/usr/share/hol88-2.02.19940316/contrib/auxiliary/conversions.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | %<We name the theorems needed,
so compilation will not be confused>%
% LHS_CONV conv "OP t1 t2" applies conv to t1 %
let LHS_CONV = RATOR_CONV o RAND_CONV ;;
% BINDER_CONV conv "B x. tm[x]" applies conv to tm[x] %
let BINDER_CONV conv = (RAND_CONV (ABS_CONV conv));;
PRODUCT_FORALL_THM;;
PRODUCT_EXISTS_THM;;
BASE_CHANGE_SURJ_FORALL;;
BASE_CHANGE_ISO_FORALL;;
BASE_CHANGE_ONTO_EXISTS;;
BASE_CHANGE_ISO_EXISTS;;
BASE_CHANGE_EXISTS_UNIQUE;;
%<PROD_CONV transforms "!x.P", where x is a product-type,
into !x1 x2 ....xn.P((x1,x2,.....,xn)/x)>%
let is_product ty =
let name,tylist = dest_type ty ? `not_prod`,[ty] in
name = `prod`;;
letrec dest_prod ty =
let name,tylist = dest_type ty ? `not_construct`,[ty] in
if not ( name = `prod` ) then [ty]
else (hd tylist).(dest_prod (el 2 tylist));;
let mk_prod_names x varlist =
letrec mk_list n = if n = 0 then []
else ((mk_list (n-1))@[n])
in
let name,ty = dest_var x
in
let tylist = dest_prod ty
in
let mk_numbered (n,ty) = mk_primed_var(name ^ (string_of_int n),ty)
in
let num_ty_list = combine (mk_list(length tylist),tylist)
in
if length tylist = 1 then [x]
else
let prelist = map mk_numbered num_ty_list in
map (variant varlist) prelist;;
letrec LIST_GEN_ALPHA_CONV tmlist =
let l = length tmlist in
if l = 0 then ALL_CONV
if l > 0 then ((BINDER_CONV (LIST_GEN_ALPHA_CONV (tl tmlist))) THENC
GEN_ALPHA_CONV (hd tmlist))
else fail;;
let SIMPLE_PROD_CONV thm tm =
let derbndr,x,body = ((I # dest_abs) o dest_comb) tm in
if is_product (type_of x) then
(let tyi = snd(match "x:*1#*2" x) in
let th2 = INST_TYPE tyi (GEN_ALL thm) in
let th3 = SPEC (mk_abs(x,body)) th2 in
let th4 = (CONV_RULE (LHS_CONV(BINDER_CONV BETA_CONV))) th3 in
let th5 = (CONV_RULE (LHS_CONV (GEN_ALPHA_CONV x))) th4 in
(CONV_RULE (RAND_CONV(BINDER_CONV(BINDER_CONV BETA_CONV)))) th5)
else ALL_CONV tm;;
let PROD_CONV tm =
let derbndr,x,body = ((I # dest_abs) o dest_comb) tm in
let tok = fst(dest_const derbndr) in
let th1 =
(if tok = `!` then PRODUCT_FORALL_THM
if tok = `?` then PRODUCT_EXISTS_THM
else fail) in
let prod_vars = mk_prod_names x [] in
letrec pre_prod_conv trml =
if ((length trml) = 0) then ALL_CONV
else ((SIMPLE_PROD_CONV th1) THENC
(BINDER_CONV (pre_prod_conv (tl trml)))) in
let thm' = pre_prod_conv prod_vars tm in
(CONV_RULE (RAND_CONV (LIST_GEN_ALPHA_CONV prod_vars))) thm';;
%<The following conversion allows for change of base:
for proving quantified formulas.
Note that it depends on 5 theorems, which
first must be proved in theorems.ml>%
let BASE_CHANGE_CONV =
set_fail `BASE_CHANGE_CONV`
(\thm tm.
let derbndr,x,body = ((I # dest_abs) o dest_comb) tm in
let tok = fst(dest_const derbndr) in
let thmtype,fnc = (((fst o dest_const) # I) o dest_comb o concl) thm in
if
not((mem tok [`!`;`?`;`?!`])) or
not((mem thmtype [`ONTO`;`ISO`])) or
(not(thmtype = `ISO`) & (tok = `?!`)) then fail
else
let tyi = snd(match "f:*->**" fnc) in
let quant_ty = el 2 (snd(dest_type (type_of fnc))) in
let tyi' = snd(match "x:^quant_ty" x) in
let th1 =
(if ((tok = `!`) & (thmtype = `ONTO`)) then
BASE_CHANGE_SURJ_FORALL
if ((tok = `!`) & (thmtype = `ISO`)) then
BASE_CHANGE_ISO_FORALL
if ((tok = `?`) & (thmtype = `ONTO`)) then
BASE_CHANGE_ONTO_EXISTS
if ((tok = `?`) & (thmtype = `ISO`)) then
BASE_CHANGE_ISO_EXISTS
if (tok = `?!`) then
BASE_CHANGE_EXISTS_UNIQUE
else fail) in
let th2 = INST_TYPE tyi th1 in
let th3 = INST_TYPE tyi' (SPEC fnc th2) in
let th4 = SPEC (mk_abs(x,body)) th3 in
let th5 = MP th4 (INST_TYPE tyi' thm) in
let th6 = (CONV_RULE (LHS_CONV(BINDER_CONV BETA_CONV))) th5 in
let th7 = (CONV_RULE (LHS_CONV (GEN_ALPHA_CONV x))) th6 in
(CONV_RULE (RAND_CONV(BINDER_CONV BETA_CONV))) th7);;
|