/usr/share/hol88-2.02.19940316/contrib/reduct/reduct.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | %============================================================================%
% FILE: reduct.ml %
% %
% DESCRIPTION: General "reduction" properties of binary relations, such as %
% normalization, confluence etc. Theorems about the relations %
% between them, e.g. Newman's Lemma. %
% %
% AUTHOR: John Harrison %
% University of Cambridge Computer Laboratory %
% New Museums Site %
% Pembroke Street %
% Cambridge CB2 3QG %
% England. %
% %
% DATE: 29th May 1993 %
%============================================================================%
timer true;;
can unlink `REDUCT.th`;;
new_theory `REDUCT`;;
load_library `ind_defs`;;
map hide_constant [`I`; `K`; `S`];;
%----------------------------------------------------------------------------%
% Useful oddments %
%----------------------------------------------------------------------------%
let LAND_CONV = RATOR_CONV o RAND_CONV;;
let TAUT_CONV =
let val w t = type_of t = ":bool" & can (find_term is_var) t & free_in t w in
C (curry prove)
(REPEAT GEN_TAC THEN (REPEAT o CHANGED_TAC o W)
(C $THEN (REWRITE_TAC[]) o BOOL_CASES_TAC o hd o sort (uncurry free_in) o
W(find_terms o val) o snd));;
let ANTE_RES_THEN ttac th = FIRST_ASSUM(ttac o C MATCH_MP th);;
let RULE_INDUCT_TAC = C W STRIP_ASSUME_TAC o RULE_INDUCT_THEN;;
let autoload_all_theory thy =
do map (\s. autoload_theory(`definition`,thy,fst s)) (definitions thy);
map (\s. autoload_theory(`theorem`,thy,fst s)) (theorems thy);;
%----------------------------------------------------------------------------%
% We use the RSTC theory a great deal %
%----------------------------------------------------------------------------%
new_parent `RSTC`;;
autoload_all_theory `RSTC`;;
%----------------------------------------------------------------------------%
% Useful lemmas: essentially equivalent forms of wellfoundedness %
%----------------------------------------------------------------------------%
let SEQ_EXISTS_IMP = prove_thm(`SEQ_EXISTS_IMP`,
"!R (P:*->bool). (?x. P x) /\ (!x. P x ==> ?y. P y /\ R x y) ==>
?seq. (!n. P(seq n)) /\ (!n. R (seq n) (seq (SUC n)))",
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL ["x:*"; "\(s:*) (n:num). @y. P y /\ (R:*->*->bool) s y"]
num_Axiom) THEN DISCH_THEN(MP_TAC o EXISTENCE) THEN BETA_TAC THEN
DISCH_THEN(X_CHOOSE_THEN "seq:num->*" STRIP_ASSUME_TAC) THEN
EXISTS_TAC "seq:num->*" THEN
SUBGOAL_THEN "!n. P(seq (SUC n)) /\ (R:*->*->bool) (seq n) (seq(SUC n))"
ASSUME_TAC THENL
[INDUCT_TAC THENL
[ASM_REWRITE_TAC[]; FIRST_ASSUM(\th. REWRITE_TAC[SPEC "SUC n" th])] THEN
BETA_TAC THEN CONV_TAC SELECT_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[] THEN X_GEN_TAC "n:num" THEN
STRUCT_CASES_TAC(SPEC "n:num" num_CASES) THEN ASM_REWRITE_TAC[]]);;
let SEQ_EXISTS = prove_thm(`SEQ_EXISTS`,
"!R. (?P:*->bool. (?x. P x) /\ (!x. P x ==> ?y. P y /\ R x y)) =
(?seq. !n. R (seq n) (seq (SUC n)))",
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(CHOOSE_THEN (X_CHOOSE_TAC "seq:num->*" o
MATCH_MP SEQ_EXISTS_IMP)) THEN EXISTS_TAC "seq:num->*" THEN
ASM_REWRITE_TAC[];
DISCH_THEN(X_CHOOSE_TAC "seq:num->*") THEN
EXISTS_TAC "\x:*. ?n:num. x = seq(n)" THEN
BETA_TAC THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC ["seq 0 :*"; "0"] THEN REFL_TAC;
X_GEN_TAC "x:*" THEN DISCH_THEN(X_CHOOSE_TAC "n:num") THEN
EXISTS_TAC "seq(SUC n):*" THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC "SUC n" THEN REFL_TAC]]);;
%----------------------------------------------------------------------------%
% Normality of a term w.r.t. a reduction relation %
%----------------------------------------------------------------------------%
let NORMAL = new_definition(`NORMAL`,
"NORMAL(R:*->*->bool) x = ~?y. R x y");;
%----------------------------------------------------------------------------%
% Full Church-Rosser property. %
% %
% Note that we deviate from most term rewriting literature which call this %
% the "diamond property" and calls a relation "Church-Rosser" iff its RTC %
% has the diamond property. But this seems simpler and more natural. %
%----------------------------------------------------------------------------%
let CR = new_definition(`CR`,
"CR(R:*->*->bool) =
!x y1 y2. R x y1 /\ R x y2 ==> ?z. R y1 z /\ R y2 z");;
%----------------------------------------------------------------------------%
% Weak Church-Rosser property, i.e. the rejoining may take several steps. %
%----------------------------------------------------------------------------%
let WCR = new_definition(`WCR`,
"WCR(R:*->*->bool) = !x y1 y2. R x y1 /\ R x y2 ==>
?z. RTC R y1 z /\ RTC R y2 z");;
%----------------------------------------------------------------------------%
% (Weak) normalization: every term has a normal form. %
%----------------------------------------------------------------------------%
let WN = new_definition(`WN`,
"WN(R:*->*->bool) = !x. ?y. RTC R x y /\ NORMAL(R) y");;
%----------------------------------------------------------------------------%
% Strong normalization: every reduction sequence terminates (aka Noetherian) %
%----------------------------------------------------------------------------%
let SN = new_definition(`SN`,
"SN(R:*->*->bool) = ~?seq. !n. R (seq n) (seq (SUC n))");;
%----------------------------------------------------------------------------%
% Alternative "preservation" form of SN definition which is more useful. %
%----------------------------------------------------------------------------%
let SN_PRESERVE = prove_thm(`SN_PRESERVE`,
"!R:*->*->bool. SN(R) = !P. (!x. P x ==> ?y. P y /\ R x y) ==> ~?x. P x",
GEN_TAC THEN REWRITE_TAC[SN; TAUT_CONV "(a ==> ~b) = ~(b /\ a)"] THEN
GEN_REWRITE_TAC I [] [TAUT_CONV "(~a = b) = (a = ~b)"] THEN
CONV_TAC(RAND_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC[SEQ_EXISTS]);;
%----------------------------------------------------------------------------%
% "Noetherian induction" for strongly normalizing relation %
%----------------------------------------------------------------------------%
let SN_NOETHERIAN = prove_thm(`SN_NOETHERIAN`,
"!R:*->*->bool. SN(R) = !P. (!x. (!y. R x y ==> P y) ==> P x) ==> !x. P x",
GEN_TAC THEN REWRITE_TAC[SN_PRESERVE] THEN
CONV_TAC((LAND_CONV o RAND_CONV o ABS_CONV o LAND_CONV o ONCE_DEPTH_CONV)
CONTRAPOS_CONV) THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REWRITE_TAC[TAUT_CONV "a ==> b = b \/ ~a"; DE_MORGAN_THM] THEN
EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC "P:*->bool" THEN
POP_ASSUM(MP_TAC o SPEC "\x:*. ~(P x)") THEN BETA_TAC THEN
REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Normality is preserved by transitive closure %
%----------------------------------------------------------------------------%
let NORMAL_TC = prove_thm(`NORMAL_TC`,
"!R:*->*->bool. NORMAL(TC R) x = NORMAL(R) x",
GEN_TAC THEN REWRITE_TAC[NORMAL] THEN
AP_TERM_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC "y:*") THENL
[POP_ASSUM(DISJ_CASES_TAC o ONCE_REWRITE_RULE[TC_CASES_R]) THENL
[EXISTS_TAC "y:*";
POP_ASSUM(X_CHOOSE_TAC "z:*") THEN EXISTS_TAC "z:*"];
EXISTS_TAC "y:*" THEN MATCH_MP_TAC TC_INC] THEN
ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Hence so is normalization %
%----------------------------------------------------------------------------%
let WN_TC = prove_thm(`WN_TC`,
"!R:*->*->bool. WN(TC R) = WN R",
REWRITE_TAC[WN; NORMAL_TC; RTC; TC_IDEMP]);;
%----------------------------------------------------------------------------%
% Strong normalization is too in fact. %
%----------------------------------------------------------------------------%
let SN_TC = prove_thm(`SN_TC`,
"!R:*->*->bool. SN(TC R) = SN R",
GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[SN] THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC "seq:num->*") THEN
EXISTS_TAC "seq:num->*" THEN GEN_TAC THEN
MATCH_MP_TAC TC_INC THEN ASM_REWRITE_TAC[];
GEN_REWRITE_TAC RAND_CONV [] [SN] THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC "seq:num->*") THEN
REWRITE_TAC[SN_PRESERVE] THEN DISCH_THEN(MP_TAC o
SPEC "\x:*. ?n:num. RTC R (seq n) x /\ RTC R x (seq (SUC n))") THEN
BETA_TAC THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
[ALL_TAC;
MAP_EVERY EXISTS_TAC ["seq(0):*"; "0"] THEN
REWRITE_TAC[RTC_REFL] THEN REWRITE_TAC[RTC] THEN
MATCH_MP_TAC RC_INC THEN ASM_REWRITE_TAC[]] THEN
X_GEN_TAC "x:*" THEN
DISCH_THEN(X_CHOOSE_THEN "n:num" STRIP_ASSUME_TAC) THEN
UNDISCH_TAC "RTC R x (seq(SUC n):*)" THEN DISCH_THEN
(REPEAT_TCL DISJ_CASES_THEN MP_TAC o ONCE_REWRITE_RULE[RTC_CASES_L]) THENL
[DISCH_THEN SUBST_ALL_TAC THEN FIRST_ASSUM(MP_TAC o SPEC "SUC n") THEN
DISCH_THEN(DISJ_CASES_TAC o ONCE_REWRITE_RULE[TC_CASES_R]) THENL
[EXISTS_TAC "seq(SUC(SUC n)):*" THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC "SUC n" THEN ASM_REWRITE_TAC[RTC_REFL] THEN
MATCH_MP_TAC RTC_INC THEN ASM_REWRITE_TAC[];
FIRST_ASSUM(X_CHOOSE_THEN "y:*" STRIP_ASSUME_TAC) THEN
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC "SUC n" THEN CONJ_TAC THENL
[MATCH_MP_TAC RTC_INC;
REWRITE_TAC[RTC] THEN MATCH_MP_TAC RC_INC] THEN
ASM_REWRITE_TAC[]];
DISCH_THEN(X_CHOOSE_THEN "y:*" STRIP_ASSUME_TAC) THEN
UNDISCH_TAC "RTC(R:*->*->bool) x y" THEN
DISCH_THEN(DISJ_CASES_TAC o ONCE_REWRITE_RULE[RTC_CASES_R]) THENL
[EXISTS_TAC "seq(SUC n):*" THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC "n:num" THEN REWRITE_TAC[RTC_REFL] THEN
ASM_REWRITE_TAC[RTC; RC_CASES];
FIRST_ASSUM(X_CHOOSE_THEN "z:*" STRIP_ASSUME_TAC) THEN
EXISTS_TAC "z:*" THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC "n:num" THEN CONJ_TAC THENL
[MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC "x:*";
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC "y:*"] THEN
ASM_REWRITE_TAC[]]]]);;
%----------------------------------------------------------------------------%
% Strong normalization implies normalization %
%----------------------------------------------------------------------------%
let SN_WN = prove_thm(`SN_WN`,
"!R:*->*->bool. SN(R) ==> WN(R)",
GEN_TAC THEN REWRITE_TAC[SN_PRESERVE; WN] THEN
DISCH_THEN(MP_TAC o SPEC "\x:*. ~?y. RTC R x y /\ NORMAL R y") THEN
BETA_TAC THEN CONV_TAC(DEPTH_CONV NOT_EXISTS_CONV) THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
X_GEN_TAC "x:*" THEN CONV_TAC(DEPTH_CONV NOT_EXISTS_CONV) THEN
DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC "x:*") THEN
REWRITE_TAC[RTC_REFL] THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[NORMAL]) THEN
DISCH_THEN(X_CHOOSE_TAC "y:*") THEN
EXISTS_TAC "y:*" THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC "z:*" THEN STRIP_TAC THEN
SUBGOAL_THEN "RTC R x z /\ NORMAL(R:*->*->bool) z" MP_TAC THENL
[CONJ_TAC THENL
[MATCH_MP_TAC RTC_TRANS_R THEN EXISTS_TAC "y:*"; ALL_TAC] THEN
ASM_REWRITE_TAC[];
REWRITE_TAC[] THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;
%----------------------------------------------------------------------------%
% Reflexive closure preserves Church-Rosser property (pretty trivial) %
%----------------------------------------------------------------------------%
let RC_CR = prove_thm(`RC_CR`,
"!R:*->*->bool. CR(R) ==> CR(RC R)",
GEN_TAC THEN REWRITE_TAC[CR; RC_CASES] THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(UNDISCH_TAC o assert is_forall o concl) THEN
DISCH_THEN(MP_TAC o SPECL ["x:*"; "y1:*"; "y2:*"]) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC "z:*") THEN
EXISTS_TAC "z:*"; EXISTS_TAC "y1:*"; EXISTS_TAC "y2:*";
EXISTS_TAC "x:*"] THEN
ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% The strip lemma leads us halfway to the fact that transitive x %
% closure preserves the Church-Rosser property. It's no harder / \ %
% to prove it for two separate reduction relations. This then / y2 %
% allows us to prove the desired theorem simply by using the / / %
% strip lemma twice with a bit of conjunct-swapping. y1 / %
% \ / %
% The diagram on the right shows the use of the variables. z %
%----------------------------------------------------------------------------%
let STRIP_LEMMA = prove_thm(`STRIP_LEMMA`,
"!R S. (!x y1 y2. R x y1 /\ S x y2 ==> ?z:*. S y1 z /\ R y2 z) ==>
(!x y1 y2. TC R x y1 /\ S x y2 ==> ?z:*. S y1 z /\ TC R y2 z)",
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[TAUT_CONV "a /\ b ==> c = a ==> (b ==> c)"] THEN
CONV_TAC(ONCE_DEPTH_CONV FORALL_IMP_CONV) THEN
RULE_INDUCT_TAC TC_INDUCT THENL
[GEN_TAC THEN DISCH_THEN(MP_TAC o CONJ(ASSUME "(R:*->*->bool) x y")) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN "z:*" STRIP_ASSUME_TAC) THEN
EXISTS_TAC "z:*" THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC TC_INC THEN ASM_REWRITE_TAC[];
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN "w:*" STRIP_ASSUME_TAC) THEN
UNDISCH_TAC "(S:*->*->bool) y w" THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN "v:*" STRIP_ASSUME_TAC) THEN
EXISTS_TAC "v:*" THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC TC_TRANS THEN
EXISTS_TAC "w:*" THEN ASM_REWRITE_TAC[]]);;
%----------------------------------------------------------------------------%
% Transitive closure preserves Church-Rosser property. %
%----------------------------------------------------------------------------%
let TC_CR = prove_thm(`TC_CR`,
"!R:*->*->bool. CR(R) ==> CR(TC R)",
GEN_TAC THEN REWRITE_TAC[CR] THEN DISCH_TAC THEN
MATCH_MP_TAC STRIP_LEMMA THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
MATCH_MP_TAC STRIP_LEMMA THEN POP_ASSUM MATCH_ACCEPT_TAC);;
%----------------------------------------------------------------------------%
% Reflexive transitive closure preserves Church-Rosser property. %
%----------------------------------------------------------------------------%
let RTC_CR = prove_thm(`RTC_CR`,
"!R:*->*->bool. CR(R) ==> CR(RTC R)",
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[RTC] THEN
MATCH_MP_TAC RC_CR THEN MATCH_MP_TAC TC_CR THEN
POP_ASSUM ACCEPT_TAC);;
%----------------------------------------------------------------------------%
% Equivalent "Church-Rosser" property for the equivalence relation. %
%----------------------------------------------------------------------------%
let STC_CR = prove_thm(`STC_CR`,
"!R:*->*->bool. CR(RTC R) =
!x y. RSTC R x y ==> ?z:*. RTC R x z /\ RTC R y z",
GEN_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN RULE_INDUCT_TAC RSTC_INDUCT THENL
[EXISTS_TAC "y:*" THEN REWRITE_TAC[RTC_REFL] THEN
MATCH_MP_TAC RTC_INC THEN ASM_REWRITE_TAC[];
X_GEN_TAC "x:*" THEN EXISTS_TAC "x:*" THEN
REWRITE_TAC[RTC_REFL];
EXISTS_TAC "z:*" THEN ASM_REWRITE_TAC[];
FIRST_ASSUM(MP_TAC o SPECL ["y:*"; "z':*"; "z'':*"] o
REWRITE_RULE[CR]) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN "w:*" STRIP_ASSUME_TAC) THEN
EXISTS_TAC "w:*" THEN CONJ_TAC THEN MATCH_MP_TAC RTC_TRANS THENL
[EXISTS_TAC "z':*"; EXISTS_TAC "z'':*"] THEN
ASM_REWRITE_TAC[]];
REWRITE_TAC[CR] THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC ["x:*"; "y1:*"; "y2:*"] THEN
STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_MP_TAC RSTC_TRANS THEN EXISTS_TAC "x:*" THEN
CONJ_TAC THENL [MATCH_MP_TAC RSTC_SYM; ALL_TAC] THEN
MATCH_MP_TAC RSTC_INC_RTC THEN ASM_REWRITE_TAC[]]);;
%----------------------------------------------------------------------------%
% Under normalization, Church-Rosser is equivalent to uniqueness of NF %
%----------------------------------------------------------------------------%
let NORM_CR = prove_thm(`NORM_CR`,
"!R:*->*->bool. WN(R) ==>
(CR(RTC R) = (!x y1 y2. RTC R x y1 /\ NORMAL(R) y1 /\
RTC R x y2 /\ NORMAL(R) y2 ==> (y1 = y2)))",
GEN_TAC THEN REWRITE_TAC[WN] THEN DISCH_TAC THEN EQ_TAC THEN
REWRITE_TAC[CR] THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC ["x:*"; "y1:*"; "y2:*"] THEN STRIP_TAC THENL
[SUBGOAL_THEN "?z. RTC (R:*->*->bool) y1 z /\ RTC R y2 z" MP_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC "x:*" THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
DISCH_THEN(X_CHOOSE_THEN "z:*" MP_TAC) THEN
REWRITE_TAC[RTC; RC_CASES] THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM NORMAL_TC]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[NORMAL]) THEN
RULE_ASSUM_TAC(CONV_RULE(ONCE_DEPTH_CONV NOT_EXISTS_CONV)) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN SUBST1_TAC) THEN
REFL_TAC];
FIRST_ASSUM(X_CHOOSE_THEN "z1:*" STRIP_ASSUME_TAC o SPEC "y1:*") THEN
FIRST_ASSUM(X_CHOOSE_THEN "z2:*" STRIP_ASSUME_TAC o SPEC "y2:*") THEN
EXISTS_TAC "z1:*" THEN
SUBGOAL_THEN "z1:* = z2" (\th. ASM_REWRITE_TAC[th]) THEN
FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC "x:*" THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
MATCH_MP_TAC RTC_TRANS THENL
[EXISTS_TAC "y1:*"; EXISTS_TAC "y2:*"] THEN
ASM_REWRITE_TAC[]]);;
%----------------------------------------------------------------------------%
% Normalizing and Church-Rosser iff every term has a unique normal form %
%----------------------------------------------------------------------------%
let CR_NORM = prove_thm(`CR_NORM`,
"!R:*->*->bool. WN(R) /\ CR(RTC R) = !x. ?!y. RTC R x y /\ NORMAL(R) y",
GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV EXISTS_UNIQUE_CONV) THEN
CONV_TAC(ONCE_DEPTH_CONV FORALL_AND_CONV) THEN
REWRITE_TAC[GSYM WN; TAUT_CONV "(a /\ b = a /\ c) = a ==> (b = c)"] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP NORM_CR) THEN
REWRITE_TAC[CONJ_ASSOC]);;
%----------------------------------------------------------------------------%
% Newman's lemma: weak Church-Rosser plus x %
% strong normalization implies full Church- / \ %
% Rosser. By the above (and SN ==> WN) it z1 z2 %
% is sufficient to show normal forms are / | | \ %
% unique. We use the Noetherian induction / \ / \ %
% form of SN, so we need only prove that if / z \ %
% some term has multiple normal forms, so / | \ %
% does a "successor". See the diagram on the / | \ %
% right for the use of variables. y1 w y2 %
%----------------------------------------------------------------------------%
let NEWMAN_LEMMA = prove_thm(`NEWMAN_LEMMA`,
"!R:*->*->bool. SN(R) /\ WCR(R) ==> CR(RTC R)",
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SN_WN) THEN
FIRST_ASSUM(\th. REWRITE_TAC[MATCH_MP NORM_CR th]) THEN
GEN_REWRITE_TAC I [] [TAUT_CONV "x = ~~x"] THEN
CONV_TAC(TOP_DEPTH_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN
MP_TAC(SPEC "R:*->*->bool" SN_PRESERVE) THEN
ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
DISCH_THEN MATCH_MP_TAC THEN BETA_TAC THEN
GEN_TAC THEN REWRITE_TAC[NORMAL] THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN STRIP_TAC THEN
MP_TAC(ASSUME "RTC (R:*->*->bool) x y1") THEN
DISCH_THEN(MP_TAC o ONCE_REWRITE_RULE[RTC_CASES_R]) THEN
DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THENL
[UNDISCH_TAC "RTC(R:*->*->bool) x y2" THEN
ONCE_REWRITE_TAC[RTC_CASES_R] THEN
FIRST_ASSUM(\th. REWRITE_TAC[CONV_RULE(RAND_CONV SYM_CONV) th]) THEN
ASM_REWRITE_TAC[];
DISCH_THEN(X_CHOOSE_THEN "z1:*" STRIP_ASSUME_TAC)] THEN
MP_TAC(ASSUME "RTC (R:*->*->bool) x y2") THEN
DISCH_THEN(MP_TAC o ONCE_REWRITE_RULE[RTC_CASES_R]) THEN
DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THENL
[UNDISCH_TAC "RTC(R:*->*->bool) x y1" THEN
ONCE_REWRITE_TAC[RTC_CASES_R] THEN
FIRST_ASSUM(\th. REWRITE_TAC[CONV_RULE(RAND_CONV SYM_CONV) th]) THEN
ASM_REWRITE_TAC[];
DISCH_THEN(X_CHOOSE_THEN "z2:*" STRIP_ASSUME_TAC)] THEN
UNDISCH_TAC "WCR(R:*->*->bool)" THEN REWRITE_TAC[WCR] THEN
DISCH_THEN(MP_TAC o SPECL ["x:*"; "z1:*"; "z2:*"]) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN "z:*" STRIP_ASSUME_TAC) THEN
UNDISCH_TAC "WN(R:*->*->bool)" THEN REWRITE_TAC[WN] THEN
REWRITE_TAC[NORMAL] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
DISCH_THEN(X_CHOOSE_THEN "w:*" STRIP_ASSUME_TAC o SPEC "z:*") THEN
ASM_CASES_TAC "y1:* = w" THENL
[ALL_TAC;
EXISTS_TAC "z1:*" THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY EXISTS_TAC ["y1:*"; "w:*"] THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC RTC_TRANS THEN EXISTS_TAC "z:*" THEN
ASM_REWRITE_TAC[]] THEN
ASM_CASES_TAC "y2:* = w" THENL
[ALL_TAC;
EXISTS_TAC "z2:*" THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY EXISTS_TAC ["y2:*"; "w:*"] THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC RTC_TRANS THEN EXISTS_TAC "z:*" THEN
ASM_REWRITE_TAC[]] THEN
UNDISCH_TAC "~(y1:* = y2)" THEN ASM_REWRITE_TAC[]);;
close_theory();;
|