This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/greatest/greatest.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
% ===================================================================== %
% FILE:         greatest.ml                                             %
% DESCRIPTION:  theory about the greatest of a list of natural numbers  %
%               and inequalities involving it.                          %
% AUTHOR:       Catia M. Angelo                                         %
%               IMEC VZW                                                %
%               Kapeldreef, 75                                          %
%               B3001 - Leuven - Belgium                                %
%               e-mail: catia@imec.be                                   %
% DATE:         June 4th, 1993.                                         %
% ===================================================================== %
% HOL88 - Version 2.0                                                   %
% Loaded libraries: unwind; reduce; more_arithmetic; auxiliary.         %
% ===================================================================== %

%-----------------------------------------------------------------------%
% Note: This theory has not been polished or optimized.                 %
%-----------------------------------------------------------------------%

new_theory `greatest`;;

loadf `compat`;;

map load_library [`more_arithmetic`];;

% ===================================================================== %
% DEFINITIONS                                                           %
% ===================================================================== %

let GRT = new_list_rec_definition (`GRT`,
   "((GRT [] ref) = ref) /\
    ((GRT ((CONS hd tl):(num)list) ref) =
     (GRT tl ((hd < ref) => ref | hd)))");;

let GREATEST = new_definition (`GREATEST`,
"! (l:(num)list). GREATEST l = GRT l 0");;

let GEQKL = new_list_rec_definition (`GEQKL`,
"((GEQKL [] k) = T) /\
 ((GEQKL (CONS h t) k) = ((k >= h) /\ (GEQKL t k)))");;

let GKL = new_list_rec_definition (`GKL`,
"((GKL [] k) = T) /\
 ((GKL (CONS h t) k) = ((k > h) /\ (GKL t k)))");;

% ===================================================================== %
% AUXILIARY TACTICS                                                     %
% ===================================================================== %

%---------------------------------------------------------------%
% These versions of IMP_RES_THEN and IMP_RES_TAC only add to    %
% the assumption list theorems that do not have implications.   %
%---------------------------------------------------------------%

let OLD_IMP_RES_THEN' tac thm =
OLD_IMP_RES_THEN (\th. if (is_imp (snd (dest_thm th)))
                      then ALL_TAC
                      else (tac th)) thm;;

let OLD_IMP_RES_TAC' thm = OLD_IMP_RES_THEN' ASSUME_TAC thm;;

let REWRITE_ALL_TAC thmList =
POP_ASSUM_LIST (\asslist.
        let newasslist = map (\th. REWRITE_RULE thmList th) asslist in
        MAP_EVERY ASSUME_TAC newasslist) THEN
REWRITE_TAC thmList;;

let LHS_CONV = RATOR_CONV o RAND_CONV;;

let RHS_CONV = RAND_CONV;;

%---------------------------------------------------------------%
% UNDISCH_ALL_TAC:                                              %
%       This tactic does the opposite of the rule UNDISCH_ALL.  %
% It should be used only in goals without implications.         %
%                                                               %
%                       A,t1,...,tn |- t                        %
%               =================================               %
%               A |- t1 ==> ... ==> tn ==> t                    %
%---------------------------------------------------------------%

letrec new_goal (asl, t) =
        if asl = [] then (asl,t)
                    else (new_goal (tl asl, mk_imp (hd asl, t)));;

let UNDISCH_ALL_TAC (asl, t) =
                    ( [(new_goal (asl,t))], UNDISCH_ALL o hd  );;

% ===================================================================== %
% THEOREMS                                                              %
% ===================================================================== %

%-----------------------------------------------------------------------%
% AUXILIARY THEOREMS ABOUT ARITHMETIC                                   %
%-----------------------------------------------------------------------%

let GREATER_IMP_GREATER_0 = prove_thm (`GREATER_IMP_GREATER_0`,
"!n m. (n > m) ==> (n > 0)",
REPEAT STRIP_TAC THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER] th)) THEN
ASSUME_TAC (SPEC "m:num" ZERO_LESS_EQ) THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
ASM_REWRITE_TAC[GREATER]);;

let GREATER_EQ_TRANS = prove_thm (`GREATER_EQ_TRANS`,
"!m n p. n >= m /\ p >= n ==> p >= m",
  ACCEPT_TAC (REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL GREATER_EQ))]
                           LESS_EQ_TRANS));;

let GREATER_EQ_REFL = prove_thm (`GREATER_EQ_REFL`,
"!m. m >= m",
 ACCEPT_TAC (REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL GREATER_EQ))]
LESS_EQ_REFL));;

let LESS_OR_NOT_LESS = save_thm (`LESS_OR_NOT_LESS`,
REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL NOT_LESS))] LESS_CASES);;

let NOT_LESS' = save_thm (`NOT_LESS'`,
REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL GREATER_EQ))]
             NOT_LESS);;

let NOT_LESS'' = save_thm (`NOT_LESS''`,
REWRITE_RULE [GREATER_EQ; LESS_OR_EQ] NOT_LESS');;

let NOT_LESS''' = save_thm (`NOT_LESS'''`,
REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL LESS_OR_EQ))] NOT_LESS'');;

let GREATER_NOT_ZERO' = prove_thm (`GREATER_NOT_ZERO'`,
"!x. (0 < x) = (~(x = 0))",
GEN_TAC THEN
EQ_TAC THENL
[
 REWRITE_TAC[GREATER_NOT_ZERO]
;
 MP_TAC (SPEC "x:num" num_CASES) THEN
 ASM_REWRITE_TAC[] THEN
 STRIP_TAC THEN
 ASM_REWRITE_TAC[LESS_0]
]);;

let LESS_IMP_LESS_EQ_SUB = prove_thm (`LESS_IMP_LESS_EQ_SUB`,
"! h x k. (h < x) ==> ((h - k) <= (x - k))",
REPEAT STRIP_TAC THEN
DISJ_CASES_TAC (REWRITE_RULE []
        (SPEC "k <= h" BOOL_CASES_AX)) THENL
[ % k <= h %
 IMP_RES_TAC SUB_LESS_BOTH_SIDES THEN
 IMP_RES_TAC LESS_IMP_LESS_OR_EQ
; %~(k <= h) %
 POP_ASSUM (\th. ASSUME_TAC
   (REWRITE_RULE [GEN_ALL(SYM(SPEC_ALL LESS_IS_NOT_LESS_OR_EQ))] th)) THEN
 IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
 IMP_RES_TAC (GEN_ALL (snd (EQ_IMP_RULE (SPEC_ALL SUB_EQ_0)))) THEN
 ASM_REWRITE_TAC[ZERO_LESS_EQ]
]);;

%-----------------------------------------------------------------------%
% GREATER_EQ_ZERO = |- !n. n >= 0                                       %
%-----------------------------------------------------------------------%
let GREATER_EQ_ZERO = prove_thm (`GREATER_EQ_ZERO`,
"!n. n >= 0",
REWRITE_TAC[GREATER_EQ; ZERO_LESS_EQ]);;

% --------------------------------------------------------------------- %

let GREATEST_N_ZERO = prove_thm (`GREATEST_N_ZERO`,
"! n. GREATEST[n;0] = n",
GEN_TAC THEN
REWRITE_TAC[GREATEST;GRT;NOT_LESS_0] THEN
MP_TAC (SPEC_ALL (REWRITE_RULE[LESS_OR_EQ] ZERO_LESS_EQ)) THEN
DISJ_CASES_TAC (SPEC "0 < n" BOOL_CASES_AX) THEN
ASM_REWRITE_TAC[] );;

let GRT_REF = prove_thm (`GRT_REF`,
"! l ref. (k >= (GRT l ref)) = ((k >= ref) /\ (k >= (GRT l 0)))",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[GRT; GREATER_EQ; ZERO_LESS_EQ]
;
 REPEAT GEN_TAC THEN
 REWRITE_TAC[GRT; NOT_LESS_0] THEN
 DISJ_CASES_TAC (SPECL ["h:num"; "ref:num"] LESS_CASES) THENL
 [
  POP_ASSUM (\th. (ASSUME_TAC th) THEN ONCE_REWRITE_TAC[th]) THEN
  REWRITE_TAC[] THEN
  FIRST_ASSUM (\th.  ASSUME_TAC (SPEC "ref:num" th)) THEN
  ONCE_ASM_REWRITE_TAC[] THEN
  EQ_TAC THENL
  [
   REPEAT STRIP_TAC THENL
   [
    ASM_REWRITE_TAC[]
   ;
    POP_ASSUM (\th. ALL_TAC) THEN
    POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER_EQ] th)) THEN
    IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
    IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
    ASM_REWRITE_TAC[GREATER_EQ]
   ;
    ASM_REWRITE_TAC[]
   ]
  ;
   REPEAT STRIP_TAC THEN
   ASM_REWRITE_TAC[]
  ]
 ;
  POP_ASSUM (\th. (ASSUME_TAC th) THEN ASSUME_TAC (REWRITE_RULE
                [GEN_ALL (SYM (SPEC_ALL NOT_LESS))] th)) THEN
  POP_ASSUM (\th. (ASSUME_TAC th) THEN ONCE_REWRITE_TAC[th]) THEN
  REWRITE_TAC[] THEN
  FIRST_ASSUM (\th.  ASSUME_TAC (SPEC "h:num" th)) THEN
  ONCE_ASM_REWRITE_TAC[] THEN
  EQ_TAC THENL
  [
   REPEAT STRIP_TAC THENL
   [
    REWRITE_TAC[GREATER_EQ] THEN
    POP_ASSUM (\th. ALL_TAC) THEN
    POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER_EQ] th)) THEN
    MP_TAC (SPECL ["ref:num"; "h:num"; "k:num"] LESS_EQ_TRANS) THEN
    ASM_REWRITE_TAC[]
   ;
    ASM_REWRITE_TAC[]
   ;
    ASM_REWRITE_TAC[]
   ]
  ;
   REPEAT STRIP_TAC THEN
   ASM_REWRITE_TAC[]
  ]
 ]
]);;

let GRT_REF' = prove_thm (`GRT_REF'`,
"! l ref. (k > (GRT l ref)) = ((k > ref) /\ (k > (GRT l 0)))",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[GRT] THEN
 GEN_TAC THEN
 EQ_TAC THENL
 [
  STRIP_TAC THEN
  IMP_RES_TAC GREATER_IMP_GREATER_0 THEN
  ASM_REWRITE_TAC[]
 ;
  STRIP_TAC THEN
  ASM_REWRITE_TAC[]
 ]
;
 REPEAT GEN_TAC THEN
 REWRITE_TAC[GRT; NOT_LESS_0] THEN
 DISJ_CASES_TAC (SPECL ["h:num"; "ref:num"] LESS_CASES) THENL
 [
  POP_ASSUM (\th. (ASSUME_TAC th) THEN ONCE_REWRITE_TAC[th]) THEN
  REWRITE_TAC[] THEN
  FIRST_ASSUM (\th.  ASSUME_TAC (SPEC "ref:num" th)) THEN
  ONCE_ASM_REWRITE_TAC[] THEN
  EQ_TAC THENL
  [ % h < ref %
   REPEAT STRIP_TAC THENL
   [
    ASM_REWRITE_TAC[]
   ;
    POP_ASSUM (\th. ALL_TAC) THEN
    POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER] th)) THEN
    IMP_RES_TAC LESS_TRANS THEN
    ASM_REWRITE_TAC[GREATER]
   ;
    ASM_REWRITE_TAC[]
   ]
  ;
   REPEAT STRIP_TAC THEN
   ASM_REWRITE_TAC[]
  ]
 ; % ref <= h %
  POP_ASSUM (\th. (ASSUME_TAC th) THEN ASSUME_TAC (REWRITE_RULE
                [GEN_ALL (SYM (SPEC_ALL NOT_LESS))] th)) THEN
  POP_ASSUM (\th. (ASSUME_TAC th) THEN ONCE_REWRITE_TAC[th]) THEN
  REWRITE_TAC[] THEN
  FIRST_ASSUM (\th.  ASSUME_TAC (SPEC "h:num" th)) THEN
  ONCE_ASM_REWRITE_TAC[] THEN
  EQ_TAC THENL
  [
   REPEAT STRIP_TAC THENL
   [
    REWRITE_TAC[GREATER] THEN
    POP_ASSUM (\th. ALL_TAC) THEN
    POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER] th)) THEN
    IMP_RES_TAC LESS_EQ_LESS_TRANS
   ;
    ASM_REWRITE_TAC[]
   ;
    ASM_REWRITE_TAC[]
   ]
  ;
   REPEAT STRIP_TAC THEN
   ASM_REWRITE_TAC[]
  ]
 ]
]);;

let GREATEST_GEQKL = prove_thm (`GREATEST_GEQKL`,
"! l k. (k >= GREATEST l) = (GEQKL l k)",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[GREATEST; GRT; GEQKL; GREATER_EQ; ZERO_LESS_EQ]
;
 REPEAT GEN_TAC THEN
 POP_ASSUM (\th. MP_TAC th) THEN
 REWRITE_TAC[GREATEST; GRT; GEQKL; NOT_LESS_0] THEN
 DISCH_THEN (\th. ASSUME_TAC (SPEC_ALL th)) THEN
 ONCE_REWRITE_TAC[GRT_REF] THEN
 ASM_REWRITE_TAC[]
]);;

let GREATEST_GKL = prove_thm (`GREATEST_GKL`,
"! l k. (~(l = [])) ==> ((k > GREATEST l) = (GKL l k))",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[]
;
 REPEAT GEN_TAC THEN
 REWRITE_TAC[(GEN_ALL(NOT_EQ_SYM(SPEC_ALL NOT_NIL_CONS)))] THEN
 DISJ_CASES_TAC (REWRITE_RULE []
        (SPEC "(l:(num)list) = []" BOOL_CASES_AX)) THENL
 [
  ASM_REWRITE_TAC[GREATEST; GRT; GKL; NOT_LESS_0]
 ;
  POP_ASSUM_LIST (\thmlist. MAP_EVERY
        (\th. ASSUME_TAC (SPEC_ALL th)) thmlist) THEN
  POP_ASSUM (\th. MP_TAC th) THEN
  ASM_REWRITE_TAC[GREATEST; GRT; GKL; NOT_LESS_0] THEN
  DISCH_TAC THEN
  ONCE_REWRITE_TAC[GRT_REF'] THEN
  ASM_REWRITE_TAC[]
 ]
]);;

%------------------------------------------------------------------%
% #GREATEST_GKL_CONS;;                                             %
% |- !k hd tl. k > (GREATEST(CONS hd tl)) = GKL(CONS hd tl)k       %
%------------------------------------------------------------------%

let GREATEST_GKL_CONS = save_thm (`GREATEST_GKL_CONS`,
GEN_ALL (REWRITE_RULE [INST_TYPE [(":num", ":*")] NOT_CONS_NIL]
(SPECL ["(CONS (hd:num) (tl:(num)list))"; "k:num"]
GREATEST_GKL)));;

let GEQKL_CONS = prove_thm (`GEQKL_CONS`,
"! tl hd k. (GEQKL [hd] k) /\ (GEQKL tl k) = (GEQKL (CONS hd tl) k)",
LIST_INDUCT_TAC THEN REWRITE_TAC[GEQKL]);;

let GEQKL_APP = prove_thm (`GEQKL_APP`,
"! l1 l2 k.
   (GEQKL l1 k) /\ (GEQKL l2 k) = (GEQKL (APPEND l1 l2) k)",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[GEQKL; APPEND]
;
 REWRITE_TAC[GEQKL; APPEND] THEN
 ASM_REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC))]
]);;

let GREATEST_APP = prove_thm (`GREATEST_APP`,
"!l1 l2 k. k >= (GREATEST l1) /\ k >= (GREATEST l2) =
 k >= (GREATEST(APPEND l1 l2))",
 ACCEPT_TAC (REWRITE_RULE [(GEN_ALL (SYM (SPEC_ALL GREATEST_GEQKL)))]
                          GEQKL_APP));;

let GEQKL_APP_SYM = prove_thm (`GEQKL_APP_SYM`,
"! l1 l2 k. (GEQKL (APPEND l1 l2) k) = (GEQKL (APPEND l2 l1) k)",
REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL GEQKL_APP))] THEN
REPEAT GEN_TAC THEN
CONV_TAC (ONCE_DEPTH_CONV (LHS_CONV (REWRITE_CONV CONJ_SYM))) THEN
REWRITE_TAC[]);;

let GREATEST_APP_SYM = prove_thm (`GREATEST_APP_SYM`,
"!l1 l2 k.
  k >= (GREATEST(APPEND l1 l2)) = k >= (GREATEST(APPEND l2 l1))",
  ACCEPT_TAC (REWRITE_RULE [(GEN_ALL (SYM (SPEC_ALL GREATEST_GEQKL)))]
                           GEQKL_APP_SYM));;

let GEQKL_TRANS = prove_thm (`GEQKL_TRANS`,
"! l k1 k2. ((GEQKL l k1) /\ (k2 >= k1)) ==> (GEQKL l k2)",
REWRITE_TAC[(GEN_ALL(SYM (SPEC_ALL GREATEST_GEQKL)))] THEN
REPEAT STRIP_TAC THEN
IMP_RES_TAC GREATER_EQ_TRANS);;

let GEQKL_EVERY = prove_thm (`GEQKL_EVERY`,
"!l k. GEQKL l k = EVERY (\el. k >= el) l",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[GEQKL; EVERY_DEF]
;
 REPEAT GEN_TAC THEN
 REWRITE_TAC[GEQKL; EVERY_DEF] THEN
 BETA_TAC THEN
 ASM_REWRITE_TAC[]
]);;

let GREATEST_EVERY = prove_thm (`GREATEST_EVERY`,
"!l k. k >= (GREATEST l) = EVERY(\el. k >= el)l",
  ACCEPT_TAC (REWRITE_RULE [(GEN_ALL (SYM (SPEC_ALL GREATEST_GEQKL)))]
                           GEQKL_EVERY));;

let EVERY_GREATEST = save_thm (`EVERY_GREATEST`,
GEN_ALL (REWRITE_RULE [GREATER_EQ_REFL]
(SPECL ["l:(num)list"; "GREATEST l"] GREATEST_EVERY)));;

let GREATEST_GRT = prove_thm (`GREATEST_GRT`,
"! hd tl. GREATEST (CONS hd tl) = GRT tl hd",
REPEAT GEN_TAC THEN
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]);;

let REF_LESS_EQ_GRT = prove_thm (`REF_LESS_EQ_GRT`,
"! l ref. ref <= (GRT l ref)",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[GRT; LESS_EQ_REFL]
;
 REPEAT GEN_TAC THEN
 REWRITE_TAC[GRT] THEN
 DISJ_CASES_TAC (SPECL ["h:num"; "ref:num"] LESS_OR_NOT_LESS) THENL
 [
  ASM_REWRITE_TAC[]
 ;
  ASM_REWRITE_TAC[] THEN
  POP_ASSUM (\th. MP_TAC th) THEN
  POP_ASSUM (\th. ASSUME_TAC (SPEC "h:num" th)) THEN
  DISCH_THEN (\th. ASSUME_TAC (REWRITE_RULE [NOT_LESS] th)) THEN
  IMP_RES_TAC LESS_EQ_TRANS
 ]
]);;

let GRT_APPEND = prove_thm (`GRT_APPEND`,
"!l1 l2 k.
 k >= (GRT l1 0) /\ (k >= GRT l2 0) =
 k >= GRT (APPEND l1 l2) 0",
REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL GREATEST))] THEN
ACCEPT_TAC GREATEST_APP);;

let GRT_APP_SYM = prove_thm (`GRT_APP_SYM`,
"!l1 l2 k.
    k >= (GRT (APPEND l1 l2) 0) = k >= (GRT (APPEND l2 l1) 0)",
REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL GREATEST))] THEN
ACCEPT_TAC GREATEST_APP_SYM);;

let GRT_EVERY = prove_thm (`GRT_EVERY`,
"!l k. k >= (GRT l 0) = EVERY(\el. k >= el)l",
REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL GREATEST))] THEN
ACCEPT_TAC GREATEST_EVERY);;

let GRT_CONS = save_thm (`GRT_CONS`,
REWRITE_RULE[GREATEST] GREATEST_GRT);;

let GRT_REF_IS_GRT_0_OR_REF = prove_thm (`GRT_REF_IS_GRT_0_OR_REF`,
"!l h. GRT l h = ((h < (GRT l 0)) => (GRT l 0) | h)",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[GRT] THEN
 GEN_TAC THEN
 DISJ_CASES_TAC (SPECL ["h:num"; "0"] LESS_OR_NOT_LESS) THENL
 [
  REWRITE_TAC[NOT_LESS_0]
 ;
  ASM_REWRITE_TAC[]
 ]
;
 REWRITE_TAC[GRT_CONS; GRT] THEN
 REPEAT GEN_TAC THEN
 POP_ASSUM (\th. ASSUME_TAC (SPEC "h:num" th) THEN
                 ASSUME_TAC (SPEC "h':num" th)) THEN
 ASM_REWRITE_TAC[] THEN
 DISJ_CASES_TAC (SPECL ["h:num"; "GRT l 0"] LESS_OR_NOT_LESS) THENL
 [ % h < (GRT l 0) %
  ASM_REWRITE_TAC[] THEN
  DISJ_CASES_TAC (SPECL ["h:num"; "h':num"] LESS_OR_NOT_LESS) THENL
  [ % h < (GRT l 0) ; h < h' %
   ASM_REWRITE_TAC[]
  ; % h < (GRT l 0) ; ~(h < h') %
   ASM_REWRITE_TAC[] THEN
   POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE[NOT_LESS'''] th)) THEN
   IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
   ASM_REWRITE_TAC[]
  ]
 ; % ~(h < (GRT l 0)) %
  ASM_REWRITE_TAC[] THEN
  DISJ_CASES_TAC (SPECL ["h:num"; "h':num"] LESS_OR_NOT_LESS) THENL
  [ % ~(h < (GRT l 0)) ; h < h' %
   ASM_REWRITE_TAC[] THEN
   IMP_RES_THEN (\th. ASSUME_TAC th)
        (GEN_ALL (fst (EQ_IMP_RULE (SPEC_ALL NOT_LESS)))) THEN
   OLD_IMP_RES_TAC' (SPECL ["(GRT l 0)"; "h:num"; "h':num"]
        (hd (CONJUNCTS LESS_EQ_LESS_TRANS))) THEN
   IMP_RES_THEN (\th. REWRITE_TAC[th]) NOT_LESS_AND_GREATER
  ; % ~(h < (GRT l 0)) ; ~(h < h') %
   ASM_REWRITE_TAC[] THEN
   POP_ASSUM (\th. DISJ_CASES_TAC (REWRITE_RULE [NOT_LESS''] th)) THENL
   [ % h' < h %
     ASM_REWRITE_TAC[]
   ; % h' = h %
     IMP_RES_THEN (\th. REWRITE_TAC[th]) NOT_LESS_EQ THEN
     ASM_REWRITE_TAC[]
   ]
  ]
 ]
]);;

let GRT_REF_IS_GREATEST_OR_REF = prove_thm (`GRT_REF_IS_GREATEST_OR_REF`,
"!l h. GRT l h = ((h < (GREATEST l) => (GREATEST l) | h))",
REWRITE_TAC[GREATEST] THEN
ACCEPT_TAC GRT_REF_IS_GRT_0_OR_REF);;

let GEQKL_GREATEST = prove_thm (`GEQKL_GREATEST`,
"!l. GEQKL l (GREATEST l)",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[GEQKL]
;
 REWRITE_TAC[GREATEST; GRT; NOT_LESS_0] THEN
 ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
 GEN_TAC THEN
 DISJ_CASES_TAC (SPECL ["h:num"; "(GRT l 0)"] LESS_OR_NOT_LESS) THENL
 [
  ASM_REWRITE_TAC[] THEN
  REWRITE_ALL_TAC[GEQKL; GREATEST; GRT; NOT_LESS_0] THEN
  REWRITE_TAC[GREATER_EQ] THEN
  IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
  ASM_REWRITE_TAC[]
 ;
  ASM_REWRITE_TAC[] THEN
  REWRITE_ALL_TAC[GEQKL; GREATEST; GRT; NOT_LESS_0; GREATER_EQ_REFL;
                  NOT_LESS'] THEN
  IMP_RES_TAC GEQKL_TRANS
 ]
]);;

let GEQKL_GRT = prove_thm (`GEQKL_GRT`,
"!l. GEQKL l (GRT l 0)",
REWRITE_TAC[GEN_ALL(SYM (SPEC_ALL GREATEST))] THEN
ACCEPT_TAC GEQKL_GREATEST);;

let GRT_0_LESS_EQ_GRT_REF = prove_thm (`GRT_0_LESS_EQ_GRT_REF`,
"! l ref. (GRT l 0) <= (GRT l ref)",
REPEAT GEN_TAC THEN
CONV_TAC (RHS_CONV (REWRITE_CONV GRT_REF_IS_GRT_0_OR_REF)) THEN
DISJ_CASES_TAC (SPECL ["ref:num"; "(GRT l 0)"] LESS_OR_NOT_LESS) THENL
[
 ASM_REWRITE_TAC[LESS_EQ_REFL]
;
 ASM_REWRITE_TAC[GEN_ALL(SYM(SPEC_ALL NOT_LESS))]
]);;

let GEQKL_GRT' = save_thm (`GEQKL_GRT'`,
GEN_ALL (REWRITE_RULE [GRT_0_LESS_EQ_GRT_REF]
(REWRITE_RULE [GEQKL_GRT; GREATER_EQ]
             (SPECL ["l:(num)list"; "(GRT l 0)"; "(GRT l ref)"]
                    GEQKL_TRANS))));;

let GRT_TRANS = prove_thm (`GRT_TRANS`,
"! l k1 k2. ((GRT l k1) <= k2) ==> ((GRT l k2) = k2)",
ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL ["k1:num"; "(GRT l 0)"] LESS_OR_NOT_LESS) THENL
[
 ASM_REWRITE_TAC[] THEN
 REPEAT STRIP_TAC THEN
 ASM_REWRITE_TAC[(GEN_ALL(SYM (SPEC_ALL NOT_LESS_EQ_LESS)))]
;
 ASM_REWRITE_TAC[] THEN
 POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [NOT_LESS] th)) THEN
 DISCH_TAC THEN
 OLD_IMP_RES_TAC' LESS_EQ_TRANS THEN
 POP_ASSUM (\th. REWRITE_TAC[
        REWRITE_RULE [GEN_ALL(SYM (SPEC_ALL NOT_LESS))] th])
]);;

let GREATEST_TRANS = save_thm (`GREATEST_TRANS`,
REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL GREATEST))]
(SPECL ["l:(num)list"; "0:num"; "k:num"] GRT_TRANS));;

let GREATEST_CONS = prove_thm (`GREATEST_CONS`,
"! h t. (GREATEST(CONS h t)) = (GREATEST [h;GREATEST t])",
REWRITE_TAC[GREATEST_GRT] THEN
ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
REWRITE_TAC[GRT; NOT_LESS_0; GEN_ALL(SYM (SPEC_ALL GREATEST))]);;

let GREATEST_OF_ONE = prove_thm (`GREATEST_OF_ONE`,
"! k. GREATEST [k] = k",
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]);;

let GREATEST_OF_K_AND_0 = prove_thm (`GREATEST_OF_K_AND_0`,
"! k. GREATEST [k; 0] = k",
GEN_TAC THEN
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0] THEN
DISJ_CASES_TAC (REWRITE_RULE [] (SPEC "0 < (k:num)" BOOL_CASES_AX)) THENL
[
 ASM_REWRITE_TAC[]
;
 ASM_REWRITE_TAC[] THEN
 POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER_NOT_ZERO'] th)) THEN
 ASM_REWRITE_TAC[]
]);;

let GREATEST_OF_0_AND_K = prove_thm (`GREATEST_OF_0_AND_K`,
"! k. GREATEST [0; k] = k",
GEN_TAC THEN
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]);;

let PLUS_DISTRIB_GREATEST = prove_thm (`PLUS_DISTRIB_GREATEST`,
"! l k. (~(l = [])) ==>
        ((GREATEST l) + k = (GREATEST (MAP (\el. el + k) l)))",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[]
;
 REPEAT GEN_TAC THEN
 REWRITE_TAC[(GEN_ALL(NOT_EQ_SYM(SPEC_ALL NOT_NIL_CONS)))] THEN
 DISJ_CASES_TAC (REWRITE_RULE []
        (SPEC "(l:(num)list) = []" BOOL_CASES_AX)) THENL
 [
  ASM_REWRITE_TAC[MAP] THEN
  BETA_TAC THEN
  REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]
 ;
  POP_ASSUM_LIST (\thmlist. MAP_EVERY
        (\th. ASSUME_TAC (SPEC_ALL th)) thmlist) THEN
  POP_ASSUM (\th. MP_TAC th) THEN
  ASM_REWRITE_TAC[MAP; GREATEST; GRT; NOT_LESS_0] THEN
  DISCH_THEN (\th. ASSUME_TAC (SYM th)) THEN
  BETA_TAC THEN
  ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
  ASM_REWRITE_TAC[] THEN
  DISJ_CASES_TAC (REWRITE_RULE []
        (SPEC "(h:num) < (GRT l 0)" BOOL_CASES_AX)) THEN
                ONCE_REWRITE_TAC[ADD_SYM] THEN
                ASM_REWRITE_TAC[ADD_MONO_LESS]
 ]
]);;

%-----------------------------------------------------------------------%
% #PLUS_DISTRIB_GREATEST_CONS;;                                         %
% |- !hd tl k.                                                          %
%    (GREATEST(CONS hd tl)) + k = GREATEST(MAP(\el. el + k)(CONS hd tl))%
%-----------------------------------------------------------------------%

let PLUS_DISTRIB_GREATEST_CONS = save_thm (`PLUS_DISTRIB_GREATEST_CONS`,
GEN_ALL (REWRITE_RULE [INST_TYPE [(":num", ":*")] NOT_CONS_NIL]
(SPECL ["(CONS (hd:num) (tl:(num)list))"; "k:num"]
PLUS_DISTRIB_GREATEST)));;

let SUB_DISTRIB_GREATEST = prove_thm (`SUB_DISTRIB_GREATEST`,
"! l k. (~(l = [])) ==>
        ((GREATEST l) - k = (GREATEST (MAP (\el. el - k) l)))",
LIST_INDUCT_TAC THENL
[
 REWRITE_TAC[]
;
 REPEAT GEN_TAC THEN
 REWRITE_TAC[(GEN_ALL(NOT_EQ_SYM(SPEC_ALL NOT_NIL_CONS)))] THEN
 DISJ_CASES_TAC (REWRITE_RULE []
        (SPEC "(l:(num)list) = []" BOOL_CASES_AX)) THENL
 [
  ASM_REWRITE_TAC[MAP] THEN
  BETA_TAC THEN
  REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]
 ;
  POP_ASSUM_LIST (\thmlist. MAP_EVERY
        (\th. ASSUME_TAC (SPEC_ALL th)) thmlist) THEN
  POP_ASSUM (\th. MP_TAC th) THEN
  ASM_REWRITE_TAC[MAP; GREATEST; GRT; NOT_LESS_0] THEN
  DISCH_THEN (\th. ASSUME_TAC (SYM th)) THEN
  BETA_TAC THEN
  ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
  ASM_REWRITE_TAC[] THEN
  DISJ_CASES_TAC (REWRITE_RULE []
        (SPEC "(h:num) < (GRT l 0)" BOOL_CASES_AX)) THENL
        [ % h < (GRT l 0) %
         DISJ_CASES_TAC (REWRITE_RULE []
                (SPEC "(h - k) < ((GRT l 0) - k)" BOOL_CASES_AX)) THENL
         [ % (h - k) < ((GRT l 0) - k) %
          ASM_REWRITE_TAC[]
         ; % ~((h - k) < ((GRT l 0) - k)) %
          ASM_REWRITE_TAC[] THEN
          IMP_RES_TAC LESS_IMP_LESS_EQ_SUB THEN
          POP_ASSUM (\th. MP_TAC (REWRITE_RULE[LESS_OR_EQ]
                (SPEC "k:num" th))) THEN
          ASM_REWRITE_TAC[] THEN
          DISCH_THEN (\th. REWRITE_TAC[th])
         ]
        ; % ~(h < (GRT l 0)) %
         DISJ_CASES_TAC (REWRITE_RULE []
                (SPEC "(h - k) < ((GRT l 0) - k)" BOOL_CASES_AX)) THENL
         [ % (h - k) < ((GRT l 0) - k) %
          UNDISCH_ALL_TAC THEN
          REWRITE_TAC[NOT_LESS; LESS_OR_EQ] THEN
          DISJ_CASES_TAC (REWRITE_RULE []
                (SPEC "(GRT l 0) = h" BOOL_CASES_AX)) THENL
          [
           ASM_REWRITE_TAC[LESS_REFL]
          ;
           ASM_REWRITE_TAC[] THEN
           REPEAT DISCH_TAC THEN
           IMP_RES_TAC LESS_IMP_LESS_EQ_SUB THEN
           POP_ASSUM (\th. ASSUME_TAC
                (REWRITE_RULE [GEN_ALL(SYM(SPEC_ALL GREATER_EQ))]
                (SPEC "k:num" th))) THEN
           MP_TAC (SPECL ["(h - k)"; "((GRT l 0) - k)"]
                  GREATER_EQ_ANTISYM) THEN
           ASM_REWRITE_TAC[]
          ]
         ; % ~((h - k) < ((GRT l 0) - k)) %
          ASM_REWRITE_TAC[]
         ]
        ]
 ]
]);;

%------------------------------------------------------------------------%
% #SUB_DISTRIB_GREATEST_CONS;;                                           %
% |- !hd tl k.                                                           %
%    (GREATEST(CONS hd tl)) - k = GREATEST(MAP(\el. el - k)(CONS hd tl)) %
%------------------------------------------------------------------------%

let SUB_DISTRIB_GREATEST_CONS = save_thm (`SUB_DISTRIB_GREATEST_CONS`,
GEN_ALL (REWRITE_RULE [INST_TYPE [(":num", ":*")] NOT_CONS_NIL]
(SPECL ["(CONS (hd:num) (tl:(num)list))"; "k:num"]
SUB_DISTRIB_GREATEST)));;

let GREATEST_OF_AB = prove_thm (`GREATEST_OF_AB`,
"! a b. GREATEST[a;b] >= a /\ GREATEST[a;b] >= b",
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL ["b:num"; "a:num"] LESS_CASES) THENL
[
 ASM_REWRITE_TAC[GREATER_EQ_REFL] THEN
 IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
 ASM_REWRITE_TAC[GREATER_EQ]
;
 POP_ASSUM (\th. ASSUME_TAC
           (REWRITE_RULE [GEN_ALL(SYM(SPEC_ALL NOT_LESS))] th)) THEN
 ASM_REWRITE_TAC[GREATER_EQ_REFL] THEN
 REWRITE_TAC[GREATER_EQ] THEN
 POP_ASSUM (\th. ACCEPT_TAC (REWRITE_RULE [NOT_LESS] th))
]);;

% ===================================================================== %
% TACTICS                                                               %
% ===================================================================== %

%-----------------------------------------------------------------------%
% FLAT_GREATEREQ_GREATEST_TAC: tactic                                   %
%-----------------------------------------------------------------------%
%       A ?-  x >= (GREATEST[GREATEST[ch1;ch2];GREATEST[ch3;ch4]])      %
% ====================================================================  %
%       A ?- (x >= ch1 /\ x >= ch2) /\ x >= ch3 /\ x >= ch4             %
%-----------------------------------------------------------------------%

let FLAT_GREATEREQ_GREATEST_THMS =
[GREATEST_GEQKL; GEQKL; GREATER_EQ_ZERO;
 GREATEST_GKL; GKL];;

let FLAT_GREATEREQ_GREATEST_TAC =
        REWRITE_TAC FLAT_GREATEREQ_GREATEST_THMS THEN
        BETA_TAC;;

%-----------------------------------------------------------------------%
% FLAT_GREATER_GREATEST_TAC: tactic                                     %
%-----------------------------------------------------------------------%
%       A ?-  x > (GREATEST[GREATEST[ch1;ch2];GREATEST[ch3;ch4]])       %
% ====================================================================  %
%       A ?- (x > ch1 /\ x > ch2) /\ x > ch3 /\ x > ch4                 %
%-----------------------------------------------------------------------%

let FLAT_GREATER_GREATEST_THMS =
[GREATEST_GKL_CONS; GKL; PLUS_DISTRIB_GREATEST_CONS;
SUB_DISTRIB_GREATEST_CONS; MAP; GREATEST_OF_K_AND_0; GREATEST_OF_0_AND_K];;

let FLAT_GREATER_GREATEST_TAC =
        REWRITE_TAC FLAT_GREATER_GREATEST_THMS THEN
        BETA_TAC;;

%-----------------------------------------------------------------------%
% EVERY_GREATEST_TAC: tactic                                            %
%-----------------------------------------------------------------------%
%  A ?- GREATEST[ch1; ch2; ch3; ch4] >= GREATEST[GREATEST[ch1; ch2];    %
%                                                GREATEST[ch3; ch4]]    %
% EVERY_GREATEST_TAC solves the goal by first flattening the right      %
% hand side and them rewriting the goal with the theorem "every_thm"    %
% generated from the left hand side:                                    %
% every_thm =                                                           %
% |- (GREATEST[ch1;ch2;ch3;ch4]) >= ch1 /\                              %
%    (GREATEST[ch1;ch2;ch3;ch4]) >= ch2 /\                              %
%    (GREATEST[ch1;ch2;ch3;ch4]) >= ch3 /\                              %
%    (GREATEST[ch1;ch2;ch3;ch4]) >= ch4                                 %
%-----------------------------------------------------------------------%

let EVERY_GREATEST_TAC:tactic (asl, w) =
let term = snd (dest_comb (fst (dest_comb w))) in
let (const, list) = (dest_comb term) in
let every_thm = (BETA_RULE (REWRITE_RULE [EVERY_DEF]
          (SPEC list EVERY_GREATEST))) in
let (string,_) = dest_const const in
if (string = `GREATEST`)
        then (REWRITE_TAC
        [GREATEST_GEQKL; GEQKL; GREATEST_GKL; GKL;
         every_thm; GREATER_EQ_ZERO] (asl, w))
        else ALL_TAC (asl, w);;

% ===================================================================== %

close_theory();;