/usr/share/hol88-2.02.19940316/contrib/reduct/rstc.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 | %============================================================================%
% FILE: rstc.ml %
% %
% DESCRIPTION: Collection of theorems about (all combinations of) reflexive, %
% symmetric and transitive closure of binary relations. %
% %
% AUTHOR: John Harrison %
% University of Cambridge Computer Laboratory %
% New Museums Site %
% Pembroke Street %
% Cambridge CB2 3QG %
% England. %
% %
% DATE: 27th May 1993 %
%============================================================================%
timer true;;
can unlink `RSTC.th`;;
new_theory `RSTC`;;
load_library `ind_defs`;;
map hide_constant [`I`; `K`; `S`];;
%----------------------------------------------------------------------------%
% Useful oddments %
%----------------------------------------------------------------------------%
let LAND_CONV = RATOR_CONV o RAND_CONV;;
let TAUT_CONV =
let val w t = type_of t = ":bool" & can (find_term is_var) t & free_in t w in
C (curry prove)
(REPEAT GEN_TAC THEN (REPEAT o CHANGED_TAC o W)
(C $THEN (REWRITE_TAC[]) o BOOL_CASES_TAC o hd o sort (uncurry free_in) o
W(find_terms o val) o snd));;
let ANTE_RES_THEN ttac th = FIRST_ASSUM(ttac o C MATCH_MP th);;
let RULE_INDUCT_TAC = C W STRIP_ASSUME_TAC o RULE_INDUCT_THEN;;
%----------------------------------------------------------------------------%
% Little lemmas about equivalent forms of symmetry and transitivity. %
%----------------------------------------------------------------------------%
let SYM_ALT = prove_thm(`SYM_ALT`,
"!R:*->*->bool. (!x y. R x y ==> R y x) = (!x y. R x y = R y x)",
GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
[EQ_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC;
FIRST_ASSUM(\th. GEN_REWRITE_TAC I [] [th])] THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let TRANS_ALT = prove_thm(`TRANS_ALT`,
"!(R:*->*->bool) (S:*->*->bool) U.
(!x z. (?y. R x y /\ S y z) ==> U x z) =
(!x y z. R x y /\ S y z ==> U x z)",
REPEAT GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV LEFT_IMP_EXISTS_CONV) THEN
EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Reflexive closure %
%----------------------------------------------------------------------------%
let RC_CLAUSES,RC_INDUCT =
let RC = "RC:(*->*->bool)->(*->*->bool)"
and R = "R:*->*->bool" in
new_inductive_definition false `RC`
("^RC ^R x y",["^R"])
[ ["^R x y"],"^RC ^R x y";
[],"^RC ^R x x"];;
let RC_INC = prove_thm(`RC_INC`,
"!(R:*->*->bool) x y. R x y ==> RC R x y",
REWRITE_TAC RC_CLAUSES);;
let RC_REFL = prove_thm(`RC_REFL`,
"!(R:*->*->bool) x. RC R x x",
REWRITE_TAC RC_CLAUSES);;
let RC_CASES = prove_thm(`RC_CASES`,
"!(R:*->*->bool) x y. RC R x y = R x y \/ (x = y)",
GEN_TAC THEN REWRITE_TAC[derive_cases_thm (RC_CLAUSES,RC_INDUCT)] THEN
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN DISJ_CASES_TAC THEN
ASM_REWRITE_TAC[]);;
let RC_INDUCT = prove_thm(`RC_INDUCT`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) ==>
(!x y. RC R x y ==> P x y)",
MATCH_ACCEPT_TAC RC_INDUCT);;
let RC_MONO = prove_thm(`RC_MONO`,
"!(R:*->*->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. RC R x y ==> RC S x y)",
REWRITE_TAC[RC_CASES] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;
let RC_CLOSED = prove_thm(`RC_CLOSED`,
"!R:*->*->bool. (RC R = R) = !x. R x x",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_ACCEPT_TAC RC_REFL;
DISCH_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
REWRITE_TAC[RC_CASES] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[]]);;
let RC_IDEMP = prove_thm(`RC_IDEMP`,
"!R:*->*->bool. RC(RC R) = RC R",
REWRITE_TAC[RC_CLOSED; RC_REFL]);;
let RC_SYM = prove_thm(`RC_SYM`,
"!R:*->*->bool.
(!x y. R x y ==> R y x) ==> (!x y. RC R x y ==> RC R y x)",
REWRITE_TAC[RC_CASES] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
let RC_TRANS = prove_thm(`RC_TRANS`,
"!R:*->*->bool.
(!x z. (?y. R x y /\ R y z) ==> R x z) ==>
(!x z. (?y. RC R x y /\ RC R y z) ==> RC R x z)",
REWRITE_TAC[RC_CASES] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[];
FIRST_ASSUM(UNDISCH_TAC o assert is_eq o concl) THEN
DISCH_THEN SUBST_ALL_TAC THEN ASM_REWRITE_TAC[]]);;
%----------------------------------------------------------------------------%
% Symmetric closure %
%----------------------------------------------------------------------------%
let SC_CLAUSES,SC_INDUCT =
let SC = "SC:(*->*->bool)->(*->*->bool)"
and R = "R:*->*->bool" in
new_inductive_definition false `SC`
("^SC ^R x y",["^R"])
[ ["^R x y"],"^SC ^R x y";
["^SC ^R x y"],"^SC ^R y x"];;
let SC_INC = prove_thm(`SC_INC`,
"!(R:*->*->bool) x y. R x y ==> SC R x y",
REWRITE_TAC SC_CLAUSES);;
let SC_SYM = prove_thm(`SC_SYM`,
"!(R:*->*->bool) x y. SC R x y ==> SC R y x",
REWRITE_TAC SC_CLAUSES);;
let SC_CASES = prove_thm(`SC_CASES`,
"!R:*->*->bool. SC(R) x y = R x y \/ R y x",
GEN_TAC THEN EQ_TAC THENL
[RULE_INDUCT_TAC SC_INDUCT THEN
ONCE_REWRITE_TAC[DISJ_SYM] THEN ASM_REWRITE_TAC[];
DISCH_THEN DISJ_CASES_TAC THENL
[ALL_TAC; MATCH_MP_TAC SC_SYM] THEN
MATCH_MP_TAC SC_INC THEN ASM_REWRITE_TAC[]]);;
let SC_INDUCT = prove_thm(`SC_INDUCT`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x y. P x y ==> P y x) ==>
(!x y. SC R x y ==> P x y)",
MATCH_ACCEPT_TAC SC_INDUCT);;
let SC_MONO = prove_thm(`SC_MONO`,
"!(R:*->*->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. SC R x y ==> SC S x y)",
REWRITE_TAC[SC_CASES] THEN REPEAT STRIP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC[]);;
let SC_CLOSED = prove_thm(`SC_CLOSED`,
"!R:*->*->bool. (SC R = R) = !x y. R x y ==> R y x",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_ACCEPT_TAC SC_SYM;
DISCH_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
REWRITE_TAC[SC_CASES] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;
let SC_IDEMP = prove_thm(`SC_IDEMP`,
"!R:*->*->bool. SC(SC R) = SC R",
REWRITE_TAC[SC_CLOSED; SC_SYM]);;
let SC_REFL = prove_thm(`SC_REFL`,
"!R:*->*->bool. (!x. R x x) ==> (!x. SC R x x)",
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[SC_CASES] THEN
ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Transitive closure %
%----------------------------------------------------------------------------%
let TC_CLAUSES,TC_INDUCT =
let TC = "TC:(*->*->bool)->(*->*->bool)"
and R = "R:*->*->bool" in
new_inductive_definition false `TC`
("^TC ^R x y",["^R"])
[ ["^R x y"],"^TC ^R x y";
["^TC ^R x y"; "^TC ^R y z"],"^TC ^R x z"];;
let TC_INC = prove_thm(`TC_INC`,
"!(R:*->*->bool) x y. R x y ==> TC R x y",
REWRITE_TAC TC_CLAUSES);;
let TC_TRANS = prove_thm(`TC_TRANS`,
"!(R:*->*->bool) x z. (?y. TC R x y /\ TC R y z) ==> TC R x z",
REWRITE_TAC TC_CLAUSES);;
let TC_CASES = prove_thm(`TC_CASES`,
"!(R:*->*->bool) x z. TC R x z = R x z \/ (?y. TC R x y /\ TC R y z)",
MATCH_ACCEPT_TAC (derive_cases_thm (TC_CLAUSES,TC_INDUCT)));;
let TC_INDUCT = prove_thm(`TC_INDUCT`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x z. (?y. P x y /\ P y z) ==> P x z) ==>
(!x y. TC R x y ==> P x y)",
MATCH_ACCEPT_TAC TC_INDUCT);;
let TC_MONO = prove_thm(`TC_MONO`,
"!(R:*->*->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. TC R x y ==> TC S x y)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
RULE_INDUCT_TAC TC_INDUCT THENL
[MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_MP_TAC;
MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*"] THEN
ASM_REWRITE_TAC[]);;
let TC_CLOSED = prove_thm(`TC_CLOSED`,
"!R:*->*->bool. (TC R = R) = !x z. (?y. R x y /\ R y z) ==> R x z",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_ACCEPT_TAC TC_TRANS;
DISCH_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN EQ_TAC THENL
[RULE_INDUCT_TAC TC_INDUCT THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[];
MATCH_ACCEPT_TAC TC_INC]]);;
let TC_IDEMP = prove_thm(`TC_IDEMP`,
"!R:*->*->bool. TC(TC R) = TC R",
REWRITE_TAC[TC_CLOSED; TC_TRANS]);;
let TC_REFL = prove_thm(`TC_REFL`,
"!R:*->*->bool. (!x. R x x) ==> (!x. TC R x x)",
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
MATCH_MP_TAC TC_INC THEN ASM_REWRITE_TAC[]);;
let TC_SYM = prove_thm(`TC_SYM`,
"!R:*->*->bool. (!x y. R x y ==> R y x) ==> (!x y. TC R x y ==> TC R y x)",
GEN_TAC THEN DISCH_TAC THEN RULE_INDUCT_TAC TC_INDUCT THENL
[MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_MP_TAC;
MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*" THEN CONJ_TAC] THEN
ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Commutativity properties of the three basic closure operations %
%----------------------------------------------------------------------------%
let RC_SC = prove_thm(`RC_SC`,
"!R:*->*->bool. RC(SC R) = SC(RC R)",
GEN_TAC THEN CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "x:*" THEN
CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "y:*" THEN
REWRITE_TAC[RC_CASES; SC_CASES] THEN
SUBST1_TAC(ISPECL ["x:*"; "y:*"] EQ_SYM_EQ) THEN
ASM_CASES_TAC "y:* = x" THEN ASM_REWRITE_TAC[]);;
let SC_RC = prove_thm(`SC_RC`,
"!R:*->*->bool. SC(RC R) = RC(SC R)",
MATCH_ACCEPT_TAC(GSYM RC_SC));;
let RC_TC = prove_thm(`RC_TC`,
"!R:*->*->bool. RC(TC R) = TC(RC R)",
GEN_TAC THEN CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "x:*" THEN
CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "y:*" THEN EQ_TAC THENL
[RULE_INDUCT_TAC RC_INDUCT THENL
[POP_ASSUM MP_TAC THEN MATCH_MP_TAC TC_MONO THEN
MATCH_ACCEPT_TAC RC_INC;
MATCH_MP_TAC TC_REFL THEN MATCH_ACCEPT_TAC RC_REFL];
RULE_INDUCT_TAC TC_INDUCT THENL
[POP_ASSUM MP_TAC THEN MATCH_MP_TAC RC_MONO THEN
MATCH_ACCEPT_TAC TC_INC;
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN
MATCH_MP_TAC(REWRITE_RULE[TRANS_ALT] RC_TRANS) THEN
MATCH_ACCEPT_TAC(REWRITE_RULE[TRANS_ALT] TC_TRANS)]]);;
let TC_RC = prove_thm(`TC_RC`,
"!R:*->*->bool. TC(RC R) = RC(TC R)",
MATCH_ACCEPT_TAC(GSYM RC_TC));;
let TC_SC = prove_thm(`TC_SC`,
"!(R:*->*->bool) x y. SC(TC R) x y ==> TC(SC R) x y",
REPEAT GEN_TAC THEN REWRITE_TAC[SC_CASES] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[MATCH_MP_TAC TC_MONO THEN MATCH_ACCEPT_TAC SC_INC;
RULE_INDUCT_TAC TC_INDUCT THENL
[MATCH_MP_TAC TC_INC THEN ASM_REWRITE_TAC[SC_CASES];
MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*" THEN
ASM_REWRITE_TAC[]]]);;
let SC_TC = prove_thm(`SC_TC`,
"!(R:*->*->bool) x y. SC(TC R) x y ==> TC(SC R) x y",
MATCH_ACCEPT_TAC TC_SC);;
%----------------------------------------------------------------------------%
% Useful to have "left" and "right" recursive versions of transitivity %
%----------------------------------------------------------------------------%
let TCL_CLAUSES,TCL_INDUCT =
let TC = "TCL:(*->*->bool)->(*->*->bool)"
and R = "R:*->*->bool" in
new_inductive_definition false `TCL`
("^TC ^R x y",["^R"])
[ ["^R x y"],"^TC ^R x y";
["^TC ^R x y"; "^R y z"],"^TC ^R x z"];;
let TCR_CLAUSES,TCR_INDUCT =
let TC = "TCR:(*->*->bool)->(*->*->bool)"
and R = "R:*->*->bool" in
new_inductive_definition false `TC2`
("^TC ^R x y",["^R"])
[ ["^R x y"],"^TC ^R x y";
["^R x y"; "^TC ^R y z"],"^TC ^R x z"];;
%----------------------------------------------------------------------------%
% Prove them both equivalent to TC. %
%----------------------------------------------------------------------------%
let TCL_TRANS = prove_thm(`TCL_TRANS`,
"!(R:*->*->bool) x y z. TCL R x y /\ TCL R y z ==> TCL R x z",
REPEAT GEN_TAC THEN
REWRITE_TAC[TAUT_CONV "a /\ b ==> c = b ==> a ==> c"] THEN
DISCH_TAC THEN SPEC_TAC("x:*","x:*") THEN
POP_ASSUM MP_TAC THEN SPEC_TAC("z:*","z:*") THEN
SPEC_TAC("y:*","y:*") THEN RULE_INDUCT_TAC TCL_INDUCT THENL
[X_GEN_TAC "z:*" THEN DISCH_TAC THEN
MATCH_MP_TAC (el 2 TCL_CLAUSES) THEN
EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC[];
GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC (el 2 TCL_CLAUSES) THEN
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
let TCL_TC = prove_thm(`TCL_TC`,
"TCL:(*->*->bool)->(*->*->bool) = TC",
CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "R:*->*->bool" THEN
CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "x:*" THEN
CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "y:*" THEN
EQ_TAC THENL
[RULE_INDUCT_TAC TCL_INDUCT THENL
[MATCH_MP_TAC TC_INC;
MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*"] THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC TC_INC;
RULE_INDUCT_TAC TC_INDUCT THENL
[MATCH_MP_TAC (el 1 TCL_CLAUSES);
MATCH_MP_TAC TCL_TRANS THEN EXISTS_TAC "y:*"]] THEN
ASM_REWRITE_TAC[]);;
let TCR_TRANS = prove_thm(`TCR_TRANS`,
"!(R:*->*->bool) x y z. TCR R x y /\ TCR R y z ==> TCR R x z",
REPEAT GEN_TAC THEN
REWRITE_TAC[TAUT_CONV "a /\ b ==> c = a ==> b ==> c"] THEN
DISCH_TAC THEN SPEC_TAC("z:*","z:*") THEN
POP_ASSUM MP_TAC THEN SPEC_TAC("y:*","y:*") THEN
SPEC_TAC("x:*","x:*") THEN RULE_INDUCT_TAC TCR_INDUCT THENL
[X_GEN_TAC "z:*" THEN DISCH_TAC THEN
MATCH_MP_TAC (el 2 TCR_CLAUSES) THEN
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[];
X_GEN_TAC "w:*" THEN DISCH_TAC THEN
MATCH_MP_TAC (el 2 TCR_CLAUSES) THEN
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
let TCR_TC = prove_thm(`TCR_TC`,
"TCR:(*->*->bool)->(*->*->bool) = TC",
CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "R:*->*->bool" THEN
CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "x:*" THEN
CONV_TAC FUN_EQ_CONV THEN X_GEN_TAC "y:*" THEN
EQ_TAC THENL
[RULE_INDUCT_TAC TCR_INDUCT THENL
[MATCH_MP_TAC TC_INC;
MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*"] THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC TC_INC;
RULE_INDUCT_TAC TC_INDUCT THENL
[MATCH_MP_TAC (el 1 TCR_CLAUSES);
MATCH_MP_TAC TCR_TRANS THEN EXISTS_TAC "y:*"]] THEN
ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Really we just want these theorems, then we can forget TCL and TCR %
%----------------------------------------------------------------------------%
let TC_TRANS_L = prove_thm(`TC_TRANS_L`,
"!(R:*->*->bool) x z. (?y. TC R x y /\ R y z) ==> TC R x z",
REWRITE_TAC[GSYM TCL_TC] THEN REWRITE_TAC TCL_CLAUSES);;
let TC_TRANS_R = prove_thm(`TC_TRANS_R`,
"!(R:*->*->bool) x z. (?y. R x y /\ TC R y z) ==> TC R x z",
REWRITE_TAC[GSYM TCR_TC] THEN REWRITE_TAC TCR_CLAUSES);;
let TC_INDUCT_L = prove_thm(`TC_INDUCT_L`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x z. (?y. P x y /\ R y z) ==> P x z) ==>
(!x y. TC R x y ==> P x y)",
REWRITE_TAC[GSYM TCL_TC] THEN MATCH_ACCEPT_TAC TCL_INDUCT);;
let TC_INDUCT_R = prove_thm(`TC_INDUCT_R`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x z. (?y. R x y /\ P y z) ==> P x z) ==>
(!x y. TC R x y ==> P x y)",
REWRITE_TAC[GSYM TCR_TC] THEN MATCH_ACCEPT_TAC TCR_INDUCT);;
let TC_CASES_L = prove_thm(`TC_CASES_L`,
"!(R:*->*->bool) x z. TC R x z = R x z \/ (?y. TC R x y /\ R y z)",
REWRITE_TAC[GSYM TCL_TC] THEN
MATCH_ACCEPT_TAC (derive_cases_thm (TCL_CLAUSES,TCL_INDUCT)));;
let TC_CASES_R = prove_thm(`TC_CASES_R`,
"!(R:*->*->bool) x z. TC R x z = R x z \/ (?y. R x y /\ TC R y z)",
REWRITE_TAC[GSYM TCR_TC] THEN
MATCH_ACCEPT_TAC (derive_cases_thm (TCR_CLAUSES,TCR_INDUCT)));;
%----------------------------------------------------------------------------%
% Reflexive symmetric closure %
%----------------------------------------------------------------------------%
let RSC = new_definition(`RSC`,
"!R:*->*->bool. RSC(R) = RC(SC R)");;
let RSC_INC = prove_thm(`RSC_INC`,
"!(R:*->*->bool) x y. R x y ==> RSC R x y",
REPEAT STRIP_TAC THEN REWRITE_TAC[RSC] THEN
MATCH_MP_TAC RC_INC THEN MATCH_MP_TAC SC_INC THEN
ASM_REWRITE_TAC[]);;
let RSC_REFL = prove_thm(`RSC_REFL`,
"!(R:*->*->bool) x. RSC R x x",
REWRITE_TAC[RSC; RC_REFL]);;
let RSC_SYM = prove_thm(`RSC_SYM`,
"!(R:*->*->bool) x y. RSC R x y ==> RSC R y x",
REWRITE_TAC[RSC; RC_SC; SC_SYM]);;
let RSC_CASES = prove_thm(`RSC_CASES`,
"!(R:*->*->bool) x y. RSC R x y = (x = y) \/ R x y \/ R y x",
REPEAT GEN_TAC THEN REWRITE_TAC[RSC; RC_CASES; SC_CASES] THEN
CONV_TAC(AC_CONV(DISJ_ASSOC,DISJ_SYM)));;
let RSC_INDUCT = prove_thm(`RSC_INDUCT`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) /\
(!x y. P x y ==> P y x) ==>
!x y. RSC R x y ==> P x y",
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RSC] THEN
RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC "SC(R:*->*->bool) x y" THEN
RULE_INDUCT_TAC SC_INDUCT THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(\th. MATCH_MP_TAC th THEN ASM_REWRITE_TAC[] THEN NO_TAC));;
let RSC_MONO = prove_thm(`RSC_MONO`,
"!(R:*->*->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. RSC R x y ==> RSC S x y)",
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RSC] THEN
MATCH_MP_TAC RC_MONO THEN MATCH_MP_TAC SC_MONO THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let RSC_CLOSED = prove_thm(`RSC_CLOSED`,
"!R:*->*->bool. (RSC R = R) = (!x. R x x) /\ (!x y. R x y ==> R y x)",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[RSC_REFL; RSC_SYM];
STRIP_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
REWRITE_TAC[RSC_CASES] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;
let RSC_IDEMP = prove_thm(`RSC_IDEMP`,
"!R:*->*->bool. RSC(RSC R) = RSC R",
REWRITE_TAC[RSC_CLOSED; RSC_REFL; RSC_SYM]);;
%----------------------------------------------------------------------------%
% Reflexive transitive closure %
%----------------------------------------------------------------------------%
let RTC = new_definition(`RTC`,
"!R:*->*->bool. RTC(R) = RC(TC R)");;
let RTC_INC = prove_thm(`RTC_INC`,
"!(R:*->*->bool) x y. R x y ==> RTC R x y",
REPEAT STRIP_TAC THEN REWRITE_TAC[RTC] THEN
MATCH_MP_TAC RC_INC THEN MATCH_MP_TAC TC_INC THEN
ASM_REWRITE_TAC[]);;
let RTC_REFL = prove_thm(`RTC_REFL`,
"!(R:*->*->bool) x. RTC R x x",
REWRITE_TAC[RTC; RC_REFL]);;
let RTC_TRANS = prove_thm(`RTC_TRANS`,
"!(R:*->*->bool) x z. (?y. RTC R x y /\ RTC R y z) ==> RTC R x z",
REWRITE_TAC[RTC; RC_TC; TC_TRANS]);;
let RTC_TRANS_L = prove_thm(`RTC_TRANS_L`,
"!(R:*->*->bool) x z. (?y. RTC R x y /\ R y z) ==> RTC R x z",
REWRITE_TAC[RTC; RC_TC] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC "y:*" THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RC_INC THEN
ASM_REWRITE_TAC[]);;
let RTC_TRANS_R = prove_thm(`RTC_TRANS_R`,
"!(R:*->*->bool) x z. (?y. R x y /\ RTC R y z) ==> RTC R x z",
REWRITE_TAC[RTC; RC_TC] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC TC_TRANS_R THEN EXISTS_TAC "y:*" THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RC_INC THEN
ASM_REWRITE_TAC[]);;
let RTC_CASES = prove_thm(`RTC_CASES`,
"!(R:*->*->bool) x z. RTC R x z = (x = z) \/ ?y. RTC R x y /\ RTC R y z",
REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_CASES] THEN
EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[DISJ2_TAC THEN EXISTS_TAC "x:*";
DISJ1_TAC THEN MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*";
DISJ1_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN
FIRST_ASSUM MATCH_ACCEPT_TAC] THEN
ASM_REWRITE_TAC[]);;
let RTC_CASES_L = prove_thm(`RTC_CASES_L`,
"!(R:*->*->bool) x z. RTC R x z = (x = z) \/ ?y. RTC R x y /\ R y z",
REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_CASES] THEN
EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(DISJ_CASES_TAC o ONCE_REWRITE_RULE[TC_CASES_L]) THENL
[DISJ2_TAC THEN EXISTS_TAC "x:*";
FIRST_ASSUM(X_CHOOSE_TAC "y:*") THEN DISJ2_TAC THEN EXISTS_TAC "y:*"];
DISJ1_TAC THEN MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC "y:*";
DISJ1_TAC THEN MATCH_MP_TAC TC_INC] THEN
ASM_REWRITE_TAC[]);;
let RTC_CASES_R = prove_thm(`RTC_CASES_R`,
"!(R:*->*->bool) x z. RTC R x z = (x = z) \/ ?y. R x y /\ RTC R y z",
REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_CASES] THEN
EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(DISJ_CASES_TAC o ONCE_REWRITE_RULE[TC_CASES_R]) THENL
[DISJ2_TAC THEN EXISTS_TAC "z:*";
FIRST_ASSUM(X_CHOOSE_TAC "y:*") THEN DISJ2_TAC THEN EXISTS_TAC "y:*"];
DISJ1_TAC THEN MATCH_MP_TAC TC_TRANS_R THEN EXISTS_TAC "y:*";
DISJ1_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_ACCEPT_TAC] THEN
ASM_REWRITE_TAC[]);;
let RTC_INDUCT = prove_thm(`RTC_INDUCT`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) /\
(!x z. (?y. P x y /\ P y z) ==> P x z) ==>
!x y. RTC R x y ==> P x y",
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC] THEN
RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC "TC(R:*->*->bool) x y" THEN
RULE_INDUCT_TAC TC_INDUCT THEN
FIRST_ASSUM(\th. MATCH_MP_TAC th THEN TRY(EXISTS_TAC "y:*") THEN
ASM_REWRITE_TAC[] THEN NO_TAC));;
let RTC_INDUCT_L = prove_thm(`RTC_INDUCT_L`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) /\
(!x z. (?y. P x y /\ R y z) ==> P x z) ==>
!x y. RTC R x y ==> P x y",
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC] THEN
RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC "TC(R:*->*->bool) x y" THEN
RULE_INDUCT_TAC TC_INDUCT_L THEN
FIRST_ASSUM(\th. MATCH_MP_TAC th THEN TRY(EXISTS_TAC "y:*") THEN
ASM_REWRITE_TAC[] THEN NO_TAC));;
let RTC_INDUCT_R = prove_thm(`RTC_INDUCT_R`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) /\
(!x z. (?y. R x y /\ P y z) ==> P x z) ==>
!x y. RTC R x y ==> P x y",
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC] THEN
RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC "TC(R:*->*->bool) x y" THEN
RULE_INDUCT_TAC TC_INDUCT_R THEN
FIRST_ASSUM(\th. MATCH_MP_TAC th THEN TRY(EXISTS_TAC "y:*") THEN
ASM_REWRITE_TAC[] THEN NO_TAC));;
let RTC_MONO = prove_thm(`RTC_MONO`,
"!(R:*->*->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. RTC R x y ==> RTC S x y)",
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RTC] THEN
MATCH_MP_TAC RC_MONO THEN MATCH_MP_TAC TC_MONO THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let RTC_CLOSED = prove_thm(`RTC_CLOSED`,
"!R:*->*->bool. (RTC R = R) = (!x. R x x) /\
(!x z. (?y. R x y /\ R y z) ==> R x z)",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[RTC_REFL; RTC_TRANS];
STRIP_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
EQ_TAC THEN REWRITE_TAC[RTC_INC] THEN
RULE_INDUCT_TAC RTC_INDUCT THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC "y:*" THEN
ASM_REWRITE_TAC[]]);;
let RTC_IDEMP = prove_thm(`RTC_IDEMP`,
"!R:*->*->bool. RTC(RTC R) = RTC R",
REWRITE_TAC[RTC_CLOSED; RTC_REFL; RTC_TRANS]);;
let RTC_SYM = prove_thm(`RTC_SYM`,
"!R:*->*->bool. (!x y. R x y ==> R y x) ==> (!x y. RTC R x y ==> RTC R y x)",
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RTC] THEN
MATCH_MP_TAC RC_SYM THEN MATCH_MP_TAC TC_SYM THEN ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Symmetric transitive closure %
%----------------------------------------------------------------------------%
let STC = new_definition(`STC`,
"!R:*->*->bool. STC(R) = TC(SC R)");;
let STC_INC = prove_thm(`STC_INC`,
"!(R:*->*->bool) x y. R x y ==> STC R x y",
REPEAT STRIP_TAC THEN REWRITE_TAC[STC] THEN
MATCH_MP_TAC TC_INC THEN MATCH_MP_TAC SC_INC THEN
ASM_REWRITE_TAC[]);;
let STC_SYM = prove_thm(`STC_SYM`,
"!(R:*->*->bool) x y. STC R x y ==> STC R y x",
GEN_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN
MATCH_MP_TAC TC_SYM THEN REWRITE_TAC[SC_SYM]);;
let STC_TRANS = prove_thm(`STC_TRANS`,
"!(R:*->*->bool) x z. (?y. STC R x y /\ STC R y z) ==> STC R x z",
REWRITE_TAC[STC; TC_TRANS]);;
let STC_TRANS_L = prove_thm(`STC_TRANS_L`,
"!(R:*->*->bool) x z. (?y. STC R x y /\ R y z) ==> STC R x z",
REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN STRIP_TAC THEN
MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC SC_INC THEN ASM_REWRITE_TAC[]);;
let STC_TRANS_R = prove_thm(`STC_TRANS_R`,
"!(R:*->*->bool) x z. (?y. R x y /\ STC R y z) ==> STC R x z",
REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN STRIP_TAC THEN
MATCH_MP_TAC TC_TRANS_R THEN EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC SC_INC THEN ASM_REWRITE_TAC[]);;
let STC_CASES = prove_thm(`STC_CASES`,
"!(R:*->*->bool) x z. STC R x z = R x z \/ STC R z x \/
?y. STC R x y /\ STC R y z",
REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN
SUBGOAL_THEN "TC(SC(R:*->*->bool)) z x = TC(SC R) x z" SUBST1_TAC THENL
[SPEC_TAC("x:*","x:*") THEN SPEC_TAC("z:*","z:*") THEN
REWRITE_TAC[GSYM SYM_ALT] THEN MATCH_MP_TAC TC_SYM THEN
MATCH_ACCEPT_TAC SC_SYM;
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[]]
THENL
[MATCH_MP_TAC TC_INC THEN MATCH_MP_TAC SC_INC;
MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC "y:*"] THEN
ASM_REWRITE_TAC[]);;
let STC_CASES_L = prove_thm(`STC_CASES_L`,
"!(R:*->*->bool) x z. STC R x z = R x z \/ STC R z x \/
?y. STC R x y /\ R y z",
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [] [STC_CASES] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
DISJ2_TAC THEN DISJ1_TAC THENL
[MATCH_MP_TAC STC_TRANS THEN EXISTS_TAC "y:*" THEN
CONJ_TAC THEN MATCH_MP_TAC STC_SYM;
MATCH_MP_TAC STC_SYM THEN MATCH_MP_TAC STC_TRANS_L THEN
EXISTS_TAC "y:*"] THEN
ASM_REWRITE_TAC[]);;
let STC_CASES_R = prove_thm(`STC_CASES_R`,
"!(R:*->*->bool) x z. STC R x z = R x z \/ STC R z x \/
?y. R x y /\ STC R y z",
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [] [STC_CASES] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
DISJ2_TAC THEN DISJ1_TAC THENL
[MATCH_MP_TAC STC_TRANS THEN EXISTS_TAC "y:*" THEN
CONJ_TAC THEN MATCH_MP_TAC STC_SYM;
MATCH_MP_TAC STC_SYM THEN MATCH_MP_TAC STC_TRANS_R THEN
EXISTS_TAC "y:*"] THEN
ASM_REWRITE_TAC[]);;
let STC_INDUCT = prove_thm(`STC_INDUCT`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x y. P x y ==> P y x) /\
(!x z. (?y. P x y /\ P y z) ==> P x z) ==>
!x y. STC R x y ==> P x y",
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[STC] THEN
RULE_INDUCT_TAC TC_INDUCT THENL
[UNDISCH_TAC "SC(R:*->*->bool) x y" THEN REWRITE_TAC[SC_CASES] THEN
DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN MP_TAC)) THEN
REWRITE_TAC[] THEN DISCH_THEN(ANTE_RES_THEN ACCEPT_TAC);
FIRST_ASSUM(\th. MATCH_MP_TAC th THEN EXISTS_TAC "y:*") THEN
ASM_REWRITE_TAC[]]);;
let STC_MONO = prove_thm(`STC_MONO`,
"!(R:*->*->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. STC R x y ==> STC S x y)",
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[STC] THEN
MATCH_MP_TAC TC_MONO THEN MATCH_MP_TAC SC_MONO THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let STC_CLOSED = prove_thm(`STC_CLOSED`,
"!R:*->*->bool. (STC R = R) = (!x y. R x y ==> R y x) /\
(!x z. (?y. R x y /\ R y z) ==> R x z)",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[STC_SYM; STC_TRANS];
STRIP_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
EQ_TAC THEN REWRITE_TAC[STC_INC] THEN
RULE_INDUCT_TAC STC_INDUCT THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(\th. MATCH_MP_TAC th THEN FIRST_ASSUM ACCEPT_TAC);
FIRST_ASSUM(\th. MATCH_MP_TAC th THEN EXISTS_TAC "y:*") THEN
ASM_REWRITE_TAC[]]]);;
let STC_IDEMP = prove_thm(`STC_IDEMP`,
"!R:*->*->bool. STC(STC R) = STC R",
REWRITE_TAC[STC_CLOSED; STC_SYM; STC_TRANS]);;
let STC_REFL = prove_thm(`STC_REFL`,
"!R:*->*->bool. (!x. R x x) ==> !x. STC R x x",
REPEAT STRIP_TAC THEN MATCH_MP_TAC STC_INC THEN ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Reflexive symmetric transitive closure (smallest equivalence relation) %
%----------------------------------------------------------------------------%
let RSTC = new_definition(`RSTC`,
"!R:*->*->bool. RSTC(R) = RC(TC(SC R))");;
let RSTC_INC = prove_thm(`RSTC_INC`,
"!(R:*->*->bool) x y. R x y ==> RSTC R x y",
REPEAT STRIP_TAC THEN REWRITE_TAC[RSTC] THEN
MAP_EVERY MATCH_MP_TAC [RC_INC; TC_INC; SC_INC] THEN
ASM_REWRITE_TAC[]);;
let RSTC_REFL = prove_thm(`RSTC_REFL`,
"!(R:*->*->bool) x. RSTC R x x",
REWRITE_TAC[RSTC; RC_REFL]);;
let RSTC_SYM = prove_thm(`RSTC_SYM`,
"!(R:*->*->bool) x y. RSTC R x y ==> RSTC R y x",
REPEAT GEN_TAC THEN REWRITE_TAC[RSTC] THEN
MAP_EVERY MATCH_MP_TAC [RC_SYM; TC_SYM] THEN
REWRITE_TAC[SC_SYM]);;
let RSTC_TRANS = prove_thm(`RSTC_TRANS`,
"!(R:*->*->bool) x z. (?y. RSTC R x y /\ RSTC R y z) ==> RSTC R x z",
REWRITE_TAC[RSTC; RC_TC; TC_TRANS]);;
let RSTC_TRANS_L = prove_thm(`RSTC_TRANS_L`,
"!(R:*->*->bool) x z. (?y. RSTC R x y /\ R y z) ==> RSTC R x z",
REWRITE_TAC[RSTC; RC_TC] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC "y:*" THEN
ASM_REWRITE_TAC[] THEN MAP_EVERY MATCH_MP_TAC [RC_INC; SC_INC] THEN
ASM_REWRITE_TAC[]);;
let RSTC_TRANS_R = prove_thm(`RSTC_TRANS_R`,
"!(R:*->*->bool) x z. (?y. R x y /\ RSTC R y z) ==> RSTC R x z",
REWRITE_TAC[RSTC; RC_TC] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC TC_TRANS_R THEN EXISTS_TAC "y:*" THEN
ASM_REWRITE_TAC[] THEN MAP_EVERY MATCH_MP_TAC [RC_INC; SC_INC] THEN
ASM_REWRITE_TAC[]);;
let RSTC_CASES = prove_thm(`RSTC_CASES`,
"!(R:*->*->bool) x z. RSTC R x z = (x = z) \/ R x z \/ RSTC R z x \/
?y. RSTC R x y /\ RSTC R y z",
REPEAT GEN_TAC THEN REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN
REWRITE_TAC[GSYM STC] THEN
GEN_REWRITE_TAC LAND_CONV [] [STC_CASES] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [] [RC_CASES] THEN
CONV_TAC(AC_CONV(DISJ_ASSOC,DISJ_SYM)));;
let RSTC_CASES_L = prove_thm(`RSTC_CASES_L`,
"!(R:*->*->bool) x z. RSTC R x z = (x = z) \/ R x z \/ RSTC R z x \/
?y. RSTC R x y /\ R y z",
REPEAT GEN_TAC THEN REWRITE_TAC[RSTC; RC_CASES; GSYM STC] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [] [STC_CASES_L] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC; DISJ1_TAC] THEN REPEAT DISJ2_TAC THEN
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[]);;
let RSTC_CASES_R = prove_thm(`RSTC_CASES_R`,
"!(R:*->*->bool) x z. RSTC R x z = (x = z) \/ R x z \/ RSTC R z x \/
?y. R x y /\ RSTC R y z",
REPEAT GEN_TAC THEN REWRITE_TAC[RSTC; RC_CASES; GSYM STC] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [] [STC_CASES_R] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC; DISJ1_TAC;
FIRST_ASSUM(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[]] THEN
REPEAT DISJ2_TAC THEN EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[]);;
let RSTC_INDUCT = prove_thm(`RSTC_INDUCT`,
"!(R:*->*->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) /\
(!x y. P x y ==> P y x) /\
(!x z. (?y. P x y /\ P y z) ==> P x z) ==>
!x y. RSTC R x y ==> P x y",
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RSTC] THEN
RULE_INDUCT_TAC RC_INDUCT THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC "TC(SC(R:*->*->bool)) x y" THEN
RULE_INDUCT_TAC TC_INDUCT THENL
[UNDISCH_TAC "SC(R:*->*->bool) x y" THEN REWRITE_TAC[SC_CASES] THEN
DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN MP_TAC)) THEN
REWRITE_TAC[] THEN DISCH_THEN(ANTE_RES_THEN ACCEPT_TAC);
FIRST_ASSUM(\th. MATCH_MP_TAC th THEN EXISTS_TAC "y:*") THEN
ASM_REWRITE_TAC[]]);;
let RSTC_MONO = prove_thm(`RSTC_MONO`,
"!(R:*->*->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. RSTC R x y ==> RSTC S x y)",
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RSTC] THEN
MAP_EVERY MATCH_MP_TAC [RC_MONO; TC_MONO; SC_MONO] THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let RSTC_CLOSED = prove_thm(`RSTC_CLOSED`,
"!R:*->*->bool. (RSTC R = R) = (!x. R x x) /\
(!x y. R x y ==> R y x) /\
(!x z. (?y. R x y /\ R y z) ==> R x z)",
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[RSTC_REFL; RSTC_SYM; RSTC_TRANS];
STRIP_TAC THEN REPEAT(CONV_TAC FUN_EQ_CONV THEN GEN_TAC) THEN
EQ_TAC THEN REWRITE_TAC[RSTC_INC] THEN
RULE_INDUCT_TAC RSTC_INDUCT THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(\th. MATCH_MP_TAC th THEN FIRST_ASSUM ACCEPT_TAC);
FIRST_ASSUM(\th. MATCH_MP_TAC th THEN EXISTS_TAC "y:*") THEN
ASM_REWRITE_TAC[]]]);;
let RSTC_IDEMP = prove_thm(`RSTC_IDEMP`,
"!R:*->*->bool. RSTC(RSTC R) = RSTC R",
REWRITE_TAC[RSTC_CLOSED; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);;
%----------------------------------------------------------------------------%
% Finally, we prove the inclusion properties for composite closures %
%----------------------------------------------------------------------------%
let RSC_INC_RC = prove_thm(`RSC_INC_RC`,
"!R:*->*->bool. !x y. RC R x y ==> RSC R x y",
REPEAT GEN_TAC THEN REWRITE_TAC[RSC; RC_SC; SC_INC]);;
let RSC_INC_SC = prove_thm(`RSC_INC_SC`,
"!R:*->*->bool. !x y. SC R x y ==> RSC R x y",
REPEAT GEN_TAC THEN REWRITE_TAC[RSC; RC_INC]);;
let RTC_INC_RC = prove_thm(`RTC_INC_RC`,
"!R:*->*->bool. !x y. RC R x y ==> RTC R x y",
REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_TC; TC_INC]);;
let RTC_INC_TC = prove_thm(`RTC_INC_TC`,
"!R:*->*->bool. !x y. TC R x y ==> RTC R x y",
REPEAT GEN_TAC THEN REWRITE_TAC[RTC; RC_INC]);;
let STC_INC_SC = prove_thm(`STC_INC_SC`,
"!R:*->*->bool. !x y. SC R x y ==> STC R x y",
REPEAT GEN_TAC THEN REWRITE_TAC[STC; TC_INC]);;
let STC_INC_TC = prove_thm(`STC_INC_TC`,
"!R:*->*->bool. !x y. TC R x y ==> STC R x y",
REPEAT GEN_TAC THEN REWRITE_TAC[STC] THEN
MATCH_MP_TAC TC_MONO THEN MATCH_ACCEPT_TAC SC_INC);;
let RSTC_INC_RC = prove_thm(`RSTC_INC_RC`,
"!R:*->*->bool. !x y. RC R x y ==> RSTC R x y",
REWRITE_TAC[RSTC; RC_TC; RC_SC; GSYM STC; STC_INC]);;
let RSTC_INC_SC = prove_thm(`RSTC_INC_SC`,
"!R:*->*->bool. !x y. SC R x y ==> RSTC R x y",
REWRITE_TAC[RSTC; GSYM RTC; RTC_INC]);;
let RSTC_INC_TC = prove_thm(`RSTC_INC_TC`,
"!R:*->*->bool. !x y. TC R x y ==> RSTC R x y",
GEN_TAC THEN REWRITE_TAC[RSTC; RC_TC; GSYM RSC] THEN
MATCH_MP_TAC TC_MONO THEN MATCH_ACCEPT_TAC RSC_INC);;
let RSTC_INC_RSC = prove_thm(`RSTC_INC_RSC`,
"!R:*->*->bool. !x y. RSC R x y ==> RSTC R x y",
REWRITE_TAC[RSC; RSTC; RC_TC; TC_INC]);;
let RSTC_INC_RTC = prove_thm(`RSTC_INC_RTC`,
"!R:*->*->bool. !x y. RTC R x y ==> RSTC R x y",
GEN_TAC THEN REWRITE_TAC[GSYM RTC; RSTC] THEN MATCH_MP_TAC RTC_MONO THEN
MATCH_ACCEPT_TAC SC_INC);;
let RSTC_INC_STC = prove_thm(`RSTC_INC_STC`,
"!R:*->*->bool. !x y. STC R x y ==> RSTC R x y",
GEN_TAC THEN REWRITE_TAC[GSYM STC; RSTC; RC_INC]);;
close_theory();;
|