This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/quotient/quotientfns.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
%
This file defines functions needed for constructing
quotient types.
%

%
AUTHOR: TON KALKER
DATE  : 2 JUNE 1989
%

let check_quotient_def =
   set_fail_prefix `not equivalence theorem!: `
   (\thm. 
   let asl,w = dest_thm thm in
   let t1,t2 = dest_comb w in
   let name,ty = (dest_const t1 ? failwith `operator`) in 
   let base_type = ((hd o snd o dest_type o
                     hd o snd o dest_type) ty ? failwith `types`) in
   if not (asl = []) then failwith `assumptions`
   if not (name = `EQUIVALENCE`) then failwith `not EQUIVALENCE`
   if not (is_const t2) then failwith `operand` 
   else t2,base_type);;

% <name>_ISO_DEF added for new define_new_type_bijections.		%
% TFM 90.04.11 HOL88 Version 1.12					%

let construct_quot_ty(name,thm) = 
             let equi, base_type = check_quotient_def thm in
             let exists_thm = MATCH_MP (DISCH_ALL EXISTS_CLASS) thm and 
                 is_mk_class_thm = MATCH_MP (DISCH_ALL IS_MK_CLASS) thm in
             let w = concl exists_thm in
             let tm = (fst o dest_comb o snd o dest_exists) w in  
             let thm1 = new_type_definition(name,tm,exists_thm) in
	     let ISO = 
	         define_new_type_bijections
		 (name ^ `_ISO_DEF`) (`ABS_` ^ name) (`REP_` ^ name) thm1 in
             let thml = 
	         [prove_abs_fn_one_one ISO; prove_abs_fn_onto ISO] in
             let thm3 = ( GEN_ALL o
                         (REWRITE_RULE[is_mk_class_thm]) o
                         (SPEC "MK_CLASS ^equi (x':^base_type)") o
                         (SPEC "MK_CLASS ^equi (x:^base_type)"))(el 1 thml) in
             let thm4 = (el 2 thml) in 
             let current = current_theory() in
             let [ABS_name] = filter 
                            (\tm.((fst o dest_const) tm) = (`ABS_` ^ name))
                            (constants current) in
             let quot_ty = ((el 2) o snd o dest_type o type_of) ABS_name in
             let PROJ_name = mk_var(`PROJ_` ^ name,":^base_type ->^quot_ty") in
             let proj = new_definition(`PROJ_` ^name, 
                        "^PROJ_name x = ^ABS_name (MK_CLASS ^equi x)") in
             proj,thm3,thm4,base_type,quot_ty,equi;;           
                                    
let prove_proj_onto name thm proj thm4 base_type quot_ty= 
            let surjective_thm = MATCH_MP (DISCH_ALL SURJECTIVE_LEMMA) thm in 
            let PROJ_name = mk_const(`PROJ_` ^ name,":^base_type ->^quot_ty") in 
            let tm = "ONTO ^PROJ_name" in         
            TAC_PROOF(
             ([],tm),
             REWRITE_TAC[ONTO_DEF;proj] THEN 
             STRIP_TAC THEN
             STRIP_ASSUME_TAC (SPEC "y:^quot_ty" thm4) THEN
             ASSUM_LIST
              (\asl.STRIP_ASSUME_TAC (MATCH_MP surjective_thm (hd asl))) THEN
             EXISTS_TAC "x:^base_type" THEN
             ASM_REWRITE_TAC[]);;   

let prove_proj_universal name thm proj thm3 base_type quot_ty equi =
            let universal_thm = MATCH_MP (DISCH_ALL UNIVERSAL_LEMMA) thm in
            let PROJ_name = mk_const(`PROJ_` ^ name,":^base_type ->^quot_ty") in 
            let tm = "!x y.((^PROJ_name x = ^PROJ_name y) = (^equi x y))" in
            TAC_PROOF(
             ([],tm),
             REWRITE_TAC[proj;thm3;universal_thm]);;  

let prove_proj_factor name base_type quot_ty  thml = 
            let thm1 = INST_TYPE[(base_type,":*");(quot_ty,":***")] FACTOR_THM in
            let thm2 = SPEC "f:^base_type -> **" thm1 in 
            let PROJ_name = mk_const(`PROJ_` ^ name,":^base_type ->^quot_ty") in       
            let thm3 = SPEC "^PROJ_name" thm2 in
            let thm4 = GEN_ALL thm3 in
            REWRITE_RULE thml thm4;;

let define_quotient_type(name,thm) =
             let proj,thm3,thm4,base_type,quot_ty,equi = construct_quot_ty(name,thm)
             in
             let string1 = `SURJ_PROJ_` ^ name ^ `_THM` and
                 string2 = `UNIV_PROJ_` ^ name ^ `_THM` and
                 string3 = `FACTOR_PROJ_` ^ name ^ `_THM`
             in
             let thm1 = save_thm(string1,
                        prove_proj_onto name thm proj thm4 base_type quot_ty) and
                 thm2 = save_thm(string2,
                        prove_proj_universal name thm proj thm3 base_type quot_ty equi) 
             in
             let thm3 = save_thm(string3,
                        prove_proj_factor name base_type quot_ty [thm1;thm2])
             in [thm1;thm2;thm3];;

let FACTOR_TAC surj_thml univ_thml =
      MATCH_MP_TAC FACTOR_THM THEN
      REWRITE_TAC([ONTO_SURJ_THM;P;]@surj_thml) THEN
      CONV_TAC (RAND_CONV (ABS_CONV PROD_CONV)) THEN
      CONV_TAC PROD_CONV THEN
      BETA_TAC THEN
      REWRITE_TAC([PAIR_EQ]@univ_thml);;

let new_unique_specification = 
      set_fail_prefix `new_unique_specification`
      (\name [flag,c] thm.
      (
      let thm1 = (BETA_RULE o (CONV_RULE EXISTS_UNIQUE_CONV)) thm
      in                                                         
      let ex_thm,uniq_thm = CONJ_PAIR thm1
      in      
      let thm2 = (new_specification name [flag,c] ex_thm ?
                  (print_string (name ^ ` already defined`);
                   print_newline();
                   definition (current_theory()) name))
      in
      let [newconst] = 
               filter
               (\d.(c = (fst o dest_const) d))
               (constants (current_theory()))
      in
      let thm3 = SPEC newconst uniq_thm 
      in 
      let thm4 = REWRITE_RULE[thm2] thm3
      in
      let x = fst(dest_forall(concl thm4)) 
      in  
      let thm5 = CONV_RULE (GEN_ALPHA_CONV "f:^(type_of x)") thm4 
      in
      let thm6 = (save_thm((name ^ `_UNIQUE`), thm5) ?
                  (print_string (name ^ `_UNIQUE already present`);
                   print_newline();
                   theorem (current_theory()) (name ^ `_UNIQUE`)))
      in
      [thm2;thm6]
      ));;