This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/auxiliary/conversions.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
%<We name the theorems needed,
  so compilation will not be confused>%

% LHS_CONV conv "OP t1 t2" applies conv to t1				%
let LHS_CONV = RATOR_CONV o RAND_CONV ;;

% BINDER_CONV conv "B x. tm[x]" applies conv to tm[x]			%
let BINDER_CONV conv =  (RAND_CONV (ABS_CONV conv));;

PRODUCT_FORALL_THM;;

PRODUCT_EXISTS_THM;;

BASE_CHANGE_SURJ_FORALL;;

BASE_CHANGE_ISO_FORALL;;

BASE_CHANGE_ONTO_EXISTS;;

BASE_CHANGE_ISO_EXISTS;;

BASE_CHANGE_EXISTS_UNIQUE;;
        

%<PROD_CONV transforms "!x.P", where x is a product-type,
  into !x1 x2 ....xn.P((x1,x2,.....,xn)/x)>%

let is_product ty = 
       let name,tylist = dest_type ty ? `not_prod`,[ty] in
       name = `prod`;;

letrec dest_prod ty = 
       let name,tylist = dest_type ty ? `not_construct`,[ty] in
       if not ( name = `prod` ) then [ty]
       else (hd tylist).(dest_prod (el 2 tylist));;  

let mk_prod_names x varlist = 
        letrec mk_list n = if n = 0 then []
                           else ((mk_list (n-1))@[n]) 
        in 
        let name,ty = dest_var x
        in 
        let tylist = dest_prod ty 
        in
        let mk_numbered (n,ty) = mk_primed_var(name ^ (string_of_int n),ty)
        in
        let num_ty_list = combine (mk_list(length tylist),tylist)
        in
        if length tylist = 1 then [x]
        else  
          let prelist = map mk_numbered num_ty_list in
          map (variant varlist) prelist;; 

letrec LIST_GEN_ALPHA_CONV tmlist =
         let l = length tmlist in 
            if l = 0 then ALL_CONV
            if l > 0 then ((BINDER_CONV (LIST_GEN_ALPHA_CONV (tl tmlist))) THENC
                            GEN_ALPHA_CONV (hd tmlist))
            else fail;;

let SIMPLE_PROD_CONV thm tm = 
        let derbndr,x,body = ((I # dest_abs) o dest_comb) tm in  
        if is_product (type_of x) then 
             (let tyi = snd(match "x:*1#*2" x) in
              let th2 = INST_TYPE tyi (GEN_ALL thm) in 
              let th3 = SPEC (mk_abs(x,body)) th2 in
              let th4 = (CONV_RULE (LHS_CONV(BINDER_CONV BETA_CONV))) th3 in 
              let th5 = (CONV_RULE (LHS_CONV (GEN_ALPHA_CONV x))) th4 in
              (CONV_RULE (RAND_CONV(BINDER_CONV(BINDER_CONV BETA_CONV)))) th5)
        else ALL_CONV tm;; 

let PROD_CONV tm =
        let derbndr,x,body = ((I # dest_abs) o dest_comb) tm in  
        let tok = fst(dest_const derbndr) in
        let th1 = 
            (if tok = `!` then PRODUCT_FORALL_THM
             if tok = `?` then PRODUCT_EXISTS_THM
             else fail) in
        let prod_vars = mk_prod_names x [] in
        letrec pre_prod_conv trml =
            if ((length trml) = 0) then ALL_CONV
            else ((SIMPLE_PROD_CONV th1) THENC
                  (BINDER_CONV (pre_prod_conv (tl trml)))) in
        let thm' = pre_prod_conv prod_vars tm in
        (CONV_RULE (RAND_CONV (LIST_GEN_ALPHA_CONV prod_vars))) thm';;


%<The following conversion allows for change of base:
  for proving quantified formulas.
  Note that it depends on 5 theorems, which
  first must be proved in theorems.ml>%

let BASE_CHANGE_CONV =
set_fail `BASE_CHANGE_CONV`
(\thm tm.
let derbndr,x,body = ((I # dest_abs) o dest_comb) tm in 
let tok = fst(dest_const derbndr) in
let thmtype,fnc = (((fst o dest_const) # I) o dest_comb o concl) thm in 
if   
     not((mem tok [`!`;`?`;`?!`])) or
     not((mem thmtype [`ONTO`;`ISO`])) or
     (not(thmtype = `ISO`) & (tok = `?!`)) then fail 
else
     let tyi = snd(match "f:*->**" fnc) in
     let quant_ty = el 2 (snd(dest_type (type_of fnc))) in
     let tyi' = snd(match "x:^quant_ty" x) in
     let th1 = 
        (if ((tok = `!`) & (thmtype = `ONTO`)) then
                       BASE_CHANGE_SURJ_FORALL
         if ((tok = `!`) & (thmtype = `ISO`)) then 
                       BASE_CHANGE_ISO_FORALL
         if ((tok = `?`) & (thmtype = `ONTO`)) then
                       BASE_CHANGE_ONTO_EXISTS
         if ((tok = `?`) & (thmtype = `ISO`)) then
                       BASE_CHANGE_ISO_EXISTS
         if (tok = `?!`) then 
                       BASE_CHANGE_EXISTS_UNIQUE
         else fail) in
     let th2 = INST_TYPE tyi th1 in
     let th3 = INST_TYPE tyi' (SPEC fnc th2) in 
     let th4 = SPEC (mk_abs(x,body)) th3 in 
     let th5 = MP th4 (INST_TYPE tyi' thm) in
     let th6 = (CONV_RULE (LHS_CONV(BINDER_CONV BETA_CONV))) th5 in  
     let th7 = (CONV_RULE (LHS_CONV (GEN_ALPHA_CONV x))) th6 in
     (CONV_RULE (RAND_CONV(BINDER_CONV BETA_CONV))) th7);;