/usr/share/hol88-2.02.19940316/contrib/greatest/greatest.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | % ===================================================================== %
% FILE: greatest.ml %
% DESCRIPTION: theory about the greatest of a list of natural numbers %
% and inequalities involving it. %
% AUTHOR: Catia M. Angelo %
% IMEC VZW %
% Kapeldreef, 75 %
% B3001 - Leuven - Belgium %
% e-mail: catia@imec.be %
% DATE: June 4th, 1993. %
% ===================================================================== %
% HOL88 - Version 2.0 %
% Loaded libraries: unwind; reduce; more_arithmetic; auxiliary. %
% ===================================================================== %
%-----------------------------------------------------------------------%
% Note: This theory has not been polished or optimized. %
%-----------------------------------------------------------------------%
new_theory `greatest`;;
loadf `compat`;;
map load_library [`more_arithmetic`];;
% ===================================================================== %
% DEFINITIONS %
% ===================================================================== %
let GRT = new_list_rec_definition (`GRT`,
"((GRT [] ref) = ref) /\
((GRT ((CONS hd tl):(num)list) ref) =
(GRT tl ((hd < ref) => ref | hd)))");;
let GREATEST = new_definition (`GREATEST`,
"! (l:(num)list). GREATEST l = GRT l 0");;
let GEQKL = new_list_rec_definition (`GEQKL`,
"((GEQKL [] k) = T) /\
((GEQKL (CONS h t) k) = ((k >= h) /\ (GEQKL t k)))");;
let GKL = new_list_rec_definition (`GKL`,
"((GKL [] k) = T) /\
((GKL (CONS h t) k) = ((k > h) /\ (GKL t k)))");;
% ===================================================================== %
% AUXILIARY TACTICS %
% ===================================================================== %
%---------------------------------------------------------------%
% These versions of IMP_RES_THEN and IMP_RES_TAC only add to %
% the assumption list theorems that do not have implications. %
%---------------------------------------------------------------%
let OLD_IMP_RES_THEN' tac thm =
OLD_IMP_RES_THEN (\th. if (is_imp (snd (dest_thm th)))
then ALL_TAC
else (tac th)) thm;;
let OLD_IMP_RES_TAC' thm = OLD_IMP_RES_THEN' ASSUME_TAC thm;;
let REWRITE_ALL_TAC thmList =
POP_ASSUM_LIST (\asslist.
let newasslist = map (\th. REWRITE_RULE thmList th) asslist in
MAP_EVERY ASSUME_TAC newasslist) THEN
REWRITE_TAC thmList;;
let LHS_CONV = RATOR_CONV o RAND_CONV;;
let RHS_CONV = RAND_CONV;;
%---------------------------------------------------------------%
% UNDISCH_ALL_TAC: %
% This tactic does the opposite of the rule UNDISCH_ALL. %
% It should be used only in goals without implications. %
% %
% A,t1,...,tn |- t %
% ================================= %
% A |- t1 ==> ... ==> tn ==> t %
%---------------------------------------------------------------%
letrec new_goal (asl, t) =
if asl = [] then (asl,t)
else (new_goal (tl asl, mk_imp (hd asl, t)));;
let UNDISCH_ALL_TAC (asl, t) =
( [(new_goal (asl,t))], UNDISCH_ALL o hd );;
% ===================================================================== %
% THEOREMS %
% ===================================================================== %
%-----------------------------------------------------------------------%
% AUXILIARY THEOREMS ABOUT ARITHMETIC %
%-----------------------------------------------------------------------%
let GREATER_IMP_GREATER_0 = prove_thm (`GREATER_IMP_GREATER_0`,
"!n m. (n > m) ==> (n > 0)",
REPEAT STRIP_TAC THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER] th)) THEN
ASSUME_TAC (SPEC "m:num" ZERO_LESS_EQ) THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
ASM_REWRITE_TAC[GREATER]);;
let GREATER_EQ_TRANS = prove_thm (`GREATER_EQ_TRANS`,
"!m n p. n >= m /\ p >= n ==> p >= m",
ACCEPT_TAC (REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL GREATER_EQ))]
LESS_EQ_TRANS));;
let GREATER_EQ_REFL = prove_thm (`GREATER_EQ_REFL`,
"!m. m >= m",
ACCEPT_TAC (REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL GREATER_EQ))]
LESS_EQ_REFL));;
let LESS_OR_NOT_LESS = save_thm (`LESS_OR_NOT_LESS`,
REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL NOT_LESS))] LESS_CASES);;
let NOT_LESS' = save_thm (`NOT_LESS'`,
REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL GREATER_EQ))]
NOT_LESS);;
let NOT_LESS'' = save_thm (`NOT_LESS''`,
REWRITE_RULE [GREATER_EQ; LESS_OR_EQ] NOT_LESS');;
let NOT_LESS''' = save_thm (`NOT_LESS'''`,
REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL LESS_OR_EQ))] NOT_LESS'');;
let GREATER_NOT_ZERO' = prove_thm (`GREATER_NOT_ZERO'`,
"!x. (0 < x) = (~(x = 0))",
GEN_TAC THEN
EQ_TAC THENL
[
REWRITE_TAC[GREATER_NOT_ZERO]
;
MP_TAC (SPEC "x:num" num_CASES) THEN
ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN
ASM_REWRITE_TAC[LESS_0]
]);;
let LESS_IMP_LESS_EQ_SUB = prove_thm (`LESS_IMP_LESS_EQ_SUB`,
"! h x k. (h < x) ==> ((h - k) <= (x - k))",
REPEAT STRIP_TAC THEN
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "k <= h" BOOL_CASES_AX)) THENL
[ % k <= h %
IMP_RES_TAC SUB_LESS_BOTH_SIDES THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ
; %~(k <= h) %
POP_ASSUM (\th. ASSUME_TAC
(REWRITE_RULE [GEN_ALL(SYM(SPEC_ALL LESS_IS_NOT_LESS_OR_EQ))] th)) THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
IMP_RES_TAC (GEN_ALL (snd (EQ_IMP_RULE (SPEC_ALL SUB_EQ_0)))) THEN
ASM_REWRITE_TAC[ZERO_LESS_EQ]
]);;
%-----------------------------------------------------------------------%
% GREATER_EQ_ZERO = |- !n. n >= 0 %
%-----------------------------------------------------------------------%
let GREATER_EQ_ZERO = prove_thm (`GREATER_EQ_ZERO`,
"!n. n >= 0",
REWRITE_TAC[GREATER_EQ; ZERO_LESS_EQ]);;
% --------------------------------------------------------------------- %
let GREATEST_N_ZERO = prove_thm (`GREATEST_N_ZERO`,
"! n. GREATEST[n;0] = n",
GEN_TAC THEN
REWRITE_TAC[GREATEST;GRT;NOT_LESS_0] THEN
MP_TAC (SPEC_ALL (REWRITE_RULE[LESS_OR_EQ] ZERO_LESS_EQ)) THEN
DISJ_CASES_TAC (SPEC "0 < n" BOOL_CASES_AX) THEN
ASM_REWRITE_TAC[] );;
let GRT_REF = prove_thm (`GRT_REF`,
"! l ref. (k >= (GRT l ref)) = ((k >= ref) /\ (k >= (GRT l 0)))",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[GRT; GREATER_EQ; ZERO_LESS_EQ]
;
REPEAT GEN_TAC THEN
REWRITE_TAC[GRT; NOT_LESS_0] THEN
DISJ_CASES_TAC (SPECL ["h:num"; "ref:num"] LESS_CASES) THENL
[
POP_ASSUM (\th. (ASSUME_TAC th) THEN ONCE_REWRITE_TAC[th]) THEN
REWRITE_TAC[] THEN
FIRST_ASSUM (\th. ASSUME_TAC (SPEC "ref:num" th)) THEN
ONCE_ASM_REWRITE_TAC[] THEN
EQ_TAC THENL
[
REPEAT STRIP_TAC THENL
[
ASM_REWRITE_TAC[]
;
POP_ASSUM (\th. ALL_TAC) THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER_EQ] th)) THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
ASM_REWRITE_TAC[GREATER_EQ]
;
ASM_REWRITE_TAC[]
]
;
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[]
]
;
POP_ASSUM (\th. (ASSUME_TAC th) THEN ASSUME_TAC (REWRITE_RULE
[GEN_ALL (SYM (SPEC_ALL NOT_LESS))] th)) THEN
POP_ASSUM (\th. (ASSUME_TAC th) THEN ONCE_REWRITE_TAC[th]) THEN
REWRITE_TAC[] THEN
FIRST_ASSUM (\th. ASSUME_TAC (SPEC "h:num" th)) THEN
ONCE_ASM_REWRITE_TAC[] THEN
EQ_TAC THENL
[
REPEAT STRIP_TAC THENL
[
REWRITE_TAC[GREATER_EQ] THEN
POP_ASSUM (\th. ALL_TAC) THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER_EQ] th)) THEN
MP_TAC (SPECL ["ref:num"; "h:num"; "k:num"] LESS_EQ_TRANS) THEN
ASM_REWRITE_TAC[]
;
ASM_REWRITE_TAC[]
;
ASM_REWRITE_TAC[]
]
;
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[]
]
]
]);;
let GRT_REF' = prove_thm (`GRT_REF'`,
"! l ref. (k > (GRT l ref)) = ((k > ref) /\ (k > (GRT l 0)))",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[GRT] THEN
GEN_TAC THEN
EQ_TAC THENL
[
STRIP_TAC THEN
IMP_RES_TAC GREATER_IMP_GREATER_0 THEN
ASM_REWRITE_TAC[]
;
STRIP_TAC THEN
ASM_REWRITE_TAC[]
]
;
REPEAT GEN_TAC THEN
REWRITE_TAC[GRT; NOT_LESS_0] THEN
DISJ_CASES_TAC (SPECL ["h:num"; "ref:num"] LESS_CASES) THENL
[
POP_ASSUM (\th. (ASSUME_TAC th) THEN ONCE_REWRITE_TAC[th]) THEN
REWRITE_TAC[] THEN
FIRST_ASSUM (\th. ASSUME_TAC (SPEC "ref:num" th)) THEN
ONCE_ASM_REWRITE_TAC[] THEN
EQ_TAC THENL
[ % h < ref %
REPEAT STRIP_TAC THENL
[
ASM_REWRITE_TAC[]
;
POP_ASSUM (\th. ALL_TAC) THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER] th)) THEN
IMP_RES_TAC LESS_TRANS THEN
ASM_REWRITE_TAC[GREATER]
;
ASM_REWRITE_TAC[]
]
;
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[]
]
; % ref <= h %
POP_ASSUM (\th. (ASSUME_TAC th) THEN ASSUME_TAC (REWRITE_RULE
[GEN_ALL (SYM (SPEC_ALL NOT_LESS))] th)) THEN
POP_ASSUM (\th. (ASSUME_TAC th) THEN ONCE_REWRITE_TAC[th]) THEN
REWRITE_TAC[] THEN
FIRST_ASSUM (\th. ASSUME_TAC (SPEC "h:num" th)) THEN
ONCE_ASM_REWRITE_TAC[] THEN
EQ_TAC THENL
[
REPEAT STRIP_TAC THENL
[
REWRITE_TAC[GREATER] THEN
POP_ASSUM (\th. ALL_TAC) THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER] th)) THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS
;
ASM_REWRITE_TAC[]
;
ASM_REWRITE_TAC[]
]
;
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[]
]
]
]);;
let GREATEST_GEQKL = prove_thm (`GREATEST_GEQKL`,
"! l k. (k >= GREATEST l) = (GEQKL l k)",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[GREATEST; GRT; GEQKL; GREATER_EQ; ZERO_LESS_EQ]
;
REPEAT GEN_TAC THEN
POP_ASSUM (\th. MP_TAC th) THEN
REWRITE_TAC[GREATEST; GRT; GEQKL; NOT_LESS_0] THEN
DISCH_THEN (\th. ASSUME_TAC (SPEC_ALL th)) THEN
ONCE_REWRITE_TAC[GRT_REF] THEN
ASM_REWRITE_TAC[]
]);;
let GREATEST_GKL = prove_thm (`GREATEST_GKL`,
"! l k. (~(l = [])) ==> ((k > GREATEST l) = (GKL l k))",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[]
;
REPEAT GEN_TAC THEN
REWRITE_TAC[(GEN_ALL(NOT_EQ_SYM(SPEC_ALL NOT_NIL_CONS)))] THEN
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "(l:(num)list) = []" BOOL_CASES_AX)) THENL
[
ASM_REWRITE_TAC[GREATEST; GRT; GKL; NOT_LESS_0]
;
POP_ASSUM_LIST (\thmlist. MAP_EVERY
(\th. ASSUME_TAC (SPEC_ALL th)) thmlist) THEN
POP_ASSUM (\th. MP_TAC th) THEN
ASM_REWRITE_TAC[GREATEST; GRT; GKL; NOT_LESS_0] THEN
DISCH_TAC THEN
ONCE_REWRITE_TAC[GRT_REF'] THEN
ASM_REWRITE_TAC[]
]
]);;
%------------------------------------------------------------------%
% #GREATEST_GKL_CONS;; %
% |- !k hd tl. k > (GREATEST(CONS hd tl)) = GKL(CONS hd tl)k %
%------------------------------------------------------------------%
let GREATEST_GKL_CONS = save_thm (`GREATEST_GKL_CONS`,
GEN_ALL (REWRITE_RULE [INST_TYPE [(":num", ":*")] NOT_CONS_NIL]
(SPECL ["(CONS (hd:num) (tl:(num)list))"; "k:num"]
GREATEST_GKL)));;
let GEQKL_CONS = prove_thm (`GEQKL_CONS`,
"! tl hd k. (GEQKL [hd] k) /\ (GEQKL tl k) = (GEQKL (CONS hd tl) k)",
LIST_INDUCT_TAC THEN REWRITE_TAC[GEQKL]);;
let GEQKL_APP = prove_thm (`GEQKL_APP`,
"! l1 l2 k.
(GEQKL l1 k) /\ (GEQKL l2 k) = (GEQKL (APPEND l1 l2) k)",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[GEQKL; APPEND]
;
REWRITE_TAC[GEQKL; APPEND] THEN
ASM_REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC))]
]);;
let GREATEST_APP = prove_thm (`GREATEST_APP`,
"!l1 l2 k. k >= (GREATEST l1) /\ k >= (GREATEST l2) =
k >= (GREATEST(APPEND l1 l2))",
ACCEPT_TAC (REWRITE_RULE [(GEN_ALL (SYM (SPEC_ALL GREATEST_GEQKL)))]
GEQKL_APP));;
let GEQKL_APP_SYM = prove_thm (`GEQKL_APP_SYM`,
"! l1 l2 k. (GEQKL (APPEND l1 l2) k) = (GEQKL (APPEND l2 l1) k)",
REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL GEQKL_APP))] THEN
REPEAT GEN_TAC THEN
CONV_TAC (ONCE_DEPTH_CONV (LHS_CONV (REWRITE_CONV CONJ_SYM))) THEN
REWRITE_TAC[]);;
let GREATEST_APP_SYM = prove_thm (`GREATEST_APP_SYM`,
"!l1 l2 k.
k >= (GREATEST(APPEND l1 l2)) = k >= (GREATEST(APPEND l2 l1))",
ACCEPT_TAC (REWRITE_RULE [(GEN_ALL (SYM (SPEC_ALL GREATEST_GEQKL)))]
GEQKL_APP_SYM));;
let GEQKL_TRANS = prove_thm (`GEQKL_TRANS`,
"! l k1 k2. ((GEQKL l k1) /\ (k2 >= k1)) ==> (GEQKL l k2)",
REWRITE_TAC[(GEN_ALL(SYM (SPEC_ALL GREATEST_GEQKL)))] THEN
REPEAT STRIP_TAC THEN
IMP_RES_TAC GREATER_EQ_TRANS);;
let GEQKL_EVERY = prove_thm (`GEQKL_EVERY`,
"!l k. GEQKL l k = EVERY (\el. k >= el) l",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[GEQKL; EVERY_DEF]
;
REPEAT GEN_TAC THEN
REWRITE_TAC[GEQKL; EVERY_DEF] THEN
BETA_TAC THEN
ASM_REWRITE_TAC[]
]);;
let GREATEST_EVERY = prove_thm (`GREATEST_EVERY`,
"!l k. k >= (GREATEST l) = EVERY(\el. k >= el)l",
ACCEPT_TAC (REWRITE_RULE [(GEN_ALL (SYM (SPEC_ALL GREATEST_GEQKL)))]
GEQKL_EVERY));;
let EVERY_GREATEST = save_thm (`EVERY_GREATEST`,
GEN_ALL (REWRITE_RULE [GREATER_EQ_REFL]
(SPECL ["l:(num)list"; "GREATEST l"] GREATEST_EVERY)));;
let GREATEST_GRT = prove_thm (`GREATEST_GRT`,
"! hd tl. GREATEST (CONS hd tl) = GRT tl hd",
REPEAT GEN_TAC THEN
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]);;
let REF_LESS_EQ_GRT = prove_thm (`REF_LESS_EQ_GRT`,
"! l ref. ref <= (GRT l ref)",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[GRT; LESS_EQ_REFL]
;
REPEAT GEN_TAC THEN
REWRITE_TAC[GRT] THEN
DISJ_CASES_TAC (SPECL ["h:num"; "ref:num"] LESS_OR_NOT_LESS) THENL
[
ASM_REWRITE_TAC[]
;
ASM_REWRITE_TAC[] THEN
POP_ASSUM (\th. MP_TAC th) THEN
POP_ASSUM (\th. ASSUME_TAC (SPEC "h:num" th)) THEN
DISCH_THEN (\th. ASSUME_TAC (REWRITE_RULE [NOT_LESS] th)) THEN
IMP_RES_TAC LESS_EQ_TRANS
]
]);;
let GRT_APPEND = prove_thm (`GRT_APPEND`,
"!l1 l2 k.
k >= (GRT l1 0) /\ (k >= GRT l2 0) =
k >= GRT (APPEND l1 l2) 0",
REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL GREATEST))] THEN
ACCEPT_TAC GREATEST_APP);;
let GRT_APP_SYM = prove_thm (`GRT_APP_SYM`,
"!l1 l2 k.
k >= (GRT (APPEND l1 l2) 0) = k >= (GRT (APPEND l2 l1) 0)",
REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL GREATEST))] THEN
ACCEPT_TAC GREATEST_APP_SYM);;
let GRT_EVERY = prove_thm (`GRT_EVERY`,
"!l k. k >= (GRT l 0) = EVERY(\el. k >= el)l",
REWRITE_TAC[GEN_ALL (SYM (SPEC_ALL GREATEST))] THEN
ACCEPT_TAC GREATEST_EVERY);;
let GRT_CONS = save_thm (`GRT_CONS`,
REWRITE_RULE[GREATEST] GREATEST_GRT);;
let GRT_REF_IS_GRT_0_OR_REF = prove_thm (`GRT_REF_IS_GRT_0_OR_REF`,
"!l h. GRT l h = ((h < (GRT l 0)) => (GRT l 0) | h)",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[GRT] THEN
GEN_TAC THEN
DISJ_CASES_TAC (SPECL ["h:num"; "0"] LESS_OR_NOT_LESS) THENL
[
REWRITE_TAC[NOT_LESS_0]
;
ASM_REWRITE_TAC[]
]
;
REWRITE_TAC[GRT_CONS; GRT] THEN
REPEAT GEN_TAC THEN
POP_ASSUM (\th. ASSUME_TAC (SPEC "h:num" th) THEN
ASSUME_TAC (SPEC "h':num" th)) THEN
ASM_REWRITE_TAC[] THEN
DISJ_CASES_TAC (SPECL ["h:num"; "GRT l 0"] LESS_OR_NOT_LESS) THENL
[ % h < (GRT l 0) %
ASM_REWRITE_TAC[] THEN
DISJ_CASES_TAC (SPECL ["h:num"; "h':num"] LESS_OR_NOT_LESS) THENL
[ % h < (GRT l 0) ; h < h' %
ASM_REWRITE_TAC[]
; % h < (GRT l 0) ; ~(h < h') %
ASM_REWRITE_TAC[] THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE[NOT_LESS'''] th)) THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
ASM_REWRITE_TAC[]
]
; % ~(h < (GRT l 0)) %
ASM_REWRITE_TAC[] THEN
DISJ_CASES_TAC (SPECL ["h:num"; "h':num"] LESS_OR_NOT_LESS) THENL
[ % ~(h < (GRT l 0)) ; h < h' %
ASM_REWRITE_TAC[] THEN
IMP_RES_THEN (\th. ASSUME_TAC th)
(GEN_ALL (fst (EQ_IMP_RULE (SPEC_ALL NOT_LESS)))) THEN
OLD_IMP_RES_TAC' (SPECL ["(GRT l 0)"; "h:num"; "h':num"]
(hd (CONJUNCTS LESS_EQ_LESS_TRANS))) THEN
IMP_RES_THEN (\th. REWRITE_TAC[th]) NOT_LESS_AND_GREATER
; % ~(h < (GRT l 0)) ; ~(h < h') %
ASM_REWRITE_TAC[] THEN
POP_ASSUM (\th. DISJ_CASES_TAC (REWRITE_RULE [NOT_LESS''] th)) THENL
[ % h' < h %
ASM_REWRITE_TAC[]
; % h' = h %
IMP_RES_THEN (\th. REWRITE_TAC[th]) NOT_LESS_EQ THEN
ASM_REWRITE_TAC[]
]
]
]
]);;
let GRT_REF_IS_GREATEST_OR_REF = prove_thm (`GRT_REF_IS_GREATEST_OR_REF`,
"!l h. GRT l h = ((h < (GREATEST l) => (GREATEST l) | h))",
REWRITE_TAC[GREATEST] THEN
ACCEPT_TAC GRT_REF_IS_GRT_0_OR_REF);;
let GEQKL_GREATEST = prove_thm (`GEQKL_GREATEST`,
"!l. GEQKL l (GREATEST l)",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[GEQKL]
;
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0] THEN
ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
GEN_TAC THEN
DISJ_CASES_TAC (SPECL ["h:num"; "(GRT l 0)"] LESS_OR_NOT_LESS) THENL
[
ASM_REWRITE_TAC[] THEN
REWRITE_ALL_TAC[GEQKL; GREATEST; GRT; NOT_LESS_0] THEN
REWRITE_TAC[GREATER_EQ] THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
ASM_REWRITE_TAC[]
;
ASM_REWRITE_TAC[] THEN
REWRITE_ALL_TAC[GEQKL; GREATEST; GRT; NOT_LESS_0; GREATER_EQ_REFL;
NOT_LESS'] THEN
IMP_RES_TAC GEQKL_TRANS
]
]);;
let GEQKL_GRT = prove_thm (`GEQKL_GRT`,
"!l. GEQKL l (GRT l 0)",
REWRITE_TAC[GEN_ALL(SYM (SPEC_ALL GREATEST))] THEN
ACCEPT_TAC GEQKL_GREATEST);;
let GRT_0_LESS_EQ_GRT_REF = prove_thm (`GRT_0_LESS_EQ_GRT_REF`,
"! l ref. (GRT l 0) <= (GRT l ref)",
REPEAT GEN_TAC THEN
CONV_TAC (RHS_CONV (REWRITE_CONV GRT_REF_IS_GRT_0_OR_REF)) THEN
DISJ_CASES_TAC (SPECL ["ref:num"; "(GRT l 0)"] LESS_OR_NOT_LESS) THENL
[
ASM_REWRITE_TAC[LESS_EQ_REFL]
;
ASM_REWRITE_TAC[GEN_ALL(SYM(SPEC_ALL NOT_LESS))]
]);;
let GEQKL_GRT' = save_thm (`GEQKL_GRT'`,
GEN_ALL (REWRITE_RULE [GRT_0_LESS_EQ_GRT_REF]
(REWRITE_RULE [GEQKL_GRT; GREATER_EQ]
(SPECL ["l:(num)list"; "(GRT l 0)"; "(GRT l ref)"]
GEQKL_TRANS))));;
let GRT_TRANS = prove_thm (`GRT_TRANS`,
"! l k1 k2. ((GRT l k1) <= k2) ==> ((GRT l k2) = k2)",
ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL ["k1:num"; "(GRT l 0)"] LESS_OR_NOT_LESS) THENL
[
ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[(GEN_ALL(SYM (SPEC_ALL NOT_LESS_EQ_LESS)))]
;
ASM_REWRITE_TAC[] THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [NOT_LESS] th)) THEN
DISCH_TAC THEN
OLD_IMP_RES_TAC' LESS_EQ_TRANS THEN
POP_ASSUM (\th. REWRITE_TAC[
REWRITE_RULE [GEN_ALL(SYM (SPEC_ALL NOT_LESS))] th])
]);;
let GREATEST_TRANS = save_thm (`GREATEST_TRANS`,
REWRITE_RULE [GEN_ALL (SYM (SPEC_ALL GREATEST))]
(SPECL ["l:(num)list"; "0:num"; "k:num"] GRT_TRANS));;
let GREATEST_CONS = prove_thm (`GREATEST_CONS`,
"! h t. (GREATEST(CONS h t)) = (GREATEST [h;GREATEST t])",
REWRITE_TAC[GREATEST_GRT] THEN
ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
REWRITE_TAC[GRT; NOT_LESS_0; GEN_ALL(SYM (SPEC_ALL GREATEST))]);;
let GREATEST_OF_ONE = prove_thm (`GREATEST_OF_ONE`,
"! k. GREATEST [k] = k",
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]);;
let GREATEST_OF_K_AND_0 = prove_thm (`GREATEST_OF_K_AND_0`,
"! k. GREATEST [k; 0] = k",
GEN_TAC THEN
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0] THEN
DISJ_CASES_TAC (REWRITE_RULE [] (SPEC "0 < (k:num)" BOOL_CASES_AX)) THENL
[
ASM_REWRITE_TAC[]
;
ASM_REWRITE_TAC[] THEN
POP_ASSUM (\th. ASSUME_TAC (REWRITE_RULE [GREATER_NOT_ZERO'] th)) THEN
ASM_REWRITE_TAC[]
]);;
let GREATEST_OF_0_AND_K = prove_thm (`GREATEST_OF_0_AND_K`,
"! k. GREATEST [0; k] = k",
GEN_TAC THEN
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]);;
let PLUS_DISTRIB_GREATEST = prove_thm (`PLUS_DISTRIB_GREATEST`,
"! l k. (~(l = [])) ==>
((GREATEST l) + k = (GREATEST (MAP (\el. el + k) l)))",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[]
;
REPEAT GEN_TAC THEN
REWRITE_TAC[(GEN_ALL(NOT_EQ_SYM(SPEC_ALL NOT_NIL_CONS)))] THEN
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "(l:(num)list) = []" BOOL_CASES_AX)) THENL
[
ASM_REWRITE_TAC[MAP] THEN
BETA_TAC THEN
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]
;
POP_ASSUM_LIST (\thmlist. MAP_EVERY
(\th. ASSUME_TAC (SPEC_ALL th)) thmlist) THEN
POP_ASSUM (\th. MP_TAC th) THEN
ASM_REWRITE_TAC[MAP; GREATEST; GRT; NOT_LESS_0] THEN
DISCH_THEN (\th. ASSUME_TAC (SYM th)) THEN
BETA_TAC THEN
ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
ASM_REWRITE_TAC[] THEN
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "(h:num) < (GRT l 0)" BOOL_CASES_AX)) THEN
ONCE_REWRITE_TAC[ADD_SYM] THEN
ASM_REWRITE_TAC[ADD_MONO_LESS]
]
]);;
%-----------------------------------------------------------------------%
% #PLUS_DISTRIB_GREATEST_CONS;; %
% |- !hd tl k. %
% (GREATEST(CONS hd tl)) + k = GREATEST(MAP(\el. el + k)(CONS hd tl))%
%-----------------------------------------------------------------------%
let PLUS_DISTRIB_GREATEST_CONS = save_thm (`PLUS_DISTRIB_GREATEST_CONS`,
GEN_ALL (REWRITE_RULE [INST_TYPE [(":num", ":*")] NOT_CONS_NIL]
(SPECL ["(CONS (hd:num) (tl:(num)list))"; "k:num"]
PLUS_DISTRIB_GREATEST)));;
let SUB_DISTRIB_GREATEST = prove_thm (`SUB_DISTRIB_GREATEST`,
"! l k. (~(l = [])) ==>
((GREATEST l) - k = (GREATEST (MAP (\el. el - k) l)))",
LIST_INDUCT_TAC THENL
[
REWRITE_TAC[]
;
REPEAT GEN_TAC THEN
REWRITE_TAC[(GEN_ALL(NOT_EQ_SYM(SPEC_ALL NOT_NIL_CONS)))] THEN
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "(l:(num)list) = []" BOOL_CASES_AX)) THENL
[
ASM_REWRITE_TAC[MAP] THEN
BETA_TAC THEN
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0]
;
POP_ASSUM_LIST (\thmlist. MAP_EVERY
(\th. ASSUME_TAC (SPEC_ALL th)) thmlist) THEN
POP_ASSUM (\th. MP_TAC th) THEN
ASM_REWRITE_TAC[MAP; GREATEST; GRT; NOT_LESS_0] THEN
DISCH_THEN (\th. ASSUME_TAC (SYM th)) THEN
BETA_TAC THEN
ONCE_REWRITE_TAC[GRT_REF_IS_GRT_0_OR_REF] THEN
ASM_REWRITE_TAC[] THEN
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "(h:num) < (GRT l 0)" BOOL_CASES_AX)) THENL
[ % h < (GRT l 0) %
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "(h - k) < ((GRT l 0) - k)" BOOL_CASES_AX)) THENL
[ % (h - k) < ((GRT l 0) - k) %
ASM_REWRITE_TAC[]
; % ~((h - k) < ((GRT l 0) - k)) %
ASM_REWRITE_TAC[] THEN
IMP_RES_TAC LESS_IMP_LESS_EQ_SUB THEN
POP_ASSUM (\th. MP_TAC (REWRITE_RULE[LESS_OR_EQ]
(SPEC "k:num" th))) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN (\th. REWRITE_TAC[th])
]
; % ~(h < (GRT l 0)) %
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "(h - k) < ((GRT l 0) - k)" BOOL_CASES_AX)) THENL
[ % (h - k) < ((GRT l 0) - k) %
UNDISCH_ALL_TAC THEN
REWRITE_TAC[NOT_LESS; LESS_OR_EQ] THEN
DISJ_CASES_TAC (REWRITE_RULE []
(SPEC "(GRT l 0) = h" BOOL_CASES_AX)) THENL
[
ASM_REWRITE_TAC[LESS_REFL]
;
ASM_REWRITE_TAC[] THEN
REPEAT DISCH_TAC THEN
IMP_RES_TAC LESS_IMP_LESS_EQ_SUB THEN
POP_ASSUM (\th. ASSUME_TAC
(REWRITE_RULE [GEN_ALL(SYM(SPEC_ALL GREATER_EQ))]
(SPEC "k:num" th))) THEN
MP_TAC (SPECL ["(h - k)"; "((GRT l 0) - k)"]
GREATER_EQ_ANTISYM) THEN
ASM_REWRITE_TAC[]
]
; % ~((h - k) < ((GRT l 0) - k)) %
ASM_REWRITE_TAC[]
]
]
]
]);;
%------------------------------------------------------------------------%
% #SUB_DISTRIB_GREATEST_CONS;; %
% |- !hd tl k. %
% (GREATEST(CONS hd tl)) - k = GREATEST(MAP(\el. el - k)(CONS hd tl)) %
%------------------------------------------------------------------------%
let SUB_DISTRIB_GREATEST_CONS = save_thm (`SUB_DISTRIB_GREATEST_CONS`,
GEN_ALL (REWRITE_RULE [INST_TYPE [(":num", ":*")] NOT_CONS_NIL]
(SPECL ["(CONS (hd:num) (tl:(num)list))"; "k:num"]
SUB_DISTRIB_GREATEST)));;
let GREATEST_OF_AB = prove_thm (`GREATEST_OF_AB`,
"! a b. GREATEST[a;b] >= a /\ GREATEST[a;b] >= b",
REWRITE_TAC[GREATEST; GRT; NOT_LESS_0] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL ["b:num"; "a:num"] LESS_CASES) THENL
[
ASM_REWRITE_TAC[GREATER_EQ_REFL] THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
ASM_REWRITE_TAC[GREATER_EQ]
;
POP_ASSUM (\th. ASSUME_TAC
(REWRITE_RULE [GEN_ALL(SYM(SPEC_ALL NOT_LESS))] th)) THEN
ASM_REWRITE_TAC[GREATER_EQ_REFL] THEN
REWRITE_TAC[GREATER_EQ] THEN
POP_ASSUM (\th. ACCEPT_TAC (REWRITE_RULE [NOT_LESS] th))
]);;
% ===================================================================== %
% TACTICS %
% ===================================================================== %
%-----------------------------------------------------------------------%
% FLAT_GREATEREQ_GREATEST_TAC: tactic %
%-----------------------------------------------------------------------%
% A ?- x >= (GREATEST[GREATEST[ch1;ch2];GREATEST[ch3;ch4]]) %
% ==================================================================== %
% A ?- (x >= ch1 /\ x >= ch2) /\ x >= ch3 /\ x >= ch4 %
%-----------------------------------------------------------------------%
let FLAT_GREATEREQ_GREATEST_THMS =
[GREATEST_GEQKL; GEQKL; GREATER_EQ_ZERO;
GREATEST_GKL; GKL];;
let FLAT_GREATEREQ_GREATEST_TAC =
REWRITE_TAC FLAT_GREATEREQ_GREATEST_THMS THEN
BETA_TAC;;
%-----------------------------------------------------------------------%
% FLAT_GREATER_GREATEST_TAC: tactic %
%-----------------------------------------------------------------------%
% A ?- x > (GREATEST[GREATEST[ch1;ch2];GREATEST[ch3;ch4]]) %
% ==================================================================== %
% A ?- (x > ch1 /\ x > ch2) /\ x > ch3 /\ x > ch4 %
%-----------------------------------------------------------------------%
let FLAT_GREATER_GREATEST_THMS =
[GREATEST_GKL_CONS; GKL; PLUS_DISTRIB_GREATEST_CONS;
SUB_DISTRIB_GREATEST_CONS; MAP; GREATEST_OF_K_AND_0; GREATEST_OF_0_AND_K];;
let FLAT_GREATER_GREATEST_TAC =
REWRITE_TAC FLAT_GREATER_GREATEST_THMS THEN
BETA_TAC;;
%-----------------------------------------------------------------------%
% EVERY_GREATEST_TAC: tactic %
%-----------------------------------------------------------------------%
% A ?- GREATEST[ch1; ch2; ch3; ch4] >= GREATEST[GREATEST[ch1; ch2]; %
% GREATEST[ch3; ch4]] %
% EVERY_GREATEST_TAC solves the goal by first flattening the right %
% hand side and them rewriting the goal with the theorem "every_thm" %
% generated from the left hand side: %
% every_thm = %
% |- (GREATEST[ch1;ch2;ch3;ch4]) >= ch1 /\ %
% (GREATEST[ch1;ch2;ch3;ch4]) >= ch2 /\ %
% (GREATEST[ch1;ch2;ch3;ch4]) >= ch3 /\ %
% (GREATEST[ch1;ch2;ch3;ch4]) >= ch4 %
%-----------------------------------------------------------------------%
let EVERY_GREATEST_TAC:tactic (asl, w) =
let term = snd (dest_comb (fst (dest_comb w))) in
let (const, list) = (dest_comb term) in
let every_thm = (BETA_RULE (REWRITE_RULE [EVERY_DEF]
(SPEC list EVERY_GREATEST))) in
let (string,_) = dest_const const in
if (string = `GREATEST`)
then (REWRITE_TAC
[GREATEST_GEQKL; GEQKL; GREATEST_GKL; GKL;
every_thm; GREATER_EQ_ZERO] (asl, w))
else ALL_TAC (asl, w);;
% ===================================================================== %
close_theory();;
|