This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/fpf/fpf.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
%-----------------------------------------------------------------------%
% PLEASE FORGIVE THE USE OF AN EDITOR WITH WIDTH > 80 CHARACTERS...	%
%-----------------------------------------------------------------------%

set_flag (`sticky`, true);;

system `rm fpf.th`;;
new_theory `fpf`;;
load_library `sets`;;

loadf `RENAME_TAC`;;
loadf `set_ind`;;
loadf `SSMART_EXISTS_TAC`;;
loadf `ELIMINATE_TACS`;;





%-----------------------------------------------------------------------%
% a few aux. tactics							%
%-----------------------------------------------------------------------%

let DEEP_SYM_CONV = (ONCE_DEPTH_CONV SYM_CONV);;
let DEEP_SYM = (CONV_RULE DEEP_SYM_CONV);;



let DEEP_SYM_ASM_REWRITE_TAC l (asl,g) =
       REWRITE_TAC (l @ 
            (map (\t. DEEP_SYM (ASSUME t) ? (ASSUME t)) asl)) 
          (asl,g);;

let UNDISCH_ALL_TAC = POP_ASSUM_LIST  (EVERY o (map MP_TAC));;
let DEEP_SYM_ASM_THEN tac  =
   POP_ASSUM_LIST (\asms.
      EVERY (map ((ASSUME_TAC o DEEP_SYM) ? ASSUME_TAC) asms)
      THEN tac
   );;






%-----------------------------------------------------------------------%
% theory of finite partial functions					%
%-----------------------------------------------------------------------%



%-----------------------------------------------------------------------%
%
< Some notes on finite partial functions (or finite maps):
<
<
< Besides their finite domain, the important 
< property of finite maps is what happens when we apply    
< things to them.  This is done using the APPLY function defined below.
< Two results are possible - a failure (the result then being FAILURE),
< or a result (RESULT x).  The actual type returned by APPLY is (**+one), where
< ** is the type of the range of the map.  Thus FAILURE = INR one, and 
< RESULT x = INL x.  The user of the finite partial functions can in general
< avoid using the somewhat cryptic INL, INR, OUTL etc. constructors, for
< RESULT, FAILURE, RESULTOF and SUCCEEDS are far more inuitive.
<
<  The constants defined:
<    ZIP = The empty map
<    EXT = extends a map by adding on new mapping
<    APPLY = applies a value to the map to see what it maps to if anything
<    DOM = domain of the map (i.e. the things that are mapped to something)
<    EXTBY = adds one map to another, the first taking precedence
<    SUCCEEDS = true if an application succeeds, as in SUCCEEDS(APPLY x fpf)
<    FAILURE = the result of APPLY when what we are applying doesn't map to anything
<    RESULT x = the result of APPLY when what we are applying maps to x
<    RESULTOF = access the result of a successful application
<    PORTION = predicate to see if one map is a subset of another
<    TRANSFORM = transforms elements of the range of a map by a given function
<    RANGE = range of a map
<    UNEXT = deletes a mapping from a map (Un-Extension)
<    LIST_TO_FPF = converts a list of pairs to a map - useful to allow the use
< of list nottation to specify maps.
<    EVERYF = applies a predicate test to every mapping in the map.
<
< Some examples of things that are easily provable by rewriting:
<
<   APPLY x ZIP = FAILURE 
<   APPLY 1 (EXT (1,10) ZIP) = RESULT 10
<   DOM ZIP = {}
<   DOM (EXT (1,10) ZIP) = {1}
<
<  Finite maps are created using the EXT operator.  All maps have their basis in
< the empty map ZIP.  Inuitively EXT is a cross between CONS and INSERT.  
< The argument to EXT is a pair indicating a maplet 
< x |-> y.  The ordering of EXT's is unimportant if all the domain elements are
< distinct.  However:
<     EXT (1, 100) (EXT (1, 0) ZIP) = EXT (1,100)
< can be proven - i.e. extensions override original mappings.
<
< The finiteness of the maps is captured by the induction principles that are
< proved.  The first induction principle is often not useful, for it does
< not ensure that previous mappings are not overridden.  Often we want to induct
< over the cardinality of the domain of the map, or to use the additional
< assumption that the new extension being added to the map in the step case
< does not already have a value in the map.  These induction principles are
< proved below (see fpf_INDUCT_2).
<									%
%-----------------------------------------------------------------------%


let INL_INR_11 = prove_constructors_one_one sum_Axiom;;
let INL_11 = save_thm(`INL_11`, CONJUNCT1 INL_INR_11);;
let INR_11 = save_thm(`INR_11`, CONJUNCT2 INL_INR_11);;



let FAILURE_DEF = new_definition(`FAILURE_DEF`, "(FAILURE:(**+one)) = INR one");;

let RESULT_DEF = new_definition(`RESULT_DEF`, "(RESULT:(**)->(**+one)) = INL");;

let SUCCEEDS_DEF = new_definition(`SUCCEEDS_DEF`, "(SUCCEEDS:(**+one)->bool) = ISL");;

let FAILS_DEF = new_definition(`FAILS_DEF`, "(FAILS:(**+one)->bool) = ISR");;

let RESULTOF_DEF = new_definition(`RESULTOF_DEF`, "(RESULTOF:(**+one)->**) = OUTL");;

let RESULT_11 = prove_thm(`RESULT_11`, "!(x:**) x'. (RESULT x = RESULT x') = (x = x')",
   REWRITE_TAC [RESULT_DEF; INL_11]);;


let SUCCEEDS_RESULT = prove_thm(`SUCCEEDS_RESULT`, "!x:*. SUCCEEDS (RESULT x)",
   REWRITE_TAC [RESULT_DEF;ISL;SUCCEEDS_DEF]);;

let NOT_SUCCEEDS_FAILURE = prove_thm(`NOT_SUCCEEDS_FAILURE`, "~(SUCCEEDS:(*+one)->bool) FAILURE",
   REWRITE_TAC [SUCCEEDS_DEF; FAILURE_DEF; ISL]);;

let RESULTOF_RESULT = prove_thm(`RESULTOF_RESULT`, "!x:*. RESULTOF (RESULT x) = x", 
    REWRITE_TAC [OUTL;RESULTOF_DEF;RESULT_DEF]);;  

let FAILS_FAILURE = prove_thm(`FAILS_FAILURE`, "FAILS (FAILURE:(**+one))", REWRITE_TAC [FAILS_DEF;FAILURE_DEF;ISR]);;

let NOT_FAILS_RESULT = prove_thm(`NOT_FAILS_RESULT`, "!x. ~(FAILS:(**+one)->bool) (RESULT x)",
   REWRITE_TAC [FAILS_DEF;RESULT_DEF;ISR]);;

%-----------------------------------------------------------------------%
%-----------------------------------------------------------------------%


let ZIP_REP_DEF = new_definition
   (`ZIP_REP_DEF`,
    "(ZIP_REP:*->(**+one)) = \x.FAILURE"
   );;

let EXT_REP_DEF = new_definition
   (`EXT_REP_DEF`,
    "EXT_REP (x:*,y:**) (map:*->(**+one)) = (\x'.(x=x')=>RESULT y|map x')");;

let IS_fpf_REP = new_definition
   (`IS_fpf_REP`,
    "IS_fpf_REP (fpf:*->(**+one)) = 
       (!P:((*->(**+one))->bool) . P ZIP_REP /\
          (!fpf' x y. P fpf' ==> P(EXT_REP (x,y) fpf')) ==>  P fpf)"
   );;

let fpf_REP_EXISTS = PROVE("?fpf. IS_fpf_REP (fpf:*->(**+one))",
   REWRITE_TAC [IS_fpf_REP]
   THEN EXISTS_TAC "ZIP_REP:*->(**+one)"
   THEN REPEAT STRIP_TAC);;

let fpf_TY_DEF = 
   new_type_definition
      (`fpf`,
       "IS_fpf_REP:(*->(**+one))->bool",
       fpf_REP_EXISTS);;


let fpf_ISO_DEF = 
    define_new_type_bijections
        `fpf_ISO_DEF` `ABS_fpf` `REP_fpf` fpf_TY_DEF;;


let R_11 = prove_rep_fn_one_one fpf_ISO_DEF     and
    R_ONTO = prove_rep_fn_onto fpf_ISO_DEF      and
    A_11   = prove_abs_fn_one_one fpf_ISO_DEF   and
    A_ONTO = prove_abs_fn_onto fpf_ISO_DEF      and
    A_R = CONJUNCT1 fpf_ISO_DEF                 and
    R_A = CONJUNCT2 fpf_ISO_DEF;;



let ZIP_DEF = new_definition
   (`ZIP_DEF`,
    "(ZIP:(*,**)fpf) = ABS_fpf (\x.FAILURE)"
   );;

let ZIP_DEF_LEMMA = PROVE("(ZIP:(*,**)fpf) = ABS_fpf ZIP_REP", REWRITE_TAC [ZIP_DEF; ZIP_REP_DEF]);;

let IS_fpf_REP_ZIP = PROVE("IS_fpf_REP (ZIP_REP:*->(**+one))",
    REWRITE_TAC [IS_fpf_REP; ZIP_REP_DEF; ]
    THEN REPEAT STRIP_TAC
   );;



let EXT_DEF = new_definition
   (`EXT_DEF`,
    "EXT (x:*,y:**) map = ABS_fpf (\x'.(x=x')=>RESULT y|(REP_fpf map) x')");;

let EXT_DEF_LEMMA = PROVE("!x y map. EXT (x:*,y:**) map = ABS_fpf (EXT_REP (x,y) (REP_fpf map))",
    REWRITE_TAC [EXT_DEF; EXT_REP_DEF]);;


let IS_fpf_EXT_REP = PROVE(
    "!x y (fpf:*->(**+one)). (IS_fpf_REP fpf) ==> IS_fpf_REP (EXT_REP (x,y) fpf)",

    PURE_REWRITE_TAC [IS_fpf_REP; ZIP_REP_DEF; EXT_REP_DEF]
    THEN REPEAT STRIP_TAC
    THEN FIRST_ASSUM MATCH_MP_TAC
    THEN FIRST_ASSUM MATCH_MP_TAC
    THEN ASM_REWRITE_TAC []
);;

let IS_fpf_REP_EXT_REP = PROVE(
    "!x y fpf. IS_fpf_REP (EXT_REP (x,y) (REP_fpf fpf))",
    REPEAT GEN_TAC
    THEN MATCH_MP_TAC IS_fpf_EXT_REP
    THEN REWRITE_TAC[R_ONTO]
    THEN EXISTS_TAC "fpf"
    THEN REFL_TAC
   );;


let R_A_lemma_1 = PROVE(
    "REP_fpf ((ABS_fpf (\x:*.FAILURE)):(*,**)fpf) = (\x:*.FAILURE)",
    REWRITE_TAC [DEEP_SYM R_A; IS_fpf_REP; ZIP_REP_DEF]
    THEN REPEAT STRIP_TAC
);;


let R_A_lemma_2 = PROVE(
    "!(fpf:(*,**)fpf) x y.  REP_fpf (ABS_fpf (\x'. ((x = x') => RESULT y | (REP_fpf fpf) x'))) =
          (\x'. ((x = x') => RESULT y | (REP_fpf fpf) x'))",
    REWRITE_TAC [DEEP_SYM EXT_REP_DEF; DEEP_SYM R_A; IS_fpf_REP_EXT_REP]
);;

let R_A_lemma = CONJ R_A_lemma_1  R_A_lemma_2;;

let REP_LEMMA = PROVE(
    "IS_fpf_REP (REP_fpf (fpf:(*,**)fpf))",
    REWRITE_TAC [R_ONTO]
    THEN EXISTS_TAC "fpf:(*,**)fpf"
    THEN REFL_TAC
   );;






%----------------------------------------------------------------
  induction -- this parallels the derivation of induction by
               T. Melham for natural numbers.
----------------------------------------------------------------%
let ind_lemma_1 = PROVE(
   "!P. P ZIP_REP /\ 
         (!(fpf:*->(**+one)) x y. (P fpf ==> P (EXT_REP (x,y) fpf))) ==>
            (!(fpf:*->(**+one)). IS_fpf_REP fpf ==> P fpf)",
    PURE_ONCE_REWRITE_TAC [IS_fpf_REP]
    THEN REPEAT STRIP_TAC
    THEN RES_TAC
);;

let lemma = TAC_PROOF
   (([], "(A ==> A /\ B) = (A ==> B)"),
    ASM_CASES_TAC "A:bool"
    THEN ASM_REWRITE_TAC []
   );;

let ind_lemma_2 = TAC_PROOF
   (([],"!P. P ZIP_REP /\ 
         (!(fpf:*->(**+one)) x y. 
            (IS_fpf_REP fpf /\ P fpf ==> P (EXT_REP (x,y) fpf))) ==>
               (!(fpf:*->(**+one)). IS_fpf_REP fpf ==> P fpf)"),
    GEN_TAC THEN STRIP_TAC THEN
    MP_TAC (SPEC "\fpf:*->(**+one). IS_fpf_REP fpf /\ P fpf" ind_lemma_1) THEN
    CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
    ASM_REWRITE_TAC [lemma;IS_fpf_REP_ZIP] THEN
    DISCH_THEN MATCH_MP_TAC THEN
    REPEAT STRIP_TAC THENL 
    [IMP_RES_THEN MATCH_ACCEPT_TAC IS_fpf_EXT_REP;
     RES_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);;

let lemma1 = PROVE(
    "(! fpf:*->(**+one). IS_fpf_REP fpf ==> P(ABS_fpf fpf)) = (! fpf. P fpf)",
    EQ_TAC
    THEN REPEAT STRIP_TAC
    THEN STRIP_ASSUME_TAC (SPEC "fpf:(*,**)fpf" A_ONTO)
    THEN RES_TAC
    THEN ASM_REWRITE_TAC []
  );;


let SYM_RULE =
  (CONV_RULE (ONCE_DEPTH_CONV SYM_CONV))
? failwith `SYM_RULE`;;



let fpf_INDUCT = prove_thm 
   (`fpf_INDUCT`,
   "!P. (P ZIP /\ (!fpf. P fpf ==> !(x:*) (y:**). P(EXT (x,y) fpf))) ==> !fpf. P fpf",
    GEN_TAC
    THEN STRIP_TAC
    THEN MP_TAC (SPEC "\fpf:*->(**+one). P(ABS_fpf fpf):bool" ind_lemma_2)
    THEN BETA_TAC
    THEN ASM_REWRITE_TAC [(SYM_RULE ZIP_DEF_LEMMA); lemma1]
    THEN DISCH_THEN MATCH_MP_TAC
    THEN REWRITE_TAC [R_ONTO]
    THEN REPEAT GEN_TAC
    THEN CONV_TAC ANTE_CONJ_CONV
    THEN DISCH_THEN (STRIP_THM_THEN SUBST1_TAC)
    THEN ASM_REWRITE_TAC [A_R; (SYM_RULE (SPEC_ALL EXT_DEF_LEMMA))] 
    THEN STRIP_TAC THEN RES_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC
   );;

let fpf_INDUCT_TAC = INDUCT_THEN fpf_INDUCT ASSUME_TAC;;








%----------------------------------------------------------------
  Primitive theorems
----------------------------------------------------------------%


				    


%----------------------------------------------------------------
  APPLY  (derived from finite set IN code, though more of my own stuff here)
----------------------------------------------------------------%



let APPLY_DEF = new_definition
   (`APPLY_DEF`,
    "APPLY x (map:(*,**)fpf) = (REP_fpf map) x");;

let APPLY_ZIP = prove_thm(`APPLY_ZIP`,
   "!x. APPLY x (ZIP:(*,**)fpf) = FAILURE",
   REWRITE_TAC [APPLY_DEF; ZIP_DEF; R_A_lemma]);;

let NOT_SUCCEEDS_APPLY_ZIP = prove_thm(`NOT_SUCCEEDS_APPLY_ZIP`,
   "!x. SUCCEEDS(APPLY x (ZIP:(*,**)fpf)) = F",
   REWRITE_TAC [APPLY_DEF; ZIP_DEF; R_A_lemma] THEN REWRITE_TAC [SUCCEEDS_DEF; FAILURE_DEF; ISL]);;

let APPLY_EXT = prove_thm(`APPLY_EXT`,
   "!x y v (f:(*,**)fpf). APPLY x (EXT (y,v) f) = ((y=x)=>RESULT v|APPLY x f)",
   REPEAT STRIP_TAC
   THEN REWRITE_TAC [APPLY_DEF; EXT_DEF; R_A_lemma]
   THEN BETA_TAC
   THEN COND_CASES_TAC
   THEN REWRITE_TAC []
);;

let APPLY = save_thm(`APPLY`,CONJ APPLY_ZIP APPLY_EXT);;

let EQ_IMP_APPLY_EXT = prove_thm(`EQ_IMP_APPLY_EXT`,
   "!x y v (f:(*,**)fpf). (y=x) ==> (APPLY x (EXT (y,v) f) = RESULT v)",
   REPEAT STRIP_TAC
   THEN REWRITE_TAC [APPLY_DEF; EXT_DEF; R_A_lemma]
   THEN BETA_TAC
   THEN ASM_REWRITE_TAC []
);;


let NE_IMP_APPLY_EXT = prove_thm(`NE_IMP_APPLY_EXT`,
   "!x y v (f:(*,**)fpf). ~(y=x) ==> (APPLY x (EXT (y,v) f) = APPLY x f)",
   REPEAT STRIP_TAC
   THEN REWRITE_TAC [APPLY_DEF; EXT_DEF; R_A_lemma]
   THEN BETA_TAC
   THEN ASM_REWRITE_TAC []
);;




%----------------------------------------------------------------
  fpf EQUALITY
----------------------------------------------------------------%




let fpf_EQ = prove_thm
   (`fpf_EQ`,
   "! (f1:(*,**)fpf) f2 . (f1 = f2) = !x.(APPLY x f1) = (APPLY x f2)",
    REPEAT STRIP_TAC
    THEN EQ_TAC
    THENL [
        REPEAT STRIP_TAC
        THEN ASM_REWRITE_TAC []
    ;   REWRITE_TAC [APPLY_DEF]
        THEN REPEAT STRIP_TAC
        THEN POP_ASSUM (\th . ACCEPT_TAC (REWRITE_RULE [R_11] (EXT th)))
    ]
   );;
 



let NOT_INL_EQ_INR = prove_thm(`NOT_INL_EQ_INR`, "!(x:*) (y:**). ~(INL x = INR y)",
   REPEAT STRIP_TAC THEN (DISJ_CASES_THEN MP_TAC (SPEC "(INL x):(*+**)" ISL_OR_ISR)) 
   THENL [PURE_ONCE_ASM_REWRITE_TAC []; ALL_TAC] THEN REWRITE_TAC [ISL;ISR]
);;


let NOT_RESULT_EQ_FAILURE = save_thm(`NOT_RESULT_EQ_FAILURE`, 
    REWRITE_RULE [DEEP_SYM FAILURE_DEF; DEEP_SYM RESULT_DEF] (ISPECL ["x:*";"one"] NOT_INL_EQ_INR));;

let NOT_FAILURE_EQ_RESULT = save_thm(`NOT_FAILURE_EQ_RESULT`, 
    DEEP_SYM NOT_RESULT_EQ_FAILURE);;


let NOT_EXT_ZIP = prove_thm(`NOT_EXT_ZIP`,
   "!(x:*) (y:**) f. (EXT(x,y)f = ZIP) = F",
   REWRITE_TAC [fpf_EQ; PAIR_EQ;APPLY]
   THEN REPEAT GEN_TAC THEN CONV_TAC NOT_FORALL_CONV THEN EXISTS_TAC "x:*"
   THEN REWRITE_TAC [NOT_FAILURE_EQ_RESULT;NOT_RESULT_EQ_FAILURE]
);;

let NOT_ZIP_EXT = prove_thm(`NOT_ZIP_EXT`,
   "!(x:*) (y:**) f. (ZIP = EXT(x,y)f) = F",
   REWRITE_TAC [fpf_EQ; PAIR_EQ;APPLY]
   THEN REPEAT GEN_TAC THEN CONV_TAC NOT_FORALL_CONV THEN EXISTS_TAC "x:*"
   THEN REWRITE_TAC [NOT_FAILURE_EQ_RESULT;NOT_RESULT_EQ_FAILURE]
);;






let EXT_EXT = prove_thm(`EXT_EXT`,
   "!x u v (f:(*,**)fpf). (EXT(x,u) (EXT (x,v) f) = EXT(x,u) f)",
   REPEAT STRIP_TAC
   THEN REWRITE_TAC [fpf_EQ; APPLY; NOT_EXT_ZIP; NOT_ZIP_EXT]
   THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
);;



let EXT_COMM = prove_thm(`EXT_COMM`, 
   "!x y u v (f:(*,**)fpf). ~(x = y) ==> (EXT(x,u) (EXT (y,v) f) = EXT(y,v) (EXT(x,u) f))",
   REPEAT STRIP_TAC
   THEN REWRITE_TAC [fpf_EQ; APPLY; NOT_EXT_ZIP; NOT_ZIP_EXT]
   THEN GEN_TAC THEN COND_CASES_TAC
   THEN ASM_REWRITE_TAC [] THEN DEEP_SYM_ASM_REWRITE_TAC []
);;

let fpf_SING_EQ = prove_thm(`fpf_SING_EQ`, 
   "!(x:*) (y:**) x' y'.
      (EXT (x,y) ZIP = EXT (x',y') ZIP) ==> (x = x') /\ (y = y')",
   REWRITE_TAC [fpf_EQ;APPLY] THEN REPEAT GEN_TAC 
   THEN DISCH_THEN (MP_TAC o REWRITE_RULE [] o SPEC "x:*")
   THEN COND_CASES_TAC 
   THEN ASM_REWRITE_TAC [NOT_RESULT_EQ_FAILURE; NOT_FAILURE_EQ_RESULT; RESULT_11]
);;

let fpf_PAIR_EQ = prove_thm(`fpf_PAIR_EQ`,
   "!(x:*) x' (y:**) y'  y'' y'''.
      ~(x = x') ==>
      (EXT (x,y) (EXT (x',y'')ZIP) = EXT (x,y') (EXT (x',y''')ZIP)) ==>
         (y = y') /\ (y'' = y''')",
   REPEAT GEN_TAC THEN REWRITE_TAC [fpf_EQ; APPLY]
   THEN DISCH_TAC
   THEN DISCH_THEN (\t. MP_TAC (REWRITE_RULE [] (SPEC "x:*" t)) THEN  MP_TAC (REWRITE_RULE [] (SPEC "x':*" t)))
   THEN ASM_REWRITE_TAC [RESULT_11]
   THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []
);;






%< This is a REALLY bad proof, but it worked, so I left it >%


let fpf_SND_ABSORPTION = prove_thm(`fpf_SND_ABSORPTION`,
   "!fpf (d:*) (y:**). (SUCCEEDS(APPLY d fpf)) = ?!y. (EXT (d,y) fpf = fpf)",
   REWRITE_TAC [EXISTS_UNIQUE_DEF]
   THEN BETA_TAC THEN BETA_TAC
   THEN INDUCT_THEN fpf_INDUCT STRIP_ASSUME_TAC
   THEN ASM_REWRITE_TAC [NOT_EXT_ZIP; APPLY; NOT_SUCCEEDS_FAILURE]
   THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN TRY SMART_ELIMINATE_TAC THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT]
   THENL [
      CONJ_TAC 
      THENL [
         EXISTS_TAC "y:**" THEN REWRITE_TAC [EXT_EXT]
      ;  REPEAT GEN_TAC THEN REWRITE_TAC [EXT_EXT; fpf_EQ; APPLY]
         THEN STRIP_TAC 
         THEN POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
         THEN SMART_ELIMINATE_TAC 
         THEN POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
	 THEN ASM_REWRITE_TAC []
      ]
    ; EQ_TAC THEN REPEAT STRIP_TAC
      THENL [
            RES_TAC THEN EXISTS_TAC "y':**" 
            THEN DEEP_SYM_ASM_THEN 
               (ONCE_REWRITE_TAC [UNDISCH_ALL (SPECL ["d:*";"x:*";"y':**";"y:**";"fpf"] EXT_COMM)] )
            THEN SMART_ELIMINATE_TAC THEN REWRITE_TAC [EXT_EXT]
         ;  UNDISCH_ALL_TAC
            THEN REPEAT GEN_TAC THEN REWRITE_TAC [EXT_EXT; fpf_EQ; APPLY]
            THEN REPEAT STRIP_TAC
            THEN POP_ASSUM (MP_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
            THEN POP_ASSUM (MP_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
	    THEN ASM_REWRITE_TAC []
            THEN REPEAT STRIP_TAC
            THEN SMART_TERM_ELIMINATE_TAC 
            THEN POP_ASSUM (ACCEPT_TAC o (REWRITE_RULE [RESULT_11]))

       ; EXISTS_TAC "y':**"
         THEN POP_ASSUM (\t. ALL_TAC)
         THEN POP_ASSUM MP_TAC
         THEN ASM_REWRITE_TAC [fpf_EQ; APPLY]
	 THEN REPEAT STRIP_TAC
	 THEN POP_ASSUM (ASSUME_TAC o SPEC_ALL)
	 THEN UNDISCH_ALL_TAC
	 THEN COND_CASES_TAC
         THEN ASM_REWRITE_TAC []
         THEN STRIP_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC []
       ; POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC
         THEN REWRITE_TAC [fpf_EQ; APPLY]
            THEN DISCH_THEN (ASSUME_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
            THEN DISCH_THEN (ASSUME_TAC o (REWRITE_RULE [RESULT_11]) o (SPEC "d:*"))
            THEN SMART_TERM_ELIMINATE_TAC 
            THEN POP_ASSUM (ACCEPT_TAC o (REWRITE_RULE [RESULT_11]))
      ]
   ]
);;





%----------------------------------------------------------------
  PORTION - equivalent to subset.  Not very useful.
     Was one day hoping to prove the following induction property:

    "!P. P ZIP /\ 
          (!(fpf:(*,**)fpf) x. (!f. ~(SND (APPLY x f)) /\ PORTION f fpf ==> P f) 
                 ==> !y. P(EXT (x,y) fpf))
          ==> (!fpf. !f. PORTION f fpf ==> P f)";;
----------------------------------------------------------------%


let PORTION_DEF = new_definition(`PORTION_DEF`,
  "PORTION (f:(*,**)fpf) f' = !x y. (APPLY x f = RESULT y) ==> (APPLY x f' = RESULT y)");;

let PORTION_SELF = prove_thm(`PORTION_SELF`, "!(f:(*,**)fpf). PORTION f f", REWRITE_TAC [PORTION_DEF]);;
let PORTION_ZIP = prove_thm(`PORTION_ZIP`, "!(f:(*,**)fpf). PORTION f ZIP = (f = ZIP)", 
   REWRITE_TAC [PORTION_DEF;APPLY;PAIR_EQ] THEN fpf_INDUCT_TAC THEN 
   REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [APPLY;PAIR_EQ;NOT_EXT_ZIP]
   THEN CONV_TAC (DEPTH_CONV NOT_FORALL_CONV)
   THEN CONV_TAC (DEPTH_CONV NOT_FORALL_CONV)
   THEN EXISTS_TAC "x" THEN EXISTS_TAC "y" THEN REWRITE_TAC [NOT_FAILURE_EQ_RESULT; NOT_RESULT_EQ_FAILURE]
);;




%----------------------------------------------------------------
  EXTBY  (derived from finite set UNION code)
----------------------------------------------------------------%



let EXTBY_P = new_definition
   (`EXTBY_P`,
    "EXTBY_P f (map:(*,**)fpf) map' = 
        !x. APPLY x f = (SUCCEEDS(APPLY x map))=>(APPLY x map)|(APPLY x map')");;


let EXTBY_DEF = new_definition
   (`EXTBY_DEF`,
    "EXTBY (map:(*,**)fpf) map' = @f. EXTBY_P f map map'");;


						     
let EXTBY_MEMBER_LEMMA = PROVE(
  "!(f1:(*,**)fpf) f2.  EXTBY_P (EXTBY f1 f2) f1 f2",
  REWRITE_TAC [EXTBY_DEF]
    THEN REWRITE_TAC [SYM_RULE EXTBY_P]
    THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
    THEN REPEAT GEN_TAC
    THEN REWRITE_TAC [EXTBY_P]
    THEN SPEC_TAC ("f1","f1")
    THEN INDUCT_THEN fpf_INDUCT MP_TAC
    THENL [ % 1 %
        EXISTS_TAC "f2"
        THEN REWRITE_TAC [NOT_SUCCEEDS_APPLY_ZIP]
    ;  % 2 %
        REPEAT STRIP_TAC
        THEN EXISTS_TAC "(EXT (x,y) (f:(*,**)fpf))"
        THEN GEN_TAC
        THEN REWRITE_TAC [APPLY]
        THEN ASM_CASES_TAC "(x:*) = x'"
        THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT]
    ]
);;



let APPLY_EXTBY = save_thm (`APPLY_EXTBY`, REWRITE_RULE [EXTBY_P] EXTBY_MEMBER_LEMMA);;

let EXTBY_ZIP_LEMMA = PROVE(
   "! f:(*,**)fpf . EXTBY ZIP f = f",
    REWRITE_TAC [fpf_EQ; APPLY_EXTBY;NOT_SUCCEEDS_APPLY_ZIP]
   );;
let EXTBY_EXT_1 = PROVE(
    "! x y (f1:(*,**)fpf) f2 .
      EXTBY f1 (EXT (x,y) f2) = 
          (SUCCEEDS(APPLY x f1)) => EXTBY f1 f2 | (EXT (x,y) (EXTBY f1 f2))",
    REPEAT GEN_TAC
    THEN COND_CASES_TAC
    THEN REWRITE_TAC [fpf_EQ; APPLY_EXTBY;APPLY]
    THEN GEN_TAC
    THEN ASM_CASES_TAC "x = x'"
    THEN TRY SMART_ELIMINATE_TAC
    THEN ASM_REWRITE_TAC []
   );;




let EXTBY_EXT_2 = PROVE(
   "!x y (f1:(*,**)fpf) f2. EXTBY (EXT (x,y) f1) f2 = EXT (x,y) (EXTBY f1 f2)",
    REPEAT GEN_TAC
    THEN REWRITE_TAC [fpf_EQ; APPLY_EXTBY;APPLY]
    THEN GEN_TAC
    THEN ASM_CASES_TAC "x = x'"
    THEN TRY SMART_ELIMINATE_TAC
    THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT]
   );;



let EXTBY = save_thm (`EXTBY`, (CONJ EXTBY_ZIP_LEMMA (CONJ EXTBY_EXT_1 EXTBY_EXT_2)));;

 


   







%----------------------------------------------------------------
  TRANSFORM - sort of like compose really
(but can't compose two partial functions)
----------------------------------------------------------------%


let TRANSFORM_P = new_definition
   (`TRANSFORM_P`,
    "TRANSFORM_P map' (fn:**->***) (map:(*,**)fpf) = 
        !x. APPLY x map' = (SUCCEEDS(APPLY x map))=>RESULT(fn (RESULTOF(APPLY x map))) |FAILURE");;

let TRANSFORM_DEF = new_definition
   (`TRANSFORM_DEF`,
    "TRANSFORM (fn:**->***) (map:(*,**)fpf) = @map'. TRANSFORM_P map' fn map");;


						     
let TRANSFORM_MEMBER_LEMMA = PROVE(
  "!(fn:**->***) (map:(*,**)fpf).  TRANSFORM_P (TRANSFORM fn map) fn map",
  REWRITE_TAC [TRANSFORM_DEF]
    THEN REWRITE_TAC [SYM_RULE TRANSFORM_P]
    THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
    THEN REPEAT GEN_TAC
    THEN REWRITE_TAC [TRANSFORM_P]
    THEN SPEC_TAC ("map","map")
    THEN INDUCT_THEN fpf_INDUCT MP_TAC
    THENL [ % 1 %
        EXISTS_TAC "ZIP:(*,***)fpf"
        THEN PURE_ONCE_REWRITE_TAC [NOT_SUCCEEDS_APPLY_ZIP] THEN REWRITE_TAC [APPLY]
    ;  % 2 %
        REPEAT STRIP_TAC
        THEN EXISTS_TAC "(EXT (x,(fn (y:**))) (map':(*,***)fpf))"
        THEN GEN_TAC
        THEN REWRITE_TAC [APPLY]
        THEN ASM_CASES_TAC "(x:*) = x'"
        THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT; RESULTOF_RESULT]
    ]
);;



let APPLY_TRANSFORM = save_thm (`APPLY_TRANSFORM`, REWRITE_RULE [TRANSFORM_P] TRANSFORM_MEMBER_LEMMA);;

let TRANSFORM_ZIP = PROVE(
   "! fn:(**->***). TRANSFORM fn (ZIP:(*,**)fpf) = ZIP",
    REWRITE_TAC [fpf_EQ; APPLY_TRANSFORM;APPLY; NOT_SUCCEEDS_FAILURE]
   );;
let TRANSFORM_EXT = PROVE(
    "! fn:(**->***) (fpf:(*,**)fpf) x y. 
      TRANSFORM fn (EXT (x,y) fpf) = 
          (EXT (x,fn y) (TRANSFORM fn fpf))",
    REPEAT GEN_TAC
    THEN REWRITE_TAC [fpf_EQ; APPLY_TRANSFORM;APPLY]
    THEN GEN_TAC
    THEN ASM_CASES_TAC "x = x'"
    THEN TRY SMART_ELIMINATE_TAC
    THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT; RESULTOF_RESULT]
   );;



let TRANSFORM = save_thm (`TRANSFORM`, (CONJ TRANSFORM_ZIP TRANSFORM_EXT));;

 





%----------------------------------------------------------------
  DOM
----------------------------------------------------------------%




let DOM_P = new_definition
   (`DOM_P`,
    "DOM_P dom (map:(*,**)fpf) = 
        !x. x IN dom = (SUCCEEDS(APPLY x map))");;

let DOM_DEF = new_definition
   (`DOM_DEF`,
    "DOM (map:(*,**)fpf) = @dom'. DOM_P dom' map");;


						     
let DOM_MEMBER_LEMMA = PROVE(
  "!(map:(*,**)fpf).  DOM_P (DOM map) map",
  REWRITE_TAC [DOM_DEF]
    THEN REWRITE_TAC [SYM_RULE DOM_P]
    THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
    THEN REPEAT GEN_TAC
    THEN REWRITE_TAC [DOM_P]
    THEN SPEC_TAC ("map","map")
    THEN INDUCT_THEN fpf_INDUCT MP_TAC
    THENL [ % 1 %
        EXISTS_TAC "EMPTY:(*)set"
        THEN REWRITE_TAC [NOT_IN_EMPTY;NOT_SUCCEEDS_APPLY_ZIP]
    ;  % 2 %
        REPEAT STRIP_TAC
        THEN RENAME_TAC
        THEN EXISTS_TAC "x INSERT (dom':(*)set)"
        THEN GEN_TAC
        THEN REWRITE_TAC [APPLY;IN_INSERT]
        THEN ASM_CASES_TAC "(x:*) = x'"
        THEN ASM_REWRITE_TAC [SUCCEEDS_RESULT]
       THEN EQ_TAC
       THEN REPEAT STRIP_TAC
       THEN TRY SMART_ELIMINATE_TAC 
       THEN ASM_REWRITE_TAC []
       THEN UNDISCH_ALL_TAC
       THEN REWRITE_TAC []
    ]
);;



let IN_DOM = save_thm (`IN_DOM`, REWRITE_RULE [DOM_P] DOM_MEMBER_LEMMA);;

let DOM_ZIP = PROVE(
    "DOM (ZIP:(*,**)fpf) = EMPTY",
    REWRITE_TAC [EXTENSION; NOT_IN_EMPTY; IN_DOM;APPLY; NOT_SUCCEEDS_FAILURE]
   );;
let DOM_EXT = PROVE(
    "! (fpf:(*,**)fpf) x y. 
      DOM (EXT (x,y) fpf) = 
          (x INSERT (DOM fpf))",
    REPEAT GEN_TAC
    THEN REWRITE_TAC [EXTENSION; IN_DOM;APPLY]
    THEN GEN_TAC
    THEN ASM_CASES_TAC "x = x'"
    THEN TRY SMART_ELIMINATE_TAC 
    THEN ASM_REWRITE_TAC [IN_INSERT; IN_DOM; SUCCEEDS_RESULT]
    THEN EQ_TAC
       THEN REPEAT STRIP_TAC
       THEN TRY SMART_ELIMINATE_TAC 
       THEN ASM_REWRITE_TAC []
       THEN UNDISCH_ALL_TAC
       THEN REWRITE_TAC []

   );;




let DOM = save_thm (`DOM`, (CONJ DOM_ZIP DOM_EXT));;



let EMPTY_DOM  = prove_thm(`EMPTY_DOM`,
   "!(f:(*,**)fpf). (DOM f = {}) = (f = ZIP)",
GEN_TAC THEN EQ_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC [DOM]]
THEN SPEC_TAC ("f","f") THEN fpf_INDUCT_TAC THEN ASM_REWRITE_TAC [DOM;NOT_EXT_ZIP;NOT_INSERT_EMPTY]
);;




let IN_DOM_IMP_APPLY = prove_thm (`IN_DOM_IMP_APPLY`, 
   "!(fpf:(*,**)fpf) x. x IN (DOM fpf) ==> (?y. (APPLY x fpf) = RESULT y)",
   fpf_INDUCT_TAC THENL [
      REWRITE_TAC [DOM_ZIP; NOT_IN_EMPTY; APPLY]
    ; REPEAT GEN_TAC THEN REWRITE_TAC [DOM_EXT; IN_INSERT; APPLY]
      THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [] THENL [
         EXISTS_TAC "y:**" THEN REWRITE_TAC []
       ; REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [] THEN SMART_ELIMINATE_TAC
         THEN POP_ASSUM (STRIP_ASSUME_TAC o REWRITE_RULE [])
      ]
   ]);;


let IN_DOM_EQ_APPLY = prove_thm (`IN_DOM_EQ_APPLY`, 
    "!(fpf:(*,**)fpf) x. x IN (DOM fpf) = (?y. (APPLY x fpf) = RESULT y)",                                               
   REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC [IN_DOM_IMP_APPLY]
   THEN SPEC_TAC ("fpf","fpf") THEN fpf_INDUCT_TAC
   THENL [
      REWRITE_TAC [APPLY;NOT_FAILURE_EQ_RESULT;DOM;NOT_IN_EMPTY]
    ; REWRITE_TAC [APPLY;DOM;IN_INSERT]
      THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN DEEP_SYM_ASM_REWRITE_TAC [] 
      THEN FIRST_ASSUM ACCEPT_TAC 
   ]
);;

let NOT_IN_DOM_IMP_APPLY = prove_thm (`NOT_IN_DOM_IMP_APPLY`, 
   "!(fpf:(*,**)fpf) x. ~(x IN (DOM fpf)) ==> (APPLY x fpf = FAILURE)",
   fpf_INDUCT_TAC THENL [
      REWRITE_TAC [DOM_ZIP; NOT_IN_EMPTY; APPLY]
    ; REPEAT GEN_TAC THEN REWRITE_TAC [DOM_EXT; IN_INSERT; APPLY]
      THEN PURE_ONCE_REWRITE_TAC [DE_MORGAN_THM]
      THEN REPEAT STRIP_TAC  THEN DEEP_SYM_ASM_REWRITE_TAC [] THEN RES_TAC
   ]);;


%----------------------------------------------------------------
  ABSORPTION cont.
I think the following is the most powerful of the absorption/decomposition results.
It is needed to get the induction results that follow.  Effectively
we are proving that for (EXT(x,y)f) there is a partial function f'
for which (EXT(x,y)f') is the same as (EXT(x,y)f) and x is not in the
domain of f'.  Essentially a decomposition theorem really, but the
name has stuck...

Nb. All of this is probably superseded by the derivation of UNEXT below.
----------------------------------------------------------------%


let EXT_ABSORPTION = prove_thm(`EXT_ABSORPTION`,
  "!f (x:*). ?f'. !(y:**). 
      (EXT(x,y) f = EXT(x,y) f') /\ 
      (!x'. (APPLY x' f' = ((x' = x) => FAILURE | APPLY x' f))) /\
      (DOM f' = (DOM f) DELETE x)",
fpf_INDUCT_TAC
THENL [
   REPEAT GEN_TAC
   THEN EXISTS_TAC "ZIP:(*,**)fpf"
   THEN ASM_REWRITE_TAC [APPLY;DOM;EMPTY_DELETE]
   THEN REPEAT STRIP_TAC THEN COND_CASES_TAC  THEN ASM_REWRITE_TAC []
; REPEAT GEN_TAC
   THEN POP_ASSUM (STRIP_ASSUME_TAC o (SPECL ["x'':*"]))
   THEN ASM_CASES_TAC "(x'':*) = x"
   THENL [
      SMART_ELIMINATE_TAC
      THEN EXISTS_TAC "f':(*,**)fpf"
      THEN ASM_REWRITE_TAC [EXT_EXT;APPLY;EXTENSION;IN_DOM;IN_DELETE;PAIR_EQ]
      THEN CONJ_TAC 
      THEN REPEAT STRIP_TAC 
      THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
      THEN POP_ASSUM (ASSUME_TAC o DEEP_SYM) THEN ASM_REWRITE_TAC [NOT_SUCCEEDS_FAILURE]
   ;  EXISTS_TAC "EXT((x:*),(y:**))f'"
      THEN ONCE_ASM_REWRITE_TAC [UNDISCH_ALL (SPEC_ALL (SPECL ["x'':*";"x:*"] EXT_COMM))]
      THEN ASM_REWRITE_TAC [EXT_EXT;APPLY;EXTENSION;IN_DOM;IN_DELETE;PAIR_EQ]
      THEN CONJ_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
      THEN POP_ASSUM (\t1. POP_ASSUM (\t2. ASSUME_TAC (DEEP_SYM t2) THEN
             ASSUME_TAC (DEEP_SYM t1)))
      THEN TRY COND_CASES_TAC THEN ASM_REWRITE_TAC []
      THEN REPEAT SMART_ELIMINATE_TAC THEN UNDISCH_ALL_TAC THEN REWRITE_TAC [NOT_SUCCEEDS_FAILURE]
   ]
]
);;





%----------------------------------------------------------------
  CARDINALITY OF THE DOMAIN
----------------------------------------------------------------%


let DOM_FINITE = prove_thm(`DOM_FINITE`,
   "!f:(*,**)fpf. FINITE(DOM f)",
   fpf_INDUCT_TAC
   THEN REWRITE_TAC [FINITE_EMPTY; DOM]
   THEN IMP_RES_TAC FINITE_INSERT
);;


let CARD_DOM_INSERT = prove_thm(`CARD_DOM_INSERT`,
   "!x (f:(*,**)fpf). CARD(x INSERT (DOM f)) = (x IN (DOM f) => CARD (DOM f) | SUC(CARD (DOM f)))",
   REPEAT GEN_TAC THEN ASSUME_TAC (SPEC "f" DOM_FINITE) THEN IMP_RES_TAC CARD_INSERT
   THEN ASM_REWRITE_TAC []
);;

let CARD_DOM_EQ_0 = prove_thm(`CARD_DOM_EQ_0`,
   "!x (f:(*,**)fpf). (CARD(DOM f) = 0) = (f = ZIP)",
   REPEAT GEN_TAC THEN ASSUME_TAC (SPEC "f" DOM_FINITE) THEN IMP_RES_TAC CARD_EQ_0
   THEN ASM_REWRITE_TAC [EMPTY_DOM]
);;



   %----------------------------------------------------------------
     CARD_EQ_SUC - This really should have been proven in sets.ml
   ----------------------------------------------------------------%

let FINITE_RULE t = UNDISCH o (SPEC t);;

let CARD_EQ_SUC = prove_thm(`CARD_EQ_SUC`,
 "!i (s:(*)set).  
    FINITE s ==> (CARD s = SUC i) ==> 
    ?s' x. ~x IN s' /\ (CARD s' = i) /\ (s = x INSERT s')",
   GEN_TAC THEN SET_INDUCT_TAC
   THEN ASM_REWRITE_TAC [CARD_EMPTY; SUC_NOT; FINITE_RULE "s" CARD_INSERT; INV_SUC_EQ]
   THEN STRIP_TAC THEN RES_TAC THEN REPEAT (SSMART_EXISTS_TAC)
   THEN ASM_REWRITE_TAC []
);;

   %----------------------------------------------------------------
     CARD_DOM_SUC - This really should have been proven in sets.ml
   ----------------------------------------------------------------%


let CARD_DOM_SUC = prove_thm(`CARD_DOM_SUC`,
  "!(f:(*,**)fpf) i. (CARD(DOM f) = SUC i) ==>
    ?f' x y. ~(SUCCEEDS(APPLY x f')) /\ (CARD(DOM f') = i) /\ (f = EXT(x,y)f')",
   fpf_INDUCT_TAC THEN REWRITE_TAC [CARD_EMPTY; DOM_ZIP;SUC_NOT]
   THEN REPEAT STRIP_TAC THEN ASSUME_TAC (SPEC "f" DOM_FINITE) 
   THEN STRIP_ASSUME_TAC (SPEC_ALL EXT_ABSORPTION)
   THEN EXISTS_TAC  "f'"
   THEN EXISTS_TAC  "x"
   THEN EXISTS_TAC  "y"
   THEN ASM_REWRITE_TAC [fpf_EQ;APPLY;NOT_SUCCEEDS_FAILURE]
   THEN REPEAT STRIP_TAC
   THENL [
      REWRITE_TAC [FINITE_RULE "DOM (f:(*,**)fpf)" CARD_DELETE]
      THEN UNDISCH_TAC "CARD(DOM(EXT(x,y)(f:(*,**)fpf))) = SUC i" 
      THEN REWRITE_TAC [DOM;FINITE_RULE "(DOM (f:(*,**)fpf))" CARD_INSERT]
      THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
      THEN STRIP_TAC THEN IMP_RES_TAC INV_SUC THEN ASM_REWRITE_TAC [SUC_SUB1]
   ;    
      COND_CASES_TAC THEN ASM_REWRITE_TAC [PAIR_EQ] 
      THEN POP_ASSUM (ASSUME_TAC o DEEP_SYM)
      THEN ASM_REWRITE_TAC [PAIR_EQ]
   ]
);;



%----------------------------------------------------------------
  STRONG INDUCTION RESULTS
     STRONG_INDUCTION
        Strong Induction over the natural numbers
     fpf_CARD_INDUCT
        Induction over the cardinality of the domain of the finite map
 
    fpf_INDUCT_2 - similar to SET_INDUCT_TAC_2 where the elemenat added can be assumed to
        not be already in the domain of the function.  Not a trivial exercise to prove!
        Proved by induction over the cardinality of the domain.

    fpf_STRONG_INDUCT - similar to SET_INDUCT_TAC_2 where the elemenat added can be assumed to

----------------------------------------------------------------%



let STRONG_INDUCTION_lemma = prove_thm(`STRONG_INDUCTION_lemma`,
  "!P. P 0 /\ (!j. (!i. i <= j ==> P i) ==> P (SUC j)) ==> 
      !n. (!i. i <= n ==> P i)",
GEN_TAC THEN STRIP_TAC THEN INDUCT_THEN INDUCTION MP_TAC
THEN UNDISCH_ALL_TAC THEN REWRITE_TAC [GREATER; LESS_OR_EQ; NOT_LESS_0]
THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []
THENL [
   FIRST_ASSUM MATCH_MP_TAC
   THEN IMP_RES_TAC LESS_SUC_IMP
   THEN ASM_CASES_TAC "i = n"
   THEN RES_TAC
   THEN ASM_REWRITE_TAC []
 ; RES_TAC
]
);;

let STRONG_INDUCTION = save_thm(`STRONG_INDUCTION`,
    (GEN_ALL (DISCH_ALL (GEN_ALL 
    (REWRITE_RULE [LESS_OR_EQ] (SPECL ["n";"n"] (UNDISCH_ALL (SPEC_ALL STRONG_INDUCTION_lemma))))
    ))));;





let fpf_CARD_INDUCT = 
   let P = "\n. !(f:(*,**)fpf). 
      CARD(DOM f) <= n ==> P f" in
   let t1 = REWRITE_RULE [LESS_OR_EQ; NOT_LESS_0;CARD_DOM_EQ_0] (BETA_RULE (SPEC P STRONG_INDUCTION)) in
   let t2 = REWRITE_RULE [] (SPECL ["CARD(DOM (f':(*,**)fpf))";"f':(*,**)fpf"] (UNDISCH_ALL t1)) in
      save_thm(`fpf_CARD_INDUCT`,
         GEN_ALL (REWRITE_RULE [DEEP_SYM LESS_OR_EQ] (DISCH_ALL (GEN "f'" t2))));;



let fpf_INDUCT_2 = prove_thm(`fpf_INDUCT_2`,
   "!P. P ZIP /\ 
          (!(fpf:(*,**)fpf) x y. P fpf ==> ~SUCCEEDS(APPLY x fpf) ==> P(EXT (x,y) fpf))
             ==> (!fpf. P fpf)",
   REPEAT STRIP_TAC		
   THEN SPEC_TAC ("fpf","fpf")
   THEN MATCH_MP_TAC fpf_CARD_INDUCT
   THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []
   THEN UNDISCH_ALL_TAC
   THEN REWRITE_TAC [LESS_OR_EQ]
   THEN REPEAT STRIP_TAC
   THENL [
      POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [LESS_EQ_MONO;LESS_OR_EQ]) o (MATCH_MP LESS_OR))
      THEN POP_ASSUM (\t1. POP_ASSUM (\t2. ASSUME_TAC (MATCH_MP t2 t1)))
      THEN POP_ASSUM (ASSUME_TAC o (REWRITE_RULE []) o (SPEC "f"))
      THEN ASM_REWRITE_TAC []
   ;  IMP_RES_TAC CARD_DOM_SUC
      THEN FIRST_ASSUM (IMP_RES_TAC o REWRITE_RULE [] o SPEC "j:num")
      THEN SMART_ELIMINATE_TAC THEN RES_TAC THEN RES_TAC THEN ASM_REWRITE_TAC []
   ]);;


let fpf_INDUCT_TAC_2 (asm,gl) =
   (MATCH_MP_TAC (BETA_RULE (SPEC (snd (dest_comb gl)) fpf_INDUCT_2))
   THEN REPEAT STRIP_TAC) (asm,gl);;





%----------------------------------------------------------------
  RANGE
----------------------------------------------------------------%




let RANGE_P = new_definition
   (`RANGE_P`,
    "RANGE_P ran (map:(*,**)fpf) = 
        !y. y IN ran = (?x. APPLY x map = RESULT y)");;

let RANGE_DEF = new_definition
   (`RANGE_DEF`,
    "RANGE (map:(*,**)fpf) = @ran'. RANGE_P ran' map");;


						     
let RANGE_MEMBER_LEMMA = PROVE(
  "!(fpf:(*,**)fpf).  RANGE_P (RANGE fpf) fpf",
  REWRITE_TAC [RANGE_DEF]
    THEN REWRITE_TAC [SYM_RULE RANGE_P]
    THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
    THEN REPEAT GEN_TAC
    THEN REWRITE_TAC [RANGE_P]
    THEN SPEC_TAC ("fpf","fpf")
    THEN fpf_INDUCT_TAC_2
    THENL [ % 1 %
        EXISTS_TAC "EMPTY:(**)set"
        THEN REWRITE_TAC [APPLY;NOT_IN_EMPTY;NOT_FAILURE_EQ_RESULT;NOT_RESULT_EQ_FAILURE]
    ;  % 2 %
        EXISTS_TAC "y INSERT (ran':(**)set)"
        THEN GEN_TAC
        THEN REWRITE_TAC [APPLY;IN_INSERT]
        THEN ASM_CASES_TAC "(y':**) = y"
        THEN ASM_REWRITE_TAC []
        THENL [
           EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC []
        ;  EQ_TAC THEN STRIP_TAC 
           THENL [
              EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []
              THEN COND_CASES_TAC 
              THENL [
                 SMART_ELIMINATE_TAC THEN SMART_TERM_ELIMINATE_TAC 
                 THEN UNDISCH_ALL_TAC THEN REWRITE_TAC [SUCCEEDS_RESULT]
              ; ASM_REWRITE_TAC []
              ]
           ;  POP_ASSUM MP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC []
              THENL [ 
                 DEEP_SYM_ASM_REWRITE_TAC [RESULT_11] 
              ;  DISCH_TAC THEN EXISTS_TAC "x':*" THEN ASM_REWRITE_TAC []
              ]
           ]
        ]
    ]
);;



let IN_RANGE = save_thm (`IN_RANGE`, REWRITE_RULE [RANGE_P] RANGE_MEMBER_LEMMA);;

let RANGE_ZIP = prove_thm(`RANGE_ZIP`,
    "RANGE (ZIP:(*,**)fpf) = EMPTY",
    REWRITE_TAC [EXTENSION; NOT_IN_EMPTY; IN_RANGE;APPLY;NOT_FAILURE_EQ_RESULT; NOT_RESULT_EQ_FAILURE]
   );;
let RANGE_EXT = prove_thm(`RANGE_EXT`,
    "! (fpf:(*,**)fpf) x y. 
      ~(x IN (DOM fpf)) ==>
          (RANGE (EXT (x,y) fpf) =  y  INSERT (RANGE fpf))",

    REPEAT GEN_TAC
    THEN REWRITE_TAC [EXTENSION;IN_DOM;IN_RANGE;APPLY;IN_INSERT;IN_DELETE]
    THEN STRIP_TAC THEN GEN_TAC
    THEN EQ_TAC THEN STRIP_TAC
    THENL [
       POP_ASSUM MP_TAC THEN COND_CASES_TAC
       THEN REWRITE_TAC [RESULT_11] THEN DISCH_TAC THEN ASM_REWRITE_TAC []
       THEN DISJ2_TAC THEN EXISTS_TAC "x'':*" THEN FIRST_ASSUM ACCEPT_TAC
    ;  EXISTS_TAC "x:*" THEN ASM_REWRITE_TAC []
    ;  EXISTS_TAC "x'':*" THEN ASM_REWRITE_TAC []
       THEN COND_CASES_TAC THEN TRY SMART_VAR_ELIMINATE_TAC  THEN TRY SMART_TERM_ELIMINATE_TAC
       THEN UNDISCH_ALL_TAC THEN REWRITE_TAC [SUCCEEDS_RESULT] 
    ]
);;




let EMPTY_RANGE  = prove_thm(`EMPTY_RANGE`,
   "!(f:(*,**)fpf). (RANGE f = {}) = (f = ZIP)",
GEN_TAC THEN EQ_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC [RANGE_ZIP]]
THEN SPEC_TAC ("f","f") THEN fpf_INDUCT_TAC_2
THEN UNDISCH_ALL_TAC
THEN REWRITE_TAC [(UNDISCH (SPEC_ALL (PURE_REWRITE_RULE [IN_DOM] RANGE_EXT)))]
THEN ASM_REWRITE_TAC [NOT_EXT_ZIP;NOT_INSERT_EMPTY]
);;



%----------------------------------------------------------------
  LIST_TO_FPF - generates a finite partial function from a list of pairs
----------------------------------------------------------------%

let LIST_TO_FPF_DEF = new_recursive_definition false list_Axiom `LIST_TO_FPF_DEF`
   "(LIST_TO_FPF [] = ZIP) /\ (LIST_TO_FPF (CONS (pr:(* # **)) t) = EXT pr (LIST_TO_FPF t))";;




%----------------------------------------------------------------
  UNEXT
----------------------------------------------------------------%


let SUCCEEDS_OR_FAILURE = prove_thm(`SUCCEEDS_OR_FAILURE`,
   "!x (fpf:(*,**)fpf). SUCCEEDS(APPLY x fpf) \/ FAILS(APPLY x fpf)",

   REPEAT GEN_TAC 
   THEN DISJ_CASES_TAC (REWRITE_RULE [DEEP_SYM SUCCEEDS_DEF] (ISPEC "APPLY x (fpf:(*,**)fpf)" ISL_OR_ISR))
   THEN ASM_REWRITE_TAC [] THEN IMP_RES_TAC INR THEN POP_ASSUM (SUBST1_TAC o DEEP_SYM)
   THEN PURE_ONCE_REWRITE_TAC [one]
   THEN REWRITE_TAC [FAILS_DEF; ISR]
);;



let UNEXT_P = new_definition
   (`UNEXT_P`,
    "UNEXT_P x fpf1 (fpf2:(*,**)fpf) = 
        !x'. (x = x') => (APPLY x' fpf2 = FAILURE) | (APPLY x' fpf1 = APPLY x' fpf2)");;

let UNEXT_DEF = new_definition
   (`UNEXT_DEF`,
    "UNEXT x (fpf:(*,**)fpf) = @fpf'. UNEXT_P x fpf fpf'");;


						     
let UNEXT_MEMBER_LEMMA = PROVE(
  "!x (fpf:(*,**)fpf).  UNEXT_P x fpf (UNEXT x fpf)",
  REWRITE_TAC [UNEXT_DEF]
    THEN REWRITE_TAC [SYM_RULE UNEXT_P]
    THEN CONV_TAC (TOP_DEPTH_CONV SELECT_CONV)
    THEN REPEAT GEN_TAC
    THEN REWRITE_TAC [UNEXT_P]
    THEN SPEC_TAC ("fpf","fpf")
    THEN fpf_INDUCT_TAC_2
    THENL [ % 1 %
        EXISTS_TAC "ZIP:(*,**)fpf"
        THEN REWRITE_TAC [APPLY] THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC []
    ;  % 2 %
        EXISTS_TAC "(x' = x) => fpf' | EXT (x',y) fpf'"
        THEN GEN_TAC
        THEN REWRITE_TAC [APPLY]
        THEN COND_CASES_TAC THEN COND_CASES_TAC
        THEN TRY SMART_ELIMINATE_TAC 
        THEN ASM_REWRITE_TAC [APPLY]
        THENL [
           FIRST_ASSUM (ACCEPT_TAC o REWRITE_RULE [] o SPEC "x:*")
         ; FIRST_ASSUM (ACCEPT_TAC o REWRITE_RULE [] o SPEC "x'':*")
	 ; DEEP_SYM_ASM_REWRITE_TAC [APPLY]
         ; COND_CASES_TAC
           THEN FIRST_ASSUM (\t. if is_forall(concl t) then UNDISCH_TAC (concl t) else fail)
           THEN DISCH_THEN (MP_TAC o SPEC "x'':*")
	   THEN ASM_REWRITE_TAC [APPLY]
        ]
    ]
);;


let APPLY_UNEXT = save_thm (`APPLY_UNEXT`, REWRITE_RULE [UNEXT_P] UNEXT_MEMBER_LEMMA);;

let UNEXT_ZIP = prove_thm(`UNEXT_ZIP`,
    "!x. UNEXT x (ZIP:(*,**)fpf) = ZIP",
    REWRITE_TAC [fpf_EQ; APPLY] THEN REPEAT GEN_TAC
    THEN ASM_CASES_TAC "x = x'"
    THEN MP_TAC (SPECL ["x";"ZIP:(*,**)fpf";"x'"] APPLY_UNEXT)
    THEN ASM_REWRITE_TAC []
    THEN STRIP_TAC THEN DEEP_SYM_ASM_REWRITE_TAC [APPLY]
);;

let APPLY_UNEXT_SAME = save_thm(`APPLY_UNEXT_SAME`,
      GEN_ALL(REWRITE_RULE [] (SPECL ["x:*";"fpf";"x:*"] APPLY_UNEXT)));;

let APPLY_UNEXT_DIFF = save_thm(`APPLY_UNEXT_DIFF`,
      PROVE("!x (fpf:(*,**)fpf) x'. ~(x = x') ==> (APPLY x' fpf = APPLY x' (UNEXT x fpf))",
         REPEAT STRIP_TAC THEN MP_TAC (SPECL ["x:*";"fpf";"x':*"] APPLY_UNEXT)
         THEN ASM_REWRITE_TAC []));;


%< Another grotesque proof involving too many cases >%

let UNEXT_EXT = prove_thm(`UNEXT_EXT`,
    "!fpf x x' y. UNEXT x (EXT (x',y) fpf) = (x = x') => (UNEXT x fpf) | EXT (x',y) (UNEXT x fpf)",

    fpf_INDUCT_TAC THEN REPEAT GEN_TAC
    THENL [
       COND_CASES_TAC THEN ASM_REWRITE_TAC [UNEXT_ZIP;APPLY;fpf_EQ]
       THEN GEN_TAC THENL [
          MP_TAC (SPECL ["x'";"EXT(x',y)ZIP";"x''"] APPLY_UNEXT)
          THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY] THEN DISCH_THEN (ACCEPT_TAC o SYM)
        ; MP_TAC (SPECL ["x";"EXT(x',y)ZIP";"x''"] APPLY_UNEXT)
          THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY] THENL [
             SMART_ELIMINATE_TAC THEN DISCH_TAC THEN DEEP_SYM_ASM_REWRITE_TAC []
	   ; COND_CASES_TAC THEN ASM_REWRITE_TAC [] THEN DISCH_THEN (ACCEPT_TAC o SYM)
          ]
       ]
     ;
       COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY;fpf_EQ]
       THEN GEN_TAC THENL [
          MP_TAC (SPECL ["x'";"EXT(x',y')(EXT(x,y)fpf)";"x''':*"] APPLY_UNEXT)
          THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY] THENL [
             COND_CASES_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC [APPLY;APPLY_UNEXT_SAME]
             THEN DEEP_SYM_ASM_REWRITE_TAC []
          ;  COND_CASES_TAC THENL [
                SMART_ELIMINATE_TAC THEN ASM_REWRITE_TAC [APPLY]
                THEN DISCH_TAC THEN DEEP_SYM_ASM_REWRITE_TAC []
   	      ; COND_CASES_TAC THEN DISCH_THEN (SUBST1_TAC o SYM) THENL [
                   IMP_RES_TAC APPLY_UNEXT_DIFF
                   THEN FIRST_ASSUM (ACCEPT_TAC o SPEC_ALL)
                 ; ASM_REWRITE_TAC [APPLY]
                   THEN IMP_RES_TAC APPLY_UNEXT_DIFF
                   THEN FIRST_ASSUM (ACCEPT_TAC o SPEC_ALL)
		]
             ]
          ]
        ;

          MP_TAC (SPECL ["x''";"EXT(x',y')(EXT(x,y)fpf)";"x''':*"] APPLY_UNEXT)
          THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY] THENL [
             DISCH_THEN (SUBST1_TAC)
             THEN SMART_ELIMINATE_TAC THEN DEEP_SYM_ASM_REWRITE_TAC [APPLY_UNEXT_SAME]
          ;  DISCH_THEN (SUBST1_TAC o SYM) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC []
             THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY]
             THEN COND_CASES_TAC THEN ASM_REWRITE_TAC [APPLY]
             THEN IMP_RES_TAC APPLY_UNEXT_DIFF
             THEN FIRST_ASSUM (ACCEPT_TAC o SPEC_ALL)
          ]
       ]
    ]);;




%----------------------------------------------------------------
  EVERYF - true if every mapping satisfies a predicate
----------------------------------------------------------------%


let EVERYF_DEF = new_definition
   (`EVERYF_DEF`,
    "EVERYF P (map:(*,**)fpf) = !x. x IN (DOM map) ==> P (x,RESULTOF(APPLY x map))");;


let EVERYF_ZIP = prove_thm(`EVERYF_ZIP`,
    "!P. EVERYF (P:(*#**)->bool) ZIP = T",
   REWRITE_TAC [EVERYF_DEF;DOM;NOT_IN_EMPTY]);;


%< 
Initially one might think the result should be:
      mk_thm([], "!P (d:*) (r:**) fpf. EVERYF P (EXT (d,r) fpf) = P (d,r) /\ EVERYF P fpf"));;
However, this can't be proven as fpf may contain overridden mappings for x. It was for
this reason that UNEXT was defined above.
 >%

let EVERYF_EXT = prove_thm(`EVERYF_EXT`,
      "!P fpf (d:*) (r:**). EVERYF P (EXT (d,r) fpf) = P (d,r) /\ EVERYF P (UNEXT d fpf)",
   REWRITE_TAC [EVERYF_DEF; DOM; APPLY; IN_INSERT]
   THEN REWRITE_TAC [IN_DOM_EQ_APPLY]
   THEN REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC 
   THENL [
      FIRST_ASSUM (ACCEPT_TAC o REWRITE_RULE [RESULTOF_RESULT] o SPEC "d")
   ;  ASM_REWRITE_TAC [RESULTOF_RESULT] THEN ASM_CASES_TAC "x = d"
      THENL [
         RES_TAC THEN SMART_ELIMINATE_TAC THEN UNDISCH_ALL_TAC 
         THEN REWRITE_TAC [APPLY_UNEXT_SAME;RESULTOF_RESULT; NOT_FAILURE_EQ_RESULT]
      ;  POP_ASSUM (ASSUME_TAC o DEEP_SYM)
         THEN IMP_RES_TAC APPLY_UNEXT_DIFF
         THEN POP_ASSUM (ASSUME_TAC o SPEC_ALL)
	 THEN SMART_TERM_ELIMINATE_TAC
         THEN RES_TAC
         THEN POP_ASSUM MP_TAC THEN ASM_REWRITE_TAC [RESULTOF_RESULT]
      ]
   ;  SMART_ELIMINATE_TAC THEN ASM_REWRITE_TAC [RESULTOF_RESULT]
   ;  COND_CASES_TAC THEN TRY SMART_ELIMINATE_TAC THEN ASM_REWRITE_TAC [RESULTOF_RESULT]    
      THEN IMP_RES_TAC APPLY_UNEXT_DIFF
      THEN POP_ASSUM (ASSUME_TAC o SPEC_ALL)
      THEN SMART_TERM_ELIMINATE_TAC
      THEN RES_TAC
      THEN POP_ASSUM MP_TAC THEN ASM_REWRITE_TAC  [RESULTOF_RESULT]                         
   ]
);;

         

let EVERYF = save_thm(`EVERYF`, CONJ EVERYF_ZIP EVERYF_EXT);;



%----------------------------------------------------------------
  CANONICAL representations for fpf's
----------------------------------------------------------------%


system `rm fpf_canon.th`;;
new_theory `fpf_canon`;;

let IS_CANONICALa_REP_DEF = new_recursive_definition false list_Axiom `IS_CANONICALa_REP_DEF`
   "(IS_CANONICALa_REP fpf [] = (fpf = ZIP)) /\
    (IS_CANONICALa_REP fpf (CONS (pr:(*#**)) t) =
         (?d. d IN DOM fpf) /\ 
         (pr = (@d. d IN DOM fpf), (RESULTOF(APPLY (FST pr) fpf))) /\ 
         (IS_CANONICALa_REP (UNEXT (FST pr) fpf) t))";;


let IS_CANONICALa_REP_CONS_PAIR = save_thm(`IS_CANONICALa_REP_CONS_PAIR`,
      let thm1 = PURE_ONCE_REWRITE_RULE [DEEP_SYM PAIR] (CONJUNCT2 IS_CANONICALa_REP_DEF) in
      let thm2 = SPECL ["fpf:(*,**)fpf";"(x:*,y:**)"] (REWRITE_RULE [] (PURE_ONCE_REWRITE_RULE [PAIR_EQ] thm1)) in
         REWRITE_RULE [] (GEN_ALL thm2));;


let IS_CANONICALa_REP_ZIP = prove_thm(`IS_CANONICALa_REP_ZIP`,
    "!(l:(*#**)list). IS_CANONICALa_REP ZIP l = (l = [])",
    INDUCT_THEN list_INDUCT MP_TAC
    THENL [
       REWRITE_TAC [REWRITE_RULE [] (SPEC "ZIP:(*,**)fpf" (CONJUNCT1 IS_CANONICALa_REP_DEF))]
     ; REWRITE_TAC [IS_CANONICALa_REP_DEF;APPLY;UNEXT_ZIP;NOT_CONS_NIL;DOM;theorem `sets` `NOT_IN_EMPTY`]
    ]);;


let IS_CANONICALa_REP = prove_thm(`IS_CANONICALa_REP`,
    "!l (fpf:(*,**)fpf). IS_CANONICALa_REP fpf (CONS((@d. d IN (DOM fpf)), RESULTOF(APPLY(@d. d IN DOM fpf)fpf)) l) =
        (?d. d IN DOM fpf) /\ IS_CANONICALa_REP (UNEXT (@d. d IN DOM fpf) fpf) l",
   REWRITE_TAC [IS_CANONICALa_REP_CONS_PAIR]);;

%< To prove the following I think we would need an induction principal down UNEXT operations, i.e. ZIP
is the result of a finte number of UNEXTs.  Tricky..?? :-)

No...we need the induction over the cardinality of the domain methinks...
   REPEAT STRIP_TAC		
   THEN SPEC_TAC ("fpf","fpf")
   THEN MATCH_MP_TAC fpf_CARD_INDUCT

>%


%< a few lemmas which I didn't have time to prove - hope they're not too hard... >%

let CARD_UNEXT_LEQ_SUC = mk_thm([], 
      "!x. x IN DOM (f:(*,**)fpf) ==> (CARD(DOM f)) <= (SUC j) ==> (CARD(DOM (UNEXT x f))) <= j");;


let CHOICE_IN_DOM = mk_thm([],
      "!f:(*,**)fpf.  (f = ZIP) \/ ((@d. d IN DOM f) IN DOM f)");;


let CANONICALa_REP_EXISTS = BETA_RULE (PROVE (
   " !(fpf:(*,**)fpf). (\fpf. ?l. IS_CANONICALa_REP fpf l) fpf",
   MATCH_MP_TAC fpf_CARD_INDUCT
   THEN BETA_TAC THEN REPEAT STRIP_TAC
   THENL [
      EXISTS_TAC "[]:(*#**)list" THEN ASM_REWRITE_TAC[IS_CANONICALa_REP_DEF]
   ;  FIRST_ASSUM (STRIP_ASSUME_TAC 
          o REWRITE_RULE [DEEP_SYM LESS_OR_EQ] 
          o SPEC "UNEXT (@d. d IN DOM f) (f:(*,**)fpf)" 
          o REWRITE_RULE [LESS_OR_EQ] o SPEC "j:num")
      THEN DISJ_CASES_TAC (SPEC "f" CHOICE_IN_DOM)
      THENL [
         EXISTS_TAC "[]:(*#**)list" THEN ASM_REWRITE_TAC[IS_CANONICALa_REP_DEF]     
      ;  IMP_RES_TAC CARD_UNEXT_LEQ_SUC THEN RES_TAC 
         THEN EXISTS_TAC "CONS ((@d. d IN DOM (f:(*,**)fpf)), RESULTOF(APPLY (@d. d IN DOM f) f)) l"
	 THEN ASM_REWRITE_TAC [IS_CANONICALa_REP]
         THEN EXISTS_TAC "@d. d IN (DOM (f:(*,**)fpf))" THEN ASM_REWRITE_TAC []
      ]
   ]
));;



let CONV_ASM_TAC conv =
   POP_ASSUM_LIST (\asms.
      (EVERY (rev (map (STRIP_ASSUME_TAC o CONV_RULE (DEPTH_CONV conv)) asms))));;


let CANONICALa_REP_UNIQUE = prove_thm(`CANONICALa_REP_UNIQUE`,
   " !(fpf:(*,**)fpf). ?!l. IS_CANONICALa_REP fpf l",
   PURE_ONCE_REWRITE_TAC [EXISTS_UNIQUE_DEF]
   THEN BETA_TAC
   THEN REWRITE_TAC [CANONICALa_REP_EXISTS]
   THEN REPEAT GEN_TAC THEN SPEC_TAC("fpf","fpf") 
   THEN SPEC_TAC ("x:(*#**)list","x") THEN SPEC_TAC ("y:(*#**)list","y")
      THEN INDUCT_THEN list_INDUCT STRIP_ASSUME_TAC THENL [ALL_TAC ; GEN_TAC]
      THEN INDUCT_THEN list_INDUCT STRIP_ASSUME_TAC THEN REPEAT GEN_TAC
      THEN BETA_TAC THEN REWRITE_TAC [IS_CANONICALa_REP_DEF;NOT_NIL_CONS;NOT_CONS_NIL]
      THEN REPEAT STRIP_TAC
      THEN (TRY (REPEAT SMART_ELIMINATE_TAC 
            THEN FIRST_ASSUM (ACCEPT_TAC o REWRITE_RULE [DOM;NOT_IN_EMPTY])
	    THEN NO_TAC
      )) THEN  CONV_ASM_TAC BETA_CONV THEN UNDISCH_ALL_TAC 
      THEN PURE_ONCE_REWRITE_TAC [DEEP_SYM PAIR]
      THEN PURE_REWRITE_TAC [PAIR_EQ;FST;SND]
      THEN REPEAT STRIP_TAC
      THEN REPEAT SMART_TERM_ELIMINATE_TAC
      THEN RES_TAC THEN SMART_ELIMINATE_TAC THEN REWRITE_TAC []
);;

let CANONICALa_REP_UNIQUENESS = save_thm(`CANONICALa_REP_UNIQUENESS`,
   (BETA_RULE o GEN_ALL o CONJUNCT2 o BETA_RULE) 
   (PURE_ONCE_REWRITE_RULE [EXISTS_UNIQUE_DEF] (SPEC_ALL CANONICALa_REP_UNIQUE)));;


let CANONICALa_REP_DEF = new_definition(`CANONICALa_REP_DEF`,
   "CANONICALa_REP (fpf:(*,**)fpf) = @l. IS_CANONICALa_REP fpf l"
);;

let CANONICALa_ABS_DEF = new_definition(`CANONICALa_ABS_DEF`,
   "CANONICALa_ABS (l:(*#**)list) = @fpf. IS_CANONICALa_REP fpf l"
);;



%< yet another unproved lemma >%

let lemma = mk_thm([],
      "!fpf (fpf':(*,**)fpf).
       (RESULTOF(APPLY(@d. d IN (DOM fpf))fpf') = RESULTOF(APPLY(@d. d IN (DOM fpf))fpf)) /\
       (UNEXT(@d. d IN (DOM fpf))fpf' = UNEXT(@d. d IN (DOM fpf))fpf) ==>
          (fpf = fpf')");;

let CANONICALa_ABS_UNIQUENESS = prove_thm(`CANONICALa_ABS_UNIQUENESS`,
   " !(l:(*#**)list). !fpf fpf'. IS_CANONICALa_REP fpf l /\ IS_CANONICALa_REP fpf' l ==> (fpf = fpf')",
   INDUCT_THEN list_INDUCT MP_TAC
   THEN REWRITE_TAC [IS_CANONICALa_REP_DEF;PAIR_EQ]
   THENL [
      REPEAT STRIP_TAC THEN REPEAT SMART_ELIMINATE_TAC THEN REWRITE_TAC []
    ; STRIP_TAC THEN REPEAT GEN_TAC THEN PURE_ONCE_REWRITE_TAC [DEEP_SYM PAIR]
      THEN PURE_REWRITE_TAC [PAIR_EQ;FST;SND]
      THEN REPEAT STRIP_TAC THEN REPEAT SMART_TERM_ELIMINATE_TAC
      THEN RES_TAC THEN IMP_RES_TAC lemma
   ]
);;



%----------------------------------------------------------------
----------------------------------------------------------------%


close_theory();;