYM]);;

let STC_TRANS = prove_thm(`STC_TRANS`,
  "!(R:*->*->bool) x z. (?y. STC R x y /\ STC R y z) ==> STC R x z",
  REWRITE_TAC[STC; TC_TRANS]);;

let STC_TRANS_L = prove_thm(`STC_TRANS_L`,
  "!(R:*->*->bool) x z. (?y. STC R x y /\ R y z) ==> STC R x z",
  REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN STRIP_TAC THEN
  MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC SC_INC THEN ASM_REWRITE_TAC[]);;

let STC_TRANS_R = prove_thm(`STC_TRANS_R`,
  "!(R:*->*->bool) x z. (?y. R x y /\ STC R y z) ==> STC R x z",
  REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN STRIP_TAC THEN
  MATCH_MP_TAC TC_TRANS_R THEN EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC SC_INC THEN ASM_REWRITE_TAC[]);;

let STC_CASES = prove_thm(`STC_CASES`,
  "!(R:*->*->bool) x z. STC R x z = R x z \/ STC R z x \/
                                    ?y. STC R x y /\ STC R y z",
  REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN
  SUBGOAL_THEN "TC(SC(R:*->*->bool)) z x = TC(SC R) x z" SUBST1_TAC THENL
   [SPEC_TAC("x:*","x:*") THEN SPEC_TAC("z:*","z:*") THEN
    REWRITE_TAC[GSYM SYM_ALT] THEN MATCH_MP_TAC TC_SYM THEN
    MATCH_ACCEPT_TAC SC_SYM;
    EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[]]
  THENL
   [MATCH_MP_TAC TC_INC THEN MATCH_MP_TAC SC_INC;
    MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*"] THEN
  ASM_REWRITE_TAC[]);;

let STC_CASES_L = prove_thm(`STC_CASES_L`,
  "!(R:*->*->bool) x z. STC R x z = R x z \/ STC R z x \/
                                    ?y. STC R x y /\ R y z",
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [] [STC_CASES] THEN
  EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  DISJ2_TAC THEN DISJ1_TAC THENL
   [MATCH_MP_TAC STC_TRANS THEN EXISTS_TAC "y:*" THEN
    CONJ_TAC THEN MATCH_MP_TAC STC_SYM;
    MATCH_MP_TAC STC_SYM THEN MATCH_MP_TAC STC_TRANS_L THEN
    EXISTS_TAC "y:*"] THEN
  ASM_REWRITE_TAC[]);;

let STC_CASES_R = prove_thm(`STC_CASES_R`,
  "!(R:*->*->bool) x z. STC R x z = R x z \/ STC R z x \/
                                    ?y. R x y /\ STC R y z",
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [] [STC_CASES] THEN
  EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  DISJ2_TAC THEN DISJ1_TAC THENL
   [MATCH_MP_TAC STC_TRANS THEN EXISTS_TAC "y:*" THEN
    CONJ_TAC THEN MATCH_MP_TAC STC_SYM;
    MATCH_MP_TAC STC_SYM THEN MATCH_MP_TAC STC_TRANS_R THEN
    EXISTS_TAC "y:*"] THEN
  ASM_REWRITE_TAC[]);;

let STC_INDUCT = prove_thm(`STC_INDUCT`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x y. P x y ==> P y x) /\
        (!x z. (?y. P x y /\ P y z) ==> P x z) ==>
                !x y. STC R x y ==> P x y",
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[STC] THEN
  RULE_INDUCT_TAC TC_INDUCT THENL
   [UNDISCH_TAC "SC(R:*->*->bool) x y" THEN REWRITE_TAC[SC_CASES] THEN
    DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN MP_TAC)) THEN
    REWRITE_TAC[] THEN DISCH_THEN(ANTE_RES_THEN ACCEPT_TAC);
    FIRST_ASSUM(\th. MATCH_MP_TAC th THEN EXISTS_TAC "y:*") THEN
    ASM_REWRITE_TAC[]]);;

let STC_MONO = prove_thm(`STC_MONO`,
  "!(R:*->*->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. STC R x y ==> STC S x y)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[STC] THEN
  MATCH_MP_TAC TC_MONO THEN MATCH_MP_TAC SC_MONO THEN
  FIRST_ASSUM MATCH_ACCEPT_TAC);;

let STC_CLOSED = prove_thm(`STC_CLOSED`,
  "!R:*->*->bool. (STC R = R) = (!x y. R x y ==> R y x) /\
                                (!x z. (?y. R x y /\ R y z) ==> R x z)",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[STC_SYM; STC_TRANS];
    STRIP_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
    EQ_TAC THEN REWRITE_TAC[STC_INC] THEN
    RULE_INDUCT_TAC STC_INDUCT THEN ASM_REWRITE_TAC[] THENL
     [FIRST_ASSUM(\th. MATCH_MP_TAC th THEN FIRST_ASSUM ACCEPT_TAC);
      FIRST_ASSUM(\th. MATCH_MP_TAC th THEN EXISTS_TAC "y:*") THEN
      ASM_REWRITE_TAC[]]]);;

let STC_IDEMP = prove_thm(`STC_IDEMP`,
  "!R:*->*->bool. STC(STC R) = STC R",
  REWRITE_TAC[STC_CLOSED; STC_SYM; STC_TRANS]);;

let STC_REFL = prove_thm(`STC_REFL`,
  "!R:*->*->bool. (!x. R x x) ==> !x. STC R x x",
  REPEAT STRIP_TAC THEN MATCH_MP_TAC STC_INC THEN ASM_REWRITE_TAC[]);;

%----------------------------------------------------------------------------%
% Reflexive symmetric transitive closure (smallest equivalence relation)     %
%----------------------------------------------------------------------------%

let RSTC = new_definition(`RSTC`,
  "!R:*->*->bool. RSTC(R) = RC(TC(SC R))");;

let RSTC_INC = prove_thm(`RSTC_INC`,
  "!(R:*->*->bool) x y. R x y ==> RSTC R x y",
  REPEAT STRIP_TAC THEN REWRITE_TAC[RSTC] THEN
  MAP_EVERY MATCH_MP_TAC [RC_INC; TC_INC; SC_INC] THEN
  ASM_REWRITE_TAC[]);;

let RSTC_REFL = prove_thm(`RSTC_REFL`,
  "!(R:*->*->bool) x. RSTC R x x",
  REWRITE_TAC[RSTC; RC_REFL]);;

let RSTC_SYM = prove_thm(`RSTC_SYM`,
  "!(R:*->*->bool) x y. RSTC R x y ==> RSTC R y x",
  REPEAT GEN_TAC THEN REWRITE_TAC[RSTC] THEN
  MAP_EVERY MATCH_MP_TAC [RC_SYM; TC_SYM] THEN
  REWRITE_TAC[SC_SYM]);;

let RSTC_TRANS = prove_thm(`RSTC_TRANS`,
  "!(R:*->*->bool) x z. (?y. RSTC R x y /\ RSTC R y z) ==> RSTC R x z",
  REWRITE_TAC[RSTC; RC_TC; TC_TRANS]);;

let RSTC_TRANS_L = prove_thm(`RSTC_TRANS_L`,
  "!(R:*->*->bool) x z. (?y. RSTC R x y /\ R y z) ==> RSTC R x z",
  REWRITE_TAC[RSTC; RC_TC] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC "y:*" THEN
  ASM_REWRITE_TAC[] THEN MAP_EVERY MATCH_MP_TAC [RC_INC; SC_INC] THEN
  ASM_REWRITE_TAC[]);;

let RSTC_TRANS_R = prove_thm(`RSTC_TRANS_R`,
  "!(R:*->*->bool) x z. (?y. R x y /\ RSTC R y z) ==> RSTC R x z",
  REWRITE_TAC[RSTC; RC_TC] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC TC_TRANS_R THEN EXISTS_TAC "y:*" THEN
  ASM_REWRITE_TAC[] THEN MAP_EVERY MATCH_MP_TAC [RC_INC; SC_INC] THEN
  ASM_REWRITE_TAC[]);;

let RSTC_CASES = prove_thm(`RSTC_CASES`,
  "!(R:*->*->bool) x z. RSTC R x z = (x = z) \/ R x z \/ RSTC R z x \/
                                     ?y. RSTC R x y /\ RSTC R y z",
  REPEAT GEN_TAC THEN REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN
  REWRITE_TAC[GSYM STC] THEN
  GEN_REWRITE_TAC LAND_CONV [] [STC_CASES] THEN
  GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [] [RC_CASES] THEN
  CONV_TAC(AC_CONV(DISJ_ASSOC,DISJ_SYM)));;

let RSTC_CASES_L = prove_thm(`RSTC_CASES_L`,
  "!(R:*->*->bool) x z. RSTC R x z = (x = z) \/ R x z \/ RSTC R z x \/
                                     ?y. RSTC R x y /\ R y z",
  REPEAT GEN_TAC THEN REWRITE_TAC[RSTC; RC_CASES; GSYM STC] THEN
  GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [] [STC_CASES_L] THEN
  EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [ALL_TAC; DISJ1_TAC] THEN REPEAT DISJ2_TAC THEN
  EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[]);;

let RSTC_CASES_R = prove_thm(`RSTC_CASES_R`,
  "!(R:*->*->bool) x z. RSTC R x z = (x = z) \/ R x z \/ RSTC R z x \/
                                     ?y. R x y /\ RSTC R y z",
  REPEAT GEN_TAC THEN REWRITE_TAC[RSTC; RC_CASES; GSYM STC] THEN
  GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [] [STC_CASES_R] THEN
  EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [ALL_TAC; DISJ1_TAC;
    FIRST_ASSUM(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[]] THEN
  REPEAT DISJ2_TAC THEN EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[]);;

let RSTC_INDUCT = prove_thm(`RSTC_INDUCT`,
  "!(R:*->*->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) /\
        (!x y. P x y ==> P y x) /\
        (!x z. (?y. P x y /\ P y z) ==> P x z) ==>
                !x y. RSTC R x y ==> P x y",
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RSTC] THEN
  RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC "TC(SC(R:*->*->bool)) x y" THEN
  RULE_INDUCT_TAC TC_INDUCT THENL
   [UNDISCH_TAC "SC(R:*->*->bool) x y" THEN REWRITE_TAC[SC_CASES] THEN
    DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN MP_TAC)) THEN
    REWRITE_TAC[] THEN DISCH_THEN(ANTE_RES_THEN ACCEPT_TAC);
    FIRST_ASSUM(\th. MATCH_MP_TAC th THEN EXISTS_TAC "y:*") THEN
    ASM_REWRITE_TAC[]]);;

let RSTC_MONO = prove_thm(`RSTC_MONO`,
  "!(R:*->*->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. RSTC R x y ==> RSTC S x y)",
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RSTC] THEN
  MAP_EVERY MATCH_MP_TAC [RC_MONO; TC_MONO; SC_MONO] THEN
  FIRST_ASSUM MATCH_ACCEPT_TAC);;

let RSTC_CLOSED = prove_thm(`RSTC_CLOSED`,
  "!R:*->*->bool. (RSTC R = R) = (!x. R x x) /\
                                 (!x y. R x y ==> R y x) /\
                                 (!x z. (?y. R x y /\ R y z) ==> R x z)",
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN
    REWRITE_TAC[RSTC_REFL; RSTC_SYM; RSTC_TRANS];
    STRIP_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
    EQ_TAC THEN REWRITE_TAC[RSTC_INC] THEN
    RULE_INDUCT_TAC RSTC_INDUCT THEN ASM_REWRITE_TAC[] THENL
     [FIRST_ASSUM(\th. MATCH_MP_TAC th THEN FIRST_ASSUM ACCEPT_TAC);
      FIRST_ASSUM(\th. MATCH_MP_TAC th THEN EXISTS_TAC "y:*") THEN
      ASM_REWRITE_TAC[]]]);;

let RSTC_IDEMP = prove_thm(`RSTC_IDEMP`,
  "!R:*->*->bool. RSTC(RSTC R) = RSTC R",
  REWRITE_TAC[RSTC_CLOSED; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);;

%----------------------------------------------------------------------------%
% Finally, we prove the inclusion properties for composite closures          %
%----------------------------------------------------------------------------%

let RSC_INC_RC = prove_thm(`RSC_INC_RC`,
  "!R:*->*->bool. !x y. RC R x y ==> RSC R x y",
  REPEAT GEN_TAC THEN REWRITE_TAC[RSC; RC_SC; SC_INC]);;

let RSC_INC_SC = prove_thm(`RSC_INC_SC`,
  "!R:*->*->bool. !x y. SC R x y ==> RSC R x y",
  REPEAT GEN_TAC THEN REWRITE_TAC[RSC; RC_INC]);;

let RTC_INC_RC = prove_thm(`RTC_INC_RC`,
  "!R:*->*->bool. !x y. RC R x y ==> RTC R x y",
  REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_TC; TC_INC]);;

let RTC_INC_TC = prove_thm(`RTC_INC_TC`,
  "!R:*->*->bool. !x y. TC R x y ==> RTC R x y",
  REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_INC]);;

let STC_INC_SC = prove_thm(`STC_INC_SC`,
  "!R:*->*->bool. !x y. SC R x y ==> STC R x y",
  REPEAT GEN_TAC THEN REWRITE_TAC[STC; TC_INC]);;

let STC_INC_TC = prove_thm(`STC_INC_TC`,
  "!R:*->*->bool. !x y. TC R x y ==> STC R x y",
  REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN
  MATCH_MP_TAC TC_MONO THEN MATCH_ACCEPT_TAC SC_INC);;

let RSTC_INC_RC = prove_thm(`RSTC_INC_RC`,
  "!R:*->*->bool. !x y. RC R x y ==> RSTC R x y",
  REWRITE_TAC[RSTC; RC_TC; RC_SC; GSYM STC; STC_INC]);;

let RSTC_INC_SC = prove_thm(`RSTC_INC_SC`,
  "!R:*->*->bool. !x y. SC R x y ==> RSTC R x y",
  REWRITE_TAC[RSTC; GSYM RTC; RTC_INC]);;

let RSTC_INC_TC = prove_thm(`RSTC_INC_TC`,
  "!R:*->*->bool. !x y. TC R x y ==> RSTC R x y",
  GEN_TAC THEN REWRITE_TAC[RSTC; RC_TC; GSYM RSC] THEN
  MATCH_MP_TAC TC_MONO THEN MATCH_ACCEPT_TAC RSC_INC);;

let RSTC_INC_RSC = prove_thm(`RSTC_INC_RSC`,
  "!R:*->*->bool. !x y. RSC R x y ==> RSTC R x y",
  REWRITE_TAC[RSC; RSTC; RC_TC; TC_INC]);;

let RSTC_INC_RTC = prove_thm(`RSTC_INC_RTC`,
  "!R:*->*->bool. !x y. RTC R x y ==> RSTC R x y",
  GEN_TAC THEN REWRITE_TAC[GSYM RTC; RSTC] THEN MATCH_MP_TAC RTC_MONO THEN
  MATCH_ACCEPT_TAC SC_INC);;

let RSTC_INC_STC = prove_thm(`RSTC_INC_STC`,
  "!R:*->*->bool. !x y. STC R x y ==> RSTC R x y",
  GEN_TAC THEN REWRITE_TAC[GSYM STC; RSTC; RC_INC]);;

close_theory();;