This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/Z/SCHEMA.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
%****************************************************************************%
% ML code to support definitions of Z-style schemas.                         %
%****************************************************************************%

%============================================================================%
% Preliminaries.                                                             %
%============================================================================%

new_special_symbol `|-?`;;
new_special_symbol `><`;;
new_special_symbol `::`;;
new_special_symbol `<->`;;
new_special_symbol `-+>`;;
new_special_symbol `-->`;;
new_special_symbol `+>`;;
new_special_symbol `<+`;;
new_special_symbol `(+)`;;
new_special_symbol `^^`;;
new_special_symbol `|->`;;
new_special_symbol `..`;;
new_special_symbol `|\\/|`;;
new_special_symbol `|/\\|`;;
new_special_symbol `|==>|`;;
new_special_symbol `|~|`;;
new_special_symbol `=/=`;;

new_alphanum `!`;;
new_alphanum `?`;;

%----------------------------------------------------------------------------%
% Load ELIMINATE_TACS from contrib/smarttacs.                                %
%----------------------------------------------------------------------------%

load_contrib `smarttacs/ELIMINATE_TACS`;;

load_library `sets`;;
load_library `string`;;
load_library `taut`;;
load_library `reduce`;;
load_library `arith`;;
load_library `unwind`;;

loadf `arith-tools`;;

load_theory `Z` ? ();;
autoload_defs_and_thms `Z`;;
autoload_defs_and_thms `bool`;;

associate_restriction(`!`, `FORALL_RESTRICT`);;
associate_restriction(`?`, `EXISTS_RESTRICT`);;

%============================================================================%
% List and tuple processing routines.                                        %
%============================================================================%

ml_curried_infix `subset`;;

let s1 subset s2 = (subtract s1 s2 = []);;

let appendl l = itlist $append l [];;

%----------------------------------------------------------------------------%
% putprop (x,v) [(x1,v1);...;(xn,vn)] replaces (xi,vi) by (x,v) if x=xi,     %
% otherwise the pair (x,v) is added to the front of the list.                %
%----------------------------------------------------------------------------%

let putprop (x,v) l =
 letrec f l1 l2 =
  if null l2
  then (x,v).l
  if x=fst(hd l2)
  then (rev l1)@((x,v).(tl(l2)))
  else f(hd l2.l1)(tl l2)
 in
 f [] l;;

%----------------------------------------------------------------------------%
% []               --->  fail                                                %
% ["t1";...;"tn"]  --->  "(t1,...,tn)"                                       %
%----------------------------------------------------------------------------%

letrec mk_tuple tml =
 if null tml
  then failwith `mk_tuple`
 if null(tl tml)
  then (hd tml)
  else mk_pair(hd tml, mk_tuple(tl tml));;

%----------------------------------------------------------------------------%
% "(t1,...,tn)"   --->   ["t1";...;"tn"]                                     %
%----------------------------------------------------------------------------%

letrec dest_tuple t =
 (let t1,t2 = dest_pair t
  in
  t1.dest_tuple t2
 ) ? [t];;

%----------------------------------------------------------------------------%
% Test whether a term has the form "(v1,...,vn)".                            %
%----------------------------------------------------------------------------%

let is_var_tuple tm =
 (map (\t. is_var t => () | fail) (dest_tuple tm); true) ? false;;

%----------------------------------------------------------------------------%
% Prime a variable.                                                          %
%----------------------------------------------------------------------------%

let prime_var tm = 
 let tok,ty = (dest_var tm ? failwith `prime applied to a non-variable`)
 in
 mk_var(tok^`'`,ty);;


%============================================================================%
% Some syntax utilities for preterms.                                        %
%============================================================================%

%----------------------------------------------------------------------------%
% Convert a term to a preterm; discard types.                                %
%----------------------------------------------------------------------------%

let term_to_preterm_list = [`theta`];;

letrec term_to_preterm tm =
 (let s,() = dest_var tm
 in
 preterm_var s)
 ?
 (let s,() = dest_const tm
 in
 if mem s term_to_preterm_list
  then preterm_typed(preterm_const s, type_of tm)
  else preterm_const s)
 ?
 (let p1,p2 = dest_comb tm
  in
  preterm_comb(term_to_preterm p1, term_to_preterm p2))
 ?
 (let p1,p2 = dest_abs tm
  in
  let s,() = dest_var p1
  in
  preterm_abs(preterm_var s, term_to_preterm p2))
 ?
 failwith `term_to_preterm`;;

letrec dest_preterm_var =
 fun (preterm_var v) . v
  |  _               . failwith `dest_preterm_var`;;

letrec dest_preterm_const =
 fun (preterm_const v) . v
  |  _                 . failwith `dest_preterm_const`;;

letrec dest_preterm_comb =
 fun (preterm_comb(p1,p2)) . (p1,p2)
  |  _                     . failwith `dest_preterm_comb`;;

letrec dest_preterm_abs =
 fun (preterm_abs(p1,p2)) . (p1,p2)
  |  _                    . failwith `dest_preterm_abs`;;

letrec dest_preterm_typed =
 fun (preterm_typed(p,ty)) . (p,ty)
  |  _                     . failwith `dest_preterm_typed`;;

letrec dest_preterm_antiquot =
 fun (preterm_antiquot p) . p
  |  _                    . failwith `dest_preterm_antiquot`;;

let is_preterm_var      = can dest_preterm_var
and is_preterm_const    = can dest_preterm_const
and is_preterm_comb     = can dest_preterm_comb
and is_preterm_abs      = can dest_preterm_abs
and is_preterm_typed    = can dest_preterm_typed
and is_preterm_antiquot = can dest_preterm_antiquot;;

let preterm_rator = fst o dest_preterm_comb
and preterm_rand  = snd o dest_preterm_comb;;

let preterm_vb    = fst o dest_preterm_abs
and preterm_body  = snd o dest_preterm_abs;;

let strip_preterm_comb p =
 letrec f p =
  case p of
   (preterm_comb(p1,p2)). (let op,args = f p1 in (op,p2.args))
  |_                    . (p,[])
 in
 (I # rev)(f p);;

letrec list_preterm_comb(op,args) =
 if null args
 then op
 else list_preterm_comb(preterm_comb(op,hd args), tl args);;

let dest_preterm_pair p =
 let op,args = strip_preterm_comb p
 in
 if (op = preterm_const `,`) & (length args = 2) 
 then (hd args, hd(tl args))
 else failwith `dest_preterm_pair`;;

let is_preterm_pair = can dest_preterm_pair;;

let mk_preterm_pair(p1,p2) =
 preterm_comb((preterm_comb((preterm_const `,`), p1)), p2);;

letrec list_mk_preterm_comb(p,l) =
 if null l
 then p
 else list_mk_preterm_comb(preterm_comb(p,hd l), tl l);;

letrec dest_preterm_list p =
 if p = preterm_const `NIL`
 then []
 else
 let p1,p2 = dest_preterm_comb p
 in
 let p11,p12 = (dest_preterm_comb p1 ? failwith `dest_preterm_list`)
 in
 if not(p11 = preterm_const `CONS`)
 then failwith `dest_preterm_list`
 else p12.(dest_preterm_list p2);;

let is_preterm_list = can dest_preterm_list;;

letrec mk_preterm_list pl =
 if null pl
 then preterm_const `NIL`
 else preterm_comb
       (preterm_comb(preterm_const `CONS`, hd pl),mk_preterm_list(tl pl));;

%----------------------------------------------------------------------------%
% []               --->  fail                                                %
% ["t1";...;"tn"]  --->  "(t1,...,tn)"                                       %
%----------------------------------------------------------------------------%

letrec mk_preterm_tuple tml =
 if null tml
  then failwith `mk_preterm_tuple`
 if null(tl tml)
  then (hd tml)
  else mk_preterm_pair(hd tml, mk_preterm_tuple(tl tml));;

%----------------------------------------------------------------------------%
% "(t1,...,tn)"   --->   ["t1";...;"tn"]                                     %
%----------------------------------------------------------------------------%

letrec dest_preterm_tuple t =
 (let t1,t2 = dest_preterm_pair t
  in
  t1.dest_preterm_tuple t2
 ) ? [t];;

%----------------------------------------------------------------------------%
% Test whether a term has the form "(v1,...,vn)".                            %
%----------------------------------------------------------------------------%

let is_preterm_var_tuple tm =
 (map 
   (\t. is_preterm_var t => () | fail) 
   (dest_preterm_tuple tm); true) 
 ? false;;

%----------------------------------------------------------------------------%
% Make a preterm conjunction.                                                %
%----------------------------------------------------------------------------%

let mk_preterm_conj(p1,p2) =
 preterm_comb(preterm_comb(preterm_const `/\\`,p1),p2);;

%----------------------------------------------------------------------------%
% Split a preterm conjunction into the conjoined preterms.                   %
%----------------------------------------------------------------------------%

let dest_preterm_conj p =
 (let op,[p1;p2] = strip_preterm_comb p
  in
  if dest_preterm_const op = `/\\`
  then (p1,p2)
  else fail
 ) ? failwith `dest_preterm_conj`;;

%----------------------------------------------------------------------------%
% Preterm version of list_mk_conj.                                           %
%----------------------------------------------------------------------------%

letrec list_mk_preterm_conj l =
 if null l
 then failwith `list_mk_preterm_conj`
 if null(tl l)
 then hd l
 else
 mk_preterm_conj(hd l, list_mk_preterm_conj(tl l)) ;;

%----------------------------------------------------------------------------%
% Split a preterm into conjuncts.                                            %
%----------------------------------------------------------------------------%

letrec preterm_conjuncts p =
 (let p1,p2 = dest_preterm_conj p
  in
  (preterm_conjuncts p1 @ preterm_conjuncts p2)
 ) ? [p];;

%----------------------------------------------------------------------------%
% Make a preterm disjunction.                                                %
%----------------------------------------------------------------------------%

let mk_preterm_disj(p1,p2) =
 preterm_comb(preterm_comb(preterm_const `\\/`,p1),p2);;

%----------------------------------------------------------------------------%
% Split a preterm disjunction into the disjoined preterms.                   %
%----------------------------------------------------------------------------%

let dest_preterm_disj p =
 (let op,[p1;p2] = strip_preterm_comb p
  in
  if dest_preterm_const op = `\\/`
  then (p1,p2)
  else fail
 ) ? failwith `dest_preterm_disj`;;

%----------------------------------------------------------------------------%
% Preterm version of list_mk_disj.                                           %
%----------------------------------------------------------------------------%

letrec list_mk_preterm_disj l =
 if null l
 then failwith `list_mk_preterm_disj`
 if null(tl l)
 then hd l
 else
 mk_preterm_disj(hd l, list_mk_preterm_disj(tl l)) ;;

%----------------------------------------------------------------------------%
% Split a preterm into disjuncts.                                            %
%----------------------------------------------------------------------------%

letrec preterm_disjuncts p =
 (let p1,p2 = dest_preterm_disj p
  in
  (preterm_disjuncts p1 @ preterm_disjuncts p2)
 ) ? [p];;

%----------------------------------------------------------------------------%
% Make a preterm implication.                                                %
%----------------------------------------------------------------------------%

let mk_preterm_imp(p1,p2) =
 preterm_comb(preterm_comb(preterm_const `==>`,p1),p2);;

%----------------------------------------------------------------------------%
% Split a preterm implication into the antecedent and consequent.            %
%----------------------------------------------------------------------------%

let dest_preterm_imp p =
 (let op,[p1;p2] = strip_preterm_comb p
  in
  if dest_preterm_const op = `==>`
  then (p1,p2)
  else fail
 ) ? failwith `dest_preterm_imp`;;

%----------------------------------------------------------------------------%
% Make a preterm equality.                                                   %
%----------------------------------------------------------------------------%

let mk_preterm_eq(p1,p2) =
 preterm_comb(preterm_comb(preterm_const `=`,p1),p2);;

%----------------------------------------------------------------------------%
% Split a preterm equality into the left and right hand sides.               %
%----------------------------------------------------------------------------%

let dest_preterm_eq p =
 (let op,[p1;p2] = strip_preterm_comb p
  in
  if dest_preterm_const op = `=`
  then (p1,p2)
  else fail
 ) ? failwith `dest_preterm_eq`;;

%----------------------------------------------------------------------------%
% Syntax functions for preterm quantifiers.                                  %
%----------------------------------------------------------------------------%

let mk_preterm_forall(v,p) =
 preterm_comb(preterm_const `!`, preterm_abs(v, p));;

letrec list_mk_preterm_forall(l,p) = 
 if null l 
 then p
 else mk_preterm_forall(hd l, list_mk_preterm_forall(tl l,p));;

%< Not needed -- delete
let mk_preterm_res_forall((v,t),p) =
 preterm_comb
  ((preterm_comb((preterm_const `FORALL_RESTRICT`), t)), preterm_abs(v, p));;
>%

%----------------------------------------------------------------------------%
% ([("v1","t1");...;("vn","tn")], "p")                                       %
% --->                                                                       %
% "!v1...vn. v1::t1 /\ ... /\ vn::tn ==> p"                                  %
%----------------------------------------------------------------------------%

letrec list_mk_preterm_res_forall(l,p) =
 let vl,() = split l
 and rl    =
  map (\(v,t). preterm_comb((preterm_comb((preterm_const `::`), v)), t)) l
 in
 list_mk_preterm_forall
  (vl, 
   if null rl then p else mk_preterm_imp(list_mk_preterm_conj rl,p));;

let mk_preterm_exists(v,p) =
 preterm_comb(preterm_const `?`, preterm_abs(v, p));;

%----------------------------------------------------------------------------%
% ([("v1","t1");...;("vn","tn")], "p")                                       %
% --->                                                                       %
% "?v1...vn. v1::t1 /\ ... /\ vn::tn /\ p"                                   %
%----------------------------------------------------------------------------%

letrec list_mk_preterm_exists(l,p) =
 if null l
 then p
 else mk_preterm_exists(hd l, list_mk_preterm_exists(tl l,p));;

%< Not needed -- delete
let mk_preterm_res_exists((v,t),p) =
 preterm_comb
  ((preterm_comb((preterm_const `EXISTS_RESTRICT`), t)), preterm_abs(v, p));;
>%

%----------------------------------------------------------------------------%
% ([("v1","t1");...;("vn","tn")], "p")                                       %
% --->                                                                       %
% "?v1...vn. v1::t1 /\ ... /\ vn::tn /\ p"                                   %
%----------------------------------------------------------------------------%

letrec list_mk_preterm_res_exists(l,p) =
 let vl,() = split l
 and rl    =
  map (\(v,t). preterm_comb((preterm_comb((preterm_const `::`), v)), t)) l
 in
 list_mk_preterm_exists
  (vl, 
   if null rl then p else mk_preterm_conj(list_mk_preterm_conj rl,p));;

%----------------------------------------------------------------------------%
% preterm_frees computes the free variables in a preterm.                    %
%----------------------------------------------------------------------------%

letrec preterm_frees p =
 case p
  of (preterm_var v)       . [p]
  |  (preterm_const c)     . []
  |  (preterm_comb(p1,p2)) . union (preterm_frees p1) (preterm_frees p2)
  |  (preterm_abs(p1,p2))  . subtract (preterm_frees p2) [p1]
  |  (preterm_typed(p1,ty)). preterm_frees p1
  |  (preterm_antiquot t)  . map (preterm_var o fst o dest_var) (frees t);;

%----------------------------------------------------------------------------%
% Preterm substitution. No renaming; variable capture causes failure.        %
%----------------------------------------------------------------------------%

%----------------------------------------------------------------------------%
% var_capture l v1 v2 is true if substituting l in p2 would result in a      %
% variable capture by p1.                                                    %
%----------------------------------------------------------------------------%

let var_capture l p1 p2 =
 (map 
   (\v. if (mem p1 (preterm_frees(fst(rev_assoc v l))) ? false) then fail) 
   (preterm_frees p2);
  false
 ) ? true;;

letrec preterm_subst l p =
 case p
  of (preterm_var v)       . fst(rev_assoc p l) ? p
  |  (preterm_const c)     . p
  |  (preterm_comb(p1,p2)) . preterm_comb
                              (preterm_subst l p1, preterm_subst l p2)
  |  (preterm_abs(p1,p2))  . if var_capture l p1 p2
                             then failwith `preterm_subst: variable capture`
                             else preterm_abs(p1, preterm_subst l p2)
  |  (preterm_typed(p1,ty)). preterm_typed(preterm_subst l p1,ty)
  |  (preterm_antiquot t)  . p;;

%----------------------------------------------------------------------------%
% Prime (dash) a preterm variable.                                           %
%----------------------------------------------------------------------------%

let prime_preterm_var pm = 
 let tok = (dest_preterm_var pm ? failwith `prime applied to a non-variable`)
 in
 preterm_var(tok^`'`);;

%----------------------------------------------------------------------------%
% Test whether a preterm_var is decorated (with a dash, ? or !).             %
%----------------------------------------------------------------------------%

let is_dashed v =
 let cl = explode(dest_preterm_var v)
 in
 not(null cl) & (last cl = `'`);;

let dest_dashed v = 
 let cl = explode v
 in
 if not(null cl) & (last cl = `'`) 
 then implode(butlast cl) 
 else failwith `dest_dashed`;;

let iter_dest_dashed v =
 letrec f(n,v) = f(n+1,dest_dashed v) ? (n,v)
 in
 f(0,v);;

let is_input v =
 let cl = rev(explode(dest_preterm_var v))
 in
 not(null cl) & (hd cl = `?`);;

let is_output v =
 let cl = rev(explode(dest_preterm_var v))
 in
 not(null cl) & (hd cl = `!`);;

let is_plain v = not(is_dashed v or is_input v or is_output v);;


%============================================================================%
% Global state variables and routines.                                       %
%============================================================================%

%----------------------------------------------------------------------------%
% Global list of variables declared in schemas and their types.              %
%----------------------------------------------------------------------------%

letref schema_variables = []:(string#type)list;;

let lookup_schema_var v = 
 snd(assoc v schema_variables) 
 ? failwith `lookup_schema_var`;;

let remember_type d =
 (let v,ty1 = dest_var(rand(rator d))
  in
  let (),ty2 = assoc v schema_variables
  in
  if ty1=ty2 
  then d
  else failwith(v^` already declared with a different type`)
 ) ? (schema_variables := (dest_var(rand(rator d))).schema_variables;d);;

%----------------------------------------------------------------------------%
% Global list of schema expansions.                                          %
%----------------------------------------------------------------------------%

letref schema_expansions = [] : (term#term)list;;

%----------------------------------------------------------------------------%
% Store preterm schema sc2 as an expansion of preterm schema sc1.            %
%----------------------------------------------------------------------------%

let store_preterm_schema_pair(sc1,sc2) =
 let tm2 = preterm_to_term sc2
 in
 let tm1 = preterm_to_term(preterm_typed(sc1, type_of tm2))
 in
 if tm1 = tm2
 then ()
 else (schema_expansions := putprop (tm1, tm2) schema_expansions; ());; 

%----------------------------------------------------------------------------%
% Store schema sc2 as an expansion of schema sc1 (sc1 and sc2 both terms).   %
%----------------------------------------------------------------------------%

let store_schema_pair(sc1,sc2) =
 schema_expansions :=  putprop (sc1, sc2) schema_expansions; ();;

%----------------------------------------------------------------------------%
% Retrieve the abbreviating term for a schema; fail if no abbreviation       %
% in schema_expansions.                                                      %
%----------------------------------------------------------------------------%

let lookup_schema_abbrev tm = fst(rev_assoc tm schema_expansions);;

%----------------------------------------------------------------------------%
% Retrieve the term a schema expands to.                                     %
%----------------------------------------------------------------------------%

let lookup_schema_expansion tm = snd(assoc tm schema_expansions);;

%----------------------------------------------------------------------------%
% Global list of schema names.                                               %
%----------------------------------------------------------------------------%

letref schema_names = []:string list;;

%----------------------------------------------------------------------------%
% Store the name of a schema.                                                %
%----------------------------------------------------------------------------%

let store_schema_name name sc =
 store_schema_pair(mk_var(name,":bool"),sc);
 (if not(mem name schema_names) 
  then (schema_names := name.schema_names; ()));
 sc;;

%----------------------------------------------------------------------------%
% Retrieve the schema term associated with a name `name`.                    %
%----------------------------------------------------------------------------%

let lookup_schema_name s =
 (if mem s schema_names
  then lookup_schema_expansion(mk_var(s,":bool"))
  else fail
 ) ? failwith `lookup_schema_name`;;

%----------------------------------------------------------------------------%
% Counter used for generating axiom names.                                   %
%----------------------------------------------------------------------------%

letref axiom_count = 1;;

%----------------------------------------------------------------------------%
% List of Z construct not folded on output.                                  %
%----------------------------------------------------------------------------%

letref not_fold_list = [] : string list;;

%----------------------------------------------------------------------------%
% Check whether the head constant of a term is in not_fold_list.             %
%----------------------------------------------------------------------------%

let not_fold tm = 
 mem (fst(dest_const(fst(strip_comb tm)))) not_fold_list ? false;;

%----------------------------------------------------------------------------%
% Stop a Z construct from being folded.                                      %
%----------------------------------------------------------------------------%

let disable_folding s = (not_fold_list := union [s] not_fold_list);;

%----------------------------------------------------------------------------%
% Enable folding of a Z construct.                                           %
%----------------------------------------------------------------------------%

let enable_folding = delete not_fold_list;;

%============================================================================%
% Syntax routines for schemas.                                               %
%============================================================================%

%----------------------------------------------------------------------------%
% A schema is term of the form:                                              %
%                                                                            %
%    "SCHEMA [v1 :: S1; ... ; vn :: Sm] [B1; ... ;Bn]"                       %
%----------------------------------------------------------------------------%

%----------------------------------------------------------------------------%
% dest_dec "v :: S"  --->  ("v","S")                                         %
%----------------------------------------------------------------------------%

let dest_dec pm =
 let op,args = strip_preterm_comb pm
 in
 if is_preterm_const op &
    (dest_preterm_const op = `::`) &
    (length args = 2)                   &
    is_preterm_var(hd args)
 then (hd args, hd(tl args))
 else failwith `dest_dec`;;

let dest_input dec = 
 let v,() = dest_dec dec
 in
 if is_input v then v else fail;;

let dest_output dec = 
 let v,() = dest_dec dec
 in
 if is_output v then v else fail;;

let dest_plain dec = 
 let v,() = dest_dec dec
 in
 if is_plain v then v else fail;;

let get_dec_var = fst o dest_dec;;
let get_dec_set = snd o dest_dec;;

%----------------------------------------------------------------------------%
% is_dec pm tests whether pm has the form "v :: S"                           %
%----------------------------------------------------------------------------%

let is_dec = can dest_dec;;

%----------------------------------------------------------------------------%
% dest_decs "[v1 :: S1; ... ; vn :: Sn]"                                     %
% --->                                                                       %
% [("v1","S1");...;("vn","Sn")]                                              %
%----------------------------------------------------------------------------%

let dest_decs pm = map dest_dec (dest_preterm_list pm);;

%----------------------------------------------------------------------------%
% is_decs pm tests whether pm has the form "[v1 :: S1; ... ; vn :: Sn]"      %
%----------------------------------------------------------------------------%

let is_decs = can dest_decs;;

%----------------------------------------------------------------------------%
% ("decs", "bdy") ---> "SCHEMA decs bdy"                                     %
%                                                                            %
% and check that:                                                            %
%                                                                            %
%    1. decs is a list of declarations                                       %
%                                                                            %
%    2. free variables in bdy are declared in decs                           %
%                                                                            %
%    3. no declared variable occurs in the rhs of a declaration              %
%                                                                            %
%----------------------------------------------------------------------------%

let mk_schema(decs,bdy) =
 let decsl = dest_preterm_list decs
 in
 let dec_vars = map get_dec_var decsl
 in
 map
  (\pm. is_dec pm => () | failwith `bad declaration`)
  decsl;
 if not((preterm_frees bdy) subset dec_vars)
 then failwith `undeclared free variable in body`
 if not(intersect 
         dec_vars 
         (appendl(map (preterm_frees o get_dec_set) decsl)) = 
        [])
 then failwith `variable occurs on both lhs and rhs of declarations`
 else preterm_comb(preterm_comb(preterm_const `SCHEMA`, decs), bdy);;

%----------------------------------------------------------------------------%
% "SCHEMA decs bdy"  --->  ("decs", "bdy")                                   %
%----------------------------------------------------------------------------%

let dest_schema sc =
 (let op,[dec;bdy] = strip_preterm_comb sc
  in
  if (op = preterm_const `SCHEMA`) & 
     is_preterm_list dec           & 
     is_preterm_list bdy
  then (dec,bdy)
  else fail
 ) ? failwith `dest_schema`;;

let is_schema = can dest_schema;;

%----------------------------------------------------------------------------%
% Get conjuncts making up the declaration and predicate of a schema term.    %
%----------------------------------------------------------------------------%

let schema_dec_conjuncts sc =
 let op,[decs;bdy] = strip_comb sc
 in
 fst(dest_list decs);;

let schema_body_conjuncts sc =
 let op,[decs;bdy] = strip_comb sc
 in
 fst(dest_list bdy);;

let schema_conjuncts sc =
 let op,[decs;bdy] = strip_comb sc
 in
 fst(dest_list decs)@fst(dest_list bdy);;


%============================================================================%
% Add explicit types (from the global schema_variables) to previously        %
% declared schema variables.                                                 %
%============================================================================%

%----------------------------------------------------------------------------%
% Test whether a preterm has the form "v :: S".                              %
%----------------------------------------------------------------------------%

let is_var_dec p =
 let op,args = strip_preterm_comb p
 in
 (op = preterm_const `::`) & (length args = 2);;

%----------------------------------------------------------------------------%
% If (`v`,ty) is in schema_variables, then                                   %
%                                                                            %
%    add_type `v`  ---> (preterm_typed (preterm_var `v`) ty)                 %
%                                                                            %
% else                                                                       %
%                                                                            %
%    add_type `v`  ---> (preterm_var `v`)                                    %
%----------------------------------------------------------------------------%

let add_type v =
 preterm_typed(preterm_var v, lookup_schema_var v)
 ?
 preterm_var v;;

letrec add_types p =
 case p
  of (preterm_var v)       . (add_type v)
  |  (preterm_const c)     . p
  |  (preterm_comb(p1,p2)) . (preterm_comb(add_types p1, add_types p2))
  |  (preterm_abs(p1,p2))  . (preterm_abs(add_types p1, add_types p2))
  |  (preterm_typed(p1,ty)). (preterm_typed(add_types p1, ty))
  |  (preterm_antiquot t)  . p;;


%============================================================================%
% Preprocess applications "f x" to "f ^^ x", if "f" previously declared      %
% to have a type of the form ":(ty1#ty2)set".                                %
%============================================================================%

%----------------------------------------------------------------------------%
% is_set_fun_ty tests whether a type is of the form ":(ty1#ty2)set"          %
%----------------------------------------------------------------------------%

let is_set_fun_ty ty =
 (let op,args = dest_type ty
  in
  (op = `set`)      &
  (length args = 1) &
  (fst(dest_type(hd args)) = `prod`)
 ) ? false;;

%----------------------------------------------------------------------------%
% is_set_fun (preterm_var `f`) returns true if (`f`, ":(ty1#ty2)set") is in  %
% schema_variables, otherwise it returns false.                              %
%----------------------------------------------------------------------------%

let is_set_fun =
 fun (preterm_var v) . (is_set_fun_ty(lookup_schema_var v) ? false)
  |  _               . false;;

let mk_set_fun p1 p2 =
 preterm_comb (preterm_comb((preterm_const `^^`), p1), p2);;

%============================================================================%
% Routines for expanding schemas included in declarations.                   %
%============================================================================%

%----------------------------------------------------------------------------%
% add_import_decs                                                            %
%  "SCHEMA[u1 :: S1; ... ; um :: Sm][P1;...;Pp]"                             %
%  "[v1 :: T1; ... ; vn :: Tn]"                                              %
% --->                                                                       %
% "[u1 :: S1; ... ; um :: Sm; v1 :: T1; ... ; vn :: Tn]"                     %
%----------------------------------------------------------------------------%

let add_import_decs import decs2 =
 if not(is_schema import)
 then failwith `invalid schema import declaration`
 else
 let decs1,bdy1 = dest_schema import
 in
 let decsl1 = dest_preterm_list decs1
 and decsl2 = dest_preterm_list decs2
 in
 if not(intersect
         (map (get_dec_var) decsl1)
         (map (get_dec_var) decsl2) =
        [])
 then failwith `variable occurs in schema and in import declarations`
 else
 mk_preterm_list(decsl1 @ decsl2);;

%----------------------------------------------------------------------------%
% mk_schema_decs [imp1;...;impn] pm =                                        %
%  add_import_decs imp1 (...(add_import_decs impn pm)...)                    %
%----------------------------------------------------------------------------%

let mk_schema_decs = itlist add_import_decs;;

%----------------------------------------------------------------------------%
% add_import_body                                                            %
%  "SCHEMA[u1 :: S1; ... ; um :: Sm][P1; ... ;Pp]" "[Q1; ... ;Qq]"           %
%  --->  "P1 /\ ... /\ Pp /\ Q1 /\ ... /\ Qq"                                %
%----------------------------------------------------------------------------%

let add_import_body import bdy2 =
 if not(is_schema import)
 then failwith `invalid schema import declaration`
 else
 let decs1,bdy1 = dest_schema import
 in
 mk_preterm_list(dest_preterm_list bdy1 @ dest_preterm_list bdy2);;

%----------------------------------------------------------------------------%
% mk_schema_body [imp1;...;impn] pm =                                        %
%  add_import_body imp1 (...(add_import_body impn pm)...)                    %
%----------------------------------------------------------------------------%

let mk_schema_body = itlist add_import_body;;

%----------------------------------------------------------------------------%
% v :: S  --->  v' :: S                                                      %
%----------------------------------------------------------------------------%

let prime_dec pm = 
 let op,args = strip_preterm_comb pm
 in
 if not(is_preterm_const op            & 
        (dest_preterm_const op = `::`) & 
        (length args = 2))
 then failwith `prime_dec`
 else
 list_mk_preterm_comb(op,[prime_preterm_var(el 1 args);el 2 args]);;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is a conjunction.                         %
%----------------------------------------------------------------------------%

let is_schema_conj p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `AND`)
 ) ? false;;


%============================================================================%
% Routines for `macroexpanding' schema operations.                           %
%============================================================================%

%----------------------------------------------------------------------------%
% Schema hiding:                                                             %
% hide_schema_vars                                                           %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [B1; ... ;Bn]" ["v1";...;"vp"]         %
% --->                                                                       %
%  "SCHEMA [u1' :: S1; ... ; up' :: Sr]                                      %
%          [?v1 ... vp. B1 /\ ... /\ Bn]"                                    %
%                                                                            %
% where [u1';...;ur'] = subtract [u1;...;um] [v1;...;vp]                     %
%----------------------------------------------------------------------------%

let hide_schema_vars sc vl =
 if null vl
 then failwith `empty list of hidden variables`
 else
 let decs,bdy = dest_schema sc
 in
 let vl1 = intersect vl (preterm_frees bdy)
 in
 let decsl = dest_preterm_list decs
 in
 let decsl1 = 
  mapfilter 
   ((\(v,t). if mem v vl1 then (v,t) else fail) o dest_dec) 
   decsl
 in
 mk_schema
  (mk_preterm_list
    (filter (\d. not(mem (fst(dest_dec d)) vl)) decsl), 
   mk_preterm_list
    [list_mk_preterm_res_exists
     (decsl1,
      list_mk_preterm_conj(dest_preterm_list bdy))]);;

%----------------------------------------------------------------------------%
% Schema hiding:                                                             %
% mk_schema_hide                                                             %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [B1; ... ;Bn]" "(v1;...;vp)"           %
% --->                                                                       %
%  "SCHEMA [u1' :: S1; ... ; up' :: Sp]                                      %
%          (?v1 ... vp. B1 /\ ... /\ Bn)"                                    %
%                                                                            %
% where [u1';...;up'] = subtract [u1;...;um] [v1;...;v9]                     %
%----------------------------------------------------------------------------%

let is_schema_hide p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `HIDE`)
 ) ? false;;

let mk_schema_hide sc tup = 
 let sc_hide =
  hide_schema_vars sc (dest_preterm_tuple tup)
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `HIDE`,sc),tup),sc_hide);
 sc_hide;;

%----------------------------------------------------------------------------%
% mk_schema_pre "SCHEMA [u1 :: S1; ... ; um :: Sm] BL" hides all primed      %
% and output variables.                                                      %
%----------------------------------------------------------------------------%

let dest_plain_or_dashed dec = 
 let v,ty = dest_dec dec
 in
 if is_input v or is_output v then fail else v;;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "pre".               %
%----------------------------------------------------------------------------%

let is_schema_pre p1 p2 =
 (dest_preterm_const p1 = `pre`) ? false;;

let mk_schema_pre sc =
 let decs,bdy = dest_schema sc
 in
 let vl = map (fst o dest_dec) (dest_preterm_list decs)
 in
 let sc_pre =
  hide_schema_vars
   sc
   (filter (\v. is_dashed v or is_output v) vl)
 in
 store_preterm_schema_pair(preterm_comb(preterm_const `pre`,sc),sc_pre);
 sc_pre;;

%----------------------------------------------------------------------------%
% Compute signature of a schema.                                             %
%----------------------------------------------------------------------------%

let sig sc =
 (let op,[decs;bdy] = strip_comb sc
  in
  if op = "SCHEMA"
  then list_mk_conj(fst(dest_list decs))
  else fail)
 ? failwith `sig applied to a non-schema`;;

%----------------------------------------------------------------------------%
% Compute predicate of a schema.                                             %
%----------------------------------------------------------------------------%

let pred sc =
 (let op,[decs;bdy] = strip_comb sc
  in
  if op = "SCHEMA"
  then list_mk_conj(fst(dest_list bdy))
  else fail)
 ? failwith `pred applied to a non-schema`;;

%----------------------------------------------------------------------------%
% Store types of variables declared in a schema in schema_variables.         %
%----------------------------------------------------------------------------%

let is_schema_head p =
 (let p1,p2 = dest_preterm_comb p
  in
  ((dest_preterm_const p1 = `SCHEMA`) & is_preterm_list p2)
 ) ? false;;

let store_schema_variables decs =
 (let vdecs = filter is_dec (dest_preterm_list decs)
  in
  map (remember_type o preterm_to_term) vdecs; ()
 ) ? failwith `store_schema_variables`;;

%----------------------------------------------------------------------------%
% Expand out schemas included as declarations.                               %
%----------------------------------------------------------------------------%

%----------------------------------------------------------------------------%
% Split a preterm "[d1;...;dn]" into an ML list of the schema declarations   %
% (i.e. included schemas) and the preterm consisting of the list of          %
% the explicit variable declarations.                                        %
%                                                                            %
% Remember declared variable types in the global variable schema_variables.  %
%----------------------------------------------------------------------------%

let split_dec p =
 (let sdecs,vdecs = partition is_schema (dest_preterm_list p)
  in
  map is_schema sdecs;
  (sdecs, mk_preterm_list vdecs)
 ) ? failwith `undeclared or bad declaration in schema`;;

%----------------------------------------------------------------------------%
% "SCHEMA[schema_spec1;...;schema_specm;d1;...;dn] [B1;...;Bo]"              %
% --->                                                                       %
% (mk_schema                                                                 %
%  (mk_schema_decs [sc1;...;scm] "[d1 ; ... ;dn]",                           %
%   mk_schema_body [sc1;...;scm] "[B1; ... ; Bo]")                           %
%                                                                            %
% where d1,...,dn are the schema values denoted by                           %
% schema_spec1,...,schema_specm.                                             %
%----------------------------------------------------------------------------%

let mk_schema_construction(p,bdy) =
 let includes,dec = split_dec p
 in
 mk_schema
  (mk_schema_decs includes dec,
   mk_schema_body includes bdy);;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "theta".             %
%----------------------------------------------------------------------------%

let is_schema_theta p1 p2 =
 ((((is_preterm_const p1) & (dest_preterm_const p1 = `theta`)) or
   (dest_preterm_const(fst(dest_preterm_typed p1)) = `theta`)) & is_schema p2) 
 ? false;;

%----------------------------------------------------------------------------%
% theta (SCHEMA[v1' :: S1; ... ; vn' :: Sm] [B1; ... ;Bn]) =                 %
%  ((`vi1`,vi1'), ... ,(`vin`,vin'))                                         %
%                                                                            %
% where the order i1,...,in is obtained by sorting `v1`,...,`vn` with <<.    %
% The decoration may be empty, in which case:                                %
%                                                                            %
% theta (SCHEMA[v1 :: S1; ... ; vn :: Sm] [B1; ... ;Bn]) =                   %
%  ((`vi1`,vi1), ... ,(`vin`,vin))                                           %
%----------------------------------------------------------------------------% 

%----------------------------------------------------------------------------%
% `x` --> ``x``                                                              %
%----------------------------------------------------------------------------%

let add_quotes s = `\`` ^ s ^ `\``;;

let mk_theta sc =
 let decs,bdy = dest_schema sc
 in
 let l = 
  map 
   (\(v,ty). 
     (preterm_const(add_quotes(snd(iter_dest_dashed v))), 
      preterm_typed(preterm_var v,ty)))
   (map (dest_var o rand o rator o preterm_to_term) (dest_preterm_list decs))
 in
 let sc_theta = 
  mk_preterm_tuple(map mk_preterm_pair (sort (\((s1,v1),(s2,v2)). s1 << s2) l))
 in
 store_preterm_schema_pair(preterm_comb(preterm_const `theta`,sc), sc_theta);
 sc_theta;;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "DELTA".             %
%----------------------------------------------------------------------------%

let is_schema_delta p1 p2 =
 ((dest_preterm_const p1 = `DELTA`) & is_schema p2) ? false;;

%----------------------------------------------------------------------------%
% "S"  --->  "S AND dash S"                                                  %
%----------------------------------------------------------------------------%

set_flag(`preterm`,true);;

let preterm_handler = I;;
let delta_expansion_preterm = "sc AND (dash sc)";;
let preterm_handler = preterm_to_term;;

let delta_expansion sc =
 preterm_subst[sc, preterm_var `sc`]delta_expansion_preterm;;

%<
 preterm_comb((preterm_comb((preterm_const `AND`), sc)),
              preterm_comb((preterm_const `dash`), sc));;
>%

let mk_schema_delta sc =
 let sc_delta = delta_expansion sc
 in
 store_preterm_schema_pair(preterm_comb(preterm_const `DELTA`,sc),sc_delta);
 sc_delta;;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "XI".                %
%----------------------------------------------------------------------------%

let is_schema_xi p1 p2 =
 ((dest_preterm_const p1 = `XI`) & is_schema p2) ? false;;

%----------------------------------------------------------------------------%
% "S" --->  "SCHEMA [DELTA S] [theta(dash S) = theta S]"                     %
%----------------------------------------------------------------------------%

let preterm_handler = I;;
let xi_expansion_preterm = "SCHEMA [DELTA sc] [theta(dash sc) = theta sc]";;
let preterm_handler = preterm_to_term;;

%----------------------------------------------------------------------------%
% Substitute for either a variable or a constant.                            %
%----------------------------------------------------------------------------%

letrec preterm_var_or_const_subst l p =
 case p
  of (preterm_var v)       . fst(rev_assoc p l) ? p
  |  (preterm_const c)     . fst(rev_assoc p l) ? p
  |  (preterm_comb(p1,p2)) . preterm_comb
                              (preterm_var_or_const_subst l p1, 
                               preterm_var_or_const_subst l p2)
  |  (preterm_abs(p1,p2))  . if var_capture l p1 p2
                             then failwith `preterm_var_or_const_subst: variable capture`
                             else preterm_abs(p1, preterm_var_or_const_subst l p2)
  |  (preterm_typed(p1,ty)). preterm_typed(preterm_var_or_const_subst l p1,ty)
  |  (preterm_antiquot t)  . p;;

let xi_expansion sc =
 let theta_ty = ":bool -> ^(type_of(preterm_to_term(mk_theta sc)))"
 in
 preterm_var_or_const_subst
  [preterm_typed(preterm_const `theta`, theta_ty), preterm_const `theta`;
   sc,                                             preterm_var `sc`]
  xi_expansion_preterm;;

%<
 preterm_comb
  ((preterm_comb
     ((preterm_const `SCHEMA`),
      preterm_comb((preterm_comb((preterm_const `CONS`),
                                 preterm_comb((preterm_const `DELTA`), sc))),
                   preterm_const `NIL`))),
   preterm_comb
    ((preterm_comb
       ((preterm_const `CONS`),
        preterm_comb
         ((preterm_comb
            ((preterm_const `=`),
             preterm_comb((preterm_const `theta`),
                          preterm_comb((preterm_const `dash`), sc)))),
          preterm_comb((preterm_const `theta`), sc)))),
     preterm_const `NIL`));;
>%

let mk_schema_xi sc =
 let sc_xi = xi_expansion sc
 in
 store_preterm_schema_pair(preterm_comb(preterm_const `XI`,sc),sc_xi);
 sc_xi;;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "sig".               %
%----------------------------------------------------------------------------%

let is_schema_sig p1 p2 =
 (dest_preterm_const p1 = `sig`) ? false;;

let mk_sig sc =
 let decs,bdy = dest_schema sc
 in
 let vl = map (fst o dest_dec) (dest_preterm_list decs)
 in
 let sc_sig = list_mk_preterm_conj(dest_preterm_list decs)
 in
 store_preterm_schema_pair(preterm_comb(preterm_const `sig`,sc),sc_sig);
 sc_sig;;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "pred".              %
%----------------------------------------------------------------------------%

let is_schema_pred p1 p2 =
 (dest_preterm_const p1 = `pred`) ? false;;

let mk_pred sc =
 let decs,bdy = dest_schema sc
 in
 let vl = map (fst o dest_dec) (dest_preterm_list decs)
 in
 let sc_pred = list_mk_preterm_conj(dest_preterm_list bdy)
 in
 store_preterm_schema_pair(preterm_comb(preterm_const `pred`,sc),sc_pred);
 sc_pred;;

%----------------------------------------------------------------------------%
% mk_schema_dash "SCHEMA [u1 :: S1; ... um :: Sm] BL" dashes all variables   %
%----------------------------------------------------------------------------%

let is_schema_dash p1 p2 =
 (dest_preterm_const p1 = `dash`) ? false;;

let mk_schema_dash sc =
 let decs,bdy = dest_schema sc
 in
 let vl = map (fst o dest_dec) (dest_preterm_list decs)
 in
 preterm_subst(map (\v. (prime_preterm_var v, v)) vl)sc;;

%----------------------------------------------------------------------------%
% dash "SCHEMA [u1 :: S1; ... um :: Sm] BL" dashes all variables in a term   %
%----------------------------------------------------------------------------%

let dash sc =
 let (), [decs;bdy] = strip_comb sc
 in
 let vl = map (rand o rator) (fst(dest_list decs))
 in
 subst(map (\v. (prime_var v, v)) vl)sc;;

letrec iter_dash(n,sc) = if n=0 then sc else iter_dash(n-1,dash sc);;

%----------------------------------------------------------------------------%
% Expand dashed schema names.                                                %
%----------------------------------------------------------------------------%

let expand_schema_name v =
 term_to_preterm(lookup_schema_name v) 
 ? let (n,x) = iter_dest_dashed v
   in
   let tm = iter_dash(n,lookup_schema_name x)
   in
   store_schema_name v tm;
   term_to_preterm tm;;


%----------------------------------------------------------------------------%
% mk_schema_conj                                                             %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]"                         %
%  "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]"                         %
% --->                                                                       %
%  "SCHEMA [u1 :: S1;  ... ; um :: Sm;                                       %
%           v1':: T1'; ... ; vr':: Tr']                                      %
%          [P1; ... ;Pp; Q1; ... ;Qq]"                                       %
% where:                                                                     %
%                                                                            %
%  ["v1' :: T1'"; ... ; "vr' :: Tr'"] =                                      %
%  subtract ["v1 :: T1"; ... ;"vn :: Tn"] ["u1 :: S1"; ... ;"um :: Sm"]      %
%----------------------------------------------------------------------------%

let mk_schema_conj(sc1,sc2) =
 let decs1,bdy1 = (dest_schema sc1
                   ? failwith `first argument of AND not a schema`)
 and decs2,bdy2 = (dest_schema sc2
                   ? failwith `second argument of AND not a schema`)
 in
 let decsl1 = dest_preterm_list decs1
 and decsl2 = dest_preterm_list decs2
 in
 let sc_conj =
  mk_schema
   (mk_preterm_list(decsl1 @ subtract decsl2 decsl1), 
    mk_preterm_list(dest_preterm_list bdy1 @ dest_preterm_list bdy2))
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `AND`,sc1),sc2),sc_conj);
 sc_conj;;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is a disjunction.                         %
%----------------------------------------------------------------------------%

let is_schema_disj p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `OR`)
 ) ? false;;

%----------------------------------------------------------------------------%
% mk_schema_disj                                                             %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]"                         %
%  "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]"                         %
% --->                                                                       %
%  "SCHEMA [u1 :: S1;  ... ; um :: Sm;                                       %
%           v1':: T1'; ... ; vr':: Tr']                                      %
%          [(P1 /\ ... /\ Pp) \/ (Q1 /\ ... /\ Qq)]"                         %
% where:                                                                     %
%                                                                            %
%  ["v1' :: T1'"; ... ; "vr' :: Tr'"] =                                      %
%  subtract ["v1 :: T1"; ... ;"vn :: Tn"] ["u1 :: S1"; ... ;"um :: Sm"]      %
%----------------------------------------------------------------------------%

let mk_schema_disj(sc1,sc2) =
 let decs1,bdy1 = (dest_schema sc1
                   ? failwith `first argument of OR not a schema`)
 and decs2,bdy2 = (dest_schema sc2
                   ? failwith `second argument of OR not a schema`)
 in
 let decsl1 = dest_preterm_list decs1
 and decsl2 = dest_preterm_list decs2
 in
 let sc_disj =
  mk_schema
   (mk_preterm_list(decsl1 @ subtract decsl2 decsl1), 
    mk_preterm_list
     [mk_preterm_disj
      (list_mk_preterm_conj(dest_preterm_list bdy1),
       list_mk_preterm_conj(dest_preterm_list bdy2))])
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `OR`,sc1),sc2),sc_disj);
 sc_disj;;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an implication.                        %
%----------------------------------------------------------------------------%

let is_schema_imp p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `IMPLIES`)
 ) ? false;;

%----------------------------------------------------------------------------%
% mk_schema_imp                                                              %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]"                         %
%  "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]"                         %
% --->                                                                       %
%  "SCHEMA [u1 :: S1;  ... ; um :: Sm;                                       %
%           v1':: T1'; ... ; vr':: Tr']                                      %
%          [(P1 /\  ... /\ Pp) ==> (Q1 /\ ... /\ Qq)]"                       %
% where:                                                                     %
%                                                                            %
%  ["v1' :: T1'"; ... ; "vr' :: Tr'"] =                                      %
%  subtract ["v1 :: T1"; ... ;"vn :: Tn"] ["u1 :: S1"; ... ;"um :: Sm"]      %
%----------------------------------------------------------------------------%

let mk_schema_imp(sc1,sc2) =
 let decs1,bdy1 = (dest_schema sc1
                   ? failwith `first argument of IMPLIES not a schema`)
 and decs2,bdy2 = (dest_schema sc2
                   ? failwith `second argument of IMPLIES not a schema`)
 in
 let decsl1 = dest_preterm_list decs1
 and decsl2 = dest_preterm_list decs2
 in
 let sc_imp =
  mk_schema
   (mk_preterm_list(decsl1 @ subtract decsl2 decsl1), 
    mk_preterm_list
     [mk_preterm_imp
      (list_mk_preterm_conj(dest_preterm_list bdy1),
       list_mk_preterm_conj(dest_preterm_list bdy2))])
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `IMPLIES`,sc1),sc2),sc_imp);
 sc_imp;;

%----------------------------------------------------------------------------%
% mk_schema_forall                                                           %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]"                         %
%  "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]"                         %
% --->                                                                       %
%  "SCHEMA [v1' :: T1; ... ; vp' :: Tr]                                      %
%          [!u1 ... um. (u1 :: S1) /\ ... /\ (um :: Sm) /\ P1 /\ ... /\ Pp   %
%                       ==> (Q1 /\ ... /\ Qq)]"                              %
%                                                                            %
% where {u1::S1, ... ,um::Sm} must be included in {v1::T1, ... ,vn::Tn}      %
% and                                                                        %
%                                                                            %
%    [v1'::T1; ... ;vp'::Tr] =                                               %
%     subtract [v1::T1; ... ;vn::Tn] [u1::S1; ... ;um::Sm]                   %
%----------------------------------------------------------------------------%

let is_schema_forall p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `SCHEMA_FORALL`)
 ) ? false;;

let mk_schema_forall(sc1,sc2) =
 let decs1,bdy1 = dest_schema sc1
 and decs2,bdy2 = dest_schema sc2
 in
 let decsl1 = dest_preterm_list decs1
 and decsl2 = dest_preterm_list decs2
 in
 if not(decsl1 subset decsl2)
 then failwith `Universally quantified schema variable not declared in body`
 else
 let sc_forall =
  mk_schema
   (mk_preterm_list(subtract decsl2 decsl1),
    mk_preterm_list
     [list_mk_preterm_res_forall
       (map dest_dec decsl1,
        mk_preterm_imp(list_mk_preterm_conj(decsl1@[bdy1]),bdy2))])
 in
 store_preterm_schema_pair
  (preterm_comb
    (preterm_comb(preterm_const `SCHEMA_FORALL`,sc1),sc2),sc_forall);
 sc_forall;;

%----------------------------------------------------------------------------%
% mk_pred_forall                                                             %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]"                         %
%  "P"                                                                       %
% --->                                                                       %
%  "!u1 ... um. (u1 :: S1) /\ ... /\ (um :: Sm) /\ P1 /\ ... /\ Pp ==> P     % 
%                                                                            %
% mk_pred_forall                                                             %
%  "u :: S"                                                                  %
%  "P"                                                                       %
% --->                                                                       %
%  "!u. (u :: S) ==> P                                                       % 
%----------------------------------------------------------------------------%

let is_pred_forall p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `FORALL`)
 ) ? false;;

%----------------------------------------------------------------------------%
% Quantified variable is a schema.                                           %
%----------------------------------------------------------------------------%

let mk_pred_forall1(sc,pm) =
 let decs,bdy = dest_schema sc
 in
 let decsl = dest_preterm_list decs
 in
 let sc_forall =
  list_mk_preterm_res_forall
   (map dest_dec decsl,
    mk_preterm_imp(list_mk_preterm_conj(decsl @ dest_preterm_list bdy),pm))
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `FORALL`,sc),pm),sc_forall);
 sc_forall;;

%----------------------------------------------------------------------------%
% Quantified variable is a declaration.                                      %
%----------------------------------------------------------------------------%

let mk_pred_forall2(dec,pm) =
 let v,ty = dest_dec dec
 in
 let sc_forall =
  mk_preterm_forall(v, mk_preterm_imp(dec,pm))
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `FORALL`,dec),pm),sc_forall);
 sc_forall;;

%----------------------------------------------------------------------------%
% Invoke mk_pred_forall1 or mk_pred_forall2 depending on type of argument.   %
%----------------------------------------------------------------------------%

let mk_pred_forall3 sc_dec pm =
 if is_schema sc_dec then mk_pred_forall1(sc_dec,pm)
 if is_dec sc_dec    then mk_pred_forall2(sc_dec,pm)
                     else failwith `Bad first argument to FORALL`;;

let list_mk_pred_forall(pml,pm) = 
 let sc_forall =
  itlist mk_pred_forall3 (dest_preterm_list pml) pm
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `FORALL`,pml),pm),sc_forall);
 sc_forall;;

let mk_pred_forall(pm1,pm2) =
 if is_preterm_list pm1
 then list_mk_pred_forall(pm1,pm2)
 else mk_pred_forall3 pm1 pm2;;

%----------------------------------------------------------------------------%
% mk_schema_exists                                                           %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]"                         %
%  "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]"                         %
% --->                                                                       %
%  "SCHEMA [v1' :: T1; ... ; vp' :: Tr]                                      %
%          [?u1 ... um. (u1 :: S1) /\ ... /\ (um :: Sm) /\                   %
%                       P1 /\ ... /\ Pp /\                                   % 
%                       Q1 /\ ... /\ Qq]"                                    %
%                                                                            %
% where {u1::S1, ... ,um::Sm} must be included in {v1::T1, ... ,vn::Tn}      %
% and                                                                        %
%                                                                            %
%    [v1'::T1; ... ;vp'::Tr] =                                               %
%     subtract [v1::T1; ... ;vn::Tn] [u1::S1; ... ;um::Sm]                   %
%----------------------------------------------------------------------------%

let is_schema_exists p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `SCHEMA_EXISTS`)
 ) ? false;;

let mk_schema_exists(sc1,sc2) =
 let decs1,bdy1 = dest_schema sc1
 and decs2,bdy2 = dest_schema sc2
 in
 let decsl1 = dest_preterm_list decs1
 and decsl2 = dest_preterm_list decs2
 in
 if not(decsl1 subset decsl2)
 then failwith `Existentially quantified schema variable not declared in body`
 else
 let sc_exists =
 mk_schema
  (mk_preterm_list(subtract decsl2 decsl1),
   mk_preterm_list
    [list_mk_preterm_res_exists
      (map dest_dec decsl1,
       list_mk_preterm_conj
        (decsl1 @ dest_preterm_list bdy1 @ dest_preterm_list bdy2))])
 in
 store_preterm_schema_pair
  (preterm_comb
    (preterm_comb(preterm_const `SCHEMA_EXISTS`,sc1),sc2),sc_exists);
 sc_exists;;

%----------------------------------------------------------------------------%
% mk_pred_exists                                                             %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]"                         %
%  "P"                                                                       %
% --->                                                                       %
%  "?u1 ... um. (u1 :: S1) /\ ... /\ (um :: Sm) /\ P1 /\ ... /\ Pp /\ P      % 
%                                                                            %
% mk_pred_exists                                                             %
%  "u :: S"                                                                  %
%  "P"                                                                       %
% --->                                                                       %
%  "?u. (u :: S) /\ P                                                        % 
%----------------------------------------------------------------------------%

let is_pred_exists p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `EXISTS`)
 ) ? false;;

%----------------------------------------------------------------------------%
% Quantified variable is a schema.                                           %
%----------------------------------------------------------------------------%

let mk_pred_exists1(sc,pm) =
 let decs,bdy = dest_schema sc
 in
 let decsl = dest_preterm_list decs
 in
 let sc_exists =
  list_mk_preterm_res_exists
   (map dest_dec decsl,
    list_mk_preterm_conj(decsl @ dest_preterm_list bdy @ [pm]))
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `EXISTS`,sc),pm),sc_exists);
 sc_exists;;

%----------------------------------------------------------------------------%
% Quantified variable is a declaration.                                      %
%----------------------------------------------------------------------------%

let mk_pred_exists2(dec,pm) =
 let v,ty = dest_dec dec
 in
 let sc_exists =
  mk_preterm_exists(v, mk_preterm_conj(dec,pm))
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `EXISTS`,dec),pm),sc_exists);
 sc_exists;;

%----------------------------------------------------------------------------%
% Invoke mk_pred_exists1 or mk_pred_exists2 depending on type of argument.   %
%----------------------------------------------------------------------------%

let mk_pred_exists3 sc_dec pm =
 if is_schema sc_dec then mk_pred_exists1(sc_dec,pm)
 if is_dec sc_dec    then mk_pred_exists2(sc_dec,pm)
                     else failwith `Bad first argument to EXISTS`;;

let list_mk_pred_exists(pml,pm) = 
 let sc_exists =
  itlist mk_pred_exists3 (dest_preterm_list pml) pm
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `EXISTS`,pml),pm),sc_exists);
 sc_exists;;

let mk_pred_exists(pm1,pm2) =
 if is_preterm_list pm1
 then list_mk_pred_exists(pm1,pm2)
 else mk_pred_exists3 pm1 pm2;;

%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is a sequence.                            %
%----------------------------------------------------------------------------%

let is_schema_seq p1 p2 =
 (let p11,p12 = dest_preterm_comb p1
  in
  (dest_preterm_const p11 = `SEQ`)
 ) ? false;;

% Some doodlings concerning possible formats for
  a pattern matching implementation of SEQ

let (s1,s2) = preterm_match "s1 SEQ s2" p
in
let State = extract_state_schema(s1,s2)
in
"EXISTS[State'']
       [SCHEMA_EXISTS
         [State']
         (SCHEMA[s1;State''][theta(State') = theta(State'')]) AND
        SCHEMA_EXISTS
         [State]
         (SCHEMA[s2;State''][theta(State) = theta(State'')])]"


"s1 SEQ s2" --> "EXISTS[State'']
                       [SCHEMA_EXISTS
                         [State']
                         (SCHEMA[s1;State''][theta(State') = theta(State'')]) AND
                        SCHEMA_EXISTS
                         [State]
                         (SCHEMA[s2;State''][theta(State) = theta(State'')])]"

%

%----------------------------------------------------------------------------%
% mk_schema_seq                                                              %
%  "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]"                         %
%  "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]"                         %
%  --->                                                                      %
%  "SCHEMA                                                                   %
%    [u1 :: S1; ... ; um :: Sm; v1 :: T1; ... ; vn :: Tn]                    %
%    (?uv1 ... uvr.                                                          %
%      P1[uv1,...,uvr/u1',...,ur'] /\ ... /\ Pp[uv1,...,uvr/u1',...,ur'] /\  %
%      Q1[uv1,...,uvr/v1,...,vr]   /\ ... /\ Qq[uv1,...,uvr/v1,...,vr])"     %
%                                                                            %
% where (following page 147 of Potter, Sinclair and Till):                   %
%                                                                            %
%    (a) The subsets of {u1 :: S1,...,um :: Sm} and                          %
%        {v1 :: T1,...,vn :: Tn} that consist of "dashed" and "plain"        %
%        variables are identical. Input and output variables are             %
%        considered neither plain nor dashed.                                %
%        uv1,...,uvp are the plain/ashed variables.                          %
%                                                                            %
%    (b) No type clashes in the input and output variables.                  %
%                                                                            %
%    (c) u1',...,ur' are the dashed variables in the first schema            %
%                                                                            %
%    (d) vi,...,vr are the plain variables in the second schema.             %
%----------------------------------------------------------------------------%

let mk_schema_seq(sc1,sc2) =
 let decs1,bdy1 = dest_schema sc1
 and decs2,bdy2 = dest_schema sc2
 in
 let decsl1 = dest_preterm_list decs1
 and decsl2 = dest_preterm_list decs2
 in
 let shvarsl1 = mapfilter dest_plain_or_dashed decsl1
 and shvarsl2 = mapfilter dest_plain_or_dashed decsl2
%< Need to add check corresponding to (b)
 and ivarsl1  = mapfilter dest_input           decsl1
 and ivarsl2  = mapfilter dest_input           decsl2
 and ovarsl1  = mapfilter dest_output          decsl1
 and ovarsl2  = mapfilter dest_output          decsl2
>%
 in
 let prime_twice = prime_preterm_var o prime_preterm_var
 in
 if not(set_equal shvarsl1 shvarsl2)
 then failwith `attempt to compose incompatible schemas`
 else
 let exist_quant_vars = mapfilter dest_plain decsl1
 and primed_exist_quant_res_vars = 
  mapfilter 
   (\p. let v,t = dest_dec p in if is_plain v then (prime_twice v,t) else fail) 
   decsl1
 in
 let sc_seq =
  mk_schema
   (mk_preterm_list(decsl1 @ subtract decsl2 decsl1), 
    mk_preterm_list
     [list_mk_preterm_res_exists
      (primed_exist_quant_res_vars,
       list_mk_preterm_conj
        (map
          (preterm_subst
           (map(\v.(prime_twice v, prime_preterm_var v))exist_quant_vars))
          (dest_preterm_list bdy1)
         @
         map
          (preterm_subst
           (map(\v.(prime_twice v, v))exist_quant_vars))
          (dest_preterm_list bdy2)))])
 in
 store_preterm_schema_pair
  (preterm_comb(preterm_comb(preterm_const `SEQ`,sc1),sc2),sc_seq);
 sc_seq;;


%============================================================================%
% Some proof utilities.                                                      %
%============================================================================%

let ASM_F_TAC = IMP_RES_TAC(DISCH_ALL(ASSUME "F"));;

let APPLY_ASMS_TAC f =
 POP_ASSUM_LIST
  (\assums. MAP_EVERY ASSUME_TAC (rev (map f assums)));;

let REWRITE_ASMS_TAC = APPLY_ASMS_TAC o REWRITE_RULE;;

let REWRITE_ALL_TAC thl = 
 REWRITE_ASMS_TAC thl THEN ASM_REWRITE_TAC [] THEN REWRITE_TAC thl;;

let simp_thms = [SCHEMA;CONJL;FORALL_RESTRICT;EXISTS_RESTRICT];;

let SIMP_TAC =
 APPLY_ASMS_TAC (BETA_RULE o REWRITE_RULE simp_thms)
  THEN ASM_REWRITE_TAC simp_thms
  THEN BETA_TAC;;

%----------------------------------------------------------------------------%
% Remove restricted quantifications.                                         %
%----------------------------------------------------------------------------%

let REMOVE_RESTRICT_TAC =
 APPLY_ASMS_TAC (BETA_RULE o REWRITE_RULE[RES_FORALL;RES_EXISTS;FORALL_RESTRICT;EXISTS_RESTRICT])
  THEN REWRITE_TAC[RES_FORALL;RES_EXISTS;FORALL_RESTRICT;EXISTS_RESTRICT]
  THEN BETA_TAC;;

%----------------------------------------------------------------------------%
% RW_ASM_THEN ttac [f1;...;fn] f =                                           %
%  ASSUM_LIST(\thl. ttac(REWRITE_RULE[f1 thl;...;fn thl](f thl)))            %
%----------------------------------------------------------------------------%

let RW_ASM_THEN ttac fl f =
 ASSUM_LIST(\thl. ttac(REWRITE_RULE(map (\f. f thl) fl)(f thl)));;

%----------------------------------------------------------------------------%
% POP_ASSUMS n f = f[a1;...;an],                                             %
%                                                                            %
% where a1,...,an are the last n assumptions, which are popped.              %
%----------------------------------------------------------------------------%

letrec POP_ASSUMS n f =
 if n=0
 then ALL_TAC
 if n=1
 then POP_ASSUM(\th. f[th])
 else POP_ASSUM(\th. POP_ASSUMS (n-1) (\l. f (th.l)));;

letrec ITER n (tac:tactic)  = 
 if n < 0 then failwith `ITER`
 if n = 0 then ALL_TAC 
          else tac THEN ITER (n-1) tac;;

%----------------------------------------------------------------------------%
% Generalized beta-reduction (useful for reducing schema applications).      %
%----------------------------------------------------------------------------%

let GEN_BETA_TAC = CONV_TAC(DEPTH_CONV GEN_BETA_CONV);;

%----------------------------------------------------------------------------%
% Rule and Tactic for simplifying terms of the form "x IN {...|...}"         %
%----------------------------------------------------------------------------%

let SET_SPEC_RULE = CONV_RULE(DEPTH_CONV SET_SPEC_CONV)
and SET_SPEC_TAC  = CONV_TAC(DEPTH_CONV SET_SPEC_CONV);;

let simp sc =
 (let th1 = 
   (RAND_CONV(RATOR_CONV(RAND_CONV(UNWIND_AUTO_CONV THENC PRUNE_CONV))) 
     ORELSEC ALL_CONV) sc
  in
  let th2 =
   RIGHT_CONV_RULE
    (REWRITE_CONV([SCHEMA;CONJL;PAIR_EQ]) THENC REWRITE_CONV[]) 
    th1
  in
  let tyl = 
   filter 
    (\t. (fst(dest_const(rator(rator t))) = `::`) ? false)
    (conjuncts(rhs(concl th2)))
  in
  RIGHT_CONV_RULE(REWRITE_CONV(map ASSUME tyl))th2
 ) ? failwith `simp`;;

%----------------------------------------------------------------------------%
%  Resolution with filters.                                                  %
%  Code written for HOL90 by chou@cs.ucla.edu. Ported to HOL88 by MJCG.      %
%----------------------------------------------------------------------------%

let FILTER_STRIP_ASSUME_TAC (f : term -> bool) th =
  if (f (concl th)) then (STRIP_ASSUME_TAC th) else (ALL_TAC) ;;

let FILTER_IMP_RES_TAC (f : term -> bool) th g =
  IMP_RES_THEN (REPEAT_GTCL IMP_RES_THEN (FILTER_STRIP_ASSUME_TAC f)) th g
  ? ALL_TAC g ;;

let FILTER_RES_TAC (f : term -> bool) g =
  RES_THEN (REPEAT_GTCL IMP_RES_THEN (FILTER_STRIP_ASSUME_TAC f)) g
  ? ALL_TAC g ;;

let no_imp (tm) = not (free_in "==>" tm) ;;

let LITE_IMP_RES_TAC = FILTER_IMP_RES_TAC no_imp;;


%============================================================================%
% Outputting schemas.                                                        %
%============================================================================%

%----------------------------------------------------------------------------%
% Compress a term for printing by replacing schemas by their names in        %
% the global list schema_expansions.                                         %
%----------------------------------------------------------------------------%

new_flag(`fold_schemas`,true) 
? (print_newline();
   print_string `fold_schemas already declared`; 
   print_newline());;

let show_schemas b = not(set_flag(`fold_schemas`, not b));;

let bool_ty = ":bool";;

letrec fold_schemas tm =
 if (is_var tm or is_const tm)
  then tm
 if is_abs tm
  then 
  (let x,bdy = dest_abs tm
   in
   mk_abs(x, fold_schemas bdy))
  else
  (fold_schemas(lookup_schema_abbrev tm)
   ? 
   let tm1,tm2 = dest_comb tm
   in
   mk_comb(fold_schemas tm1, fold_schemas tm2));;

let print_schemas_term tm = 
 if get_flag_value `fold_schemas`
 then print_term(fold_schemas tm)
 else print_term tm;;

let print_schemas_thm th =
 if get_flag_value `fold_schemas`
 then (let asl,t = dest_thm th
       in
       print_all_thm(mk_thm(map fold_schemas asl, fold_schemas t)))
 else print_all_thm th;;

top_print print_schemas_term;;
top_print print_schemas_thm;;


%============================================================================%
% Declare sets.                                                              %
%============================================================================%

%----------------------------------------------------------------------------%
% sets `S1 S2 ... Sn` defines:                                               %
%                                                                            %
%    "S1 = (UNIV : *S1 set)"                                                 %
%    "S2 = (UNIV : *S2 set)"                                                 %
%        .                                                                   %
%        .                                                                   %
%        .                                                                   %
%    "S2 = (UNIV : *S2 set)"                                                 %
%----------------------------------------------------------------------------%

let sets str =
 let mk_ty tyname = ":^(mk_type(tyname^``,[]))set"
 in
 map 
  (\s. new_type 0 (s^``);
       new_definition
        (s, mk_eq(mk_var(s,mk_ty s), mk_const(`UNIV`,mk_ty s)));
       autoload_theory(`definition`,(current_theory()),s))
  (words str);
 ();;

%----------------------------------------------------------------------------%
% free_set `<name> = ...` expands to:                                        %
%                                                                            %
%    let <name>_Axiom = define_type `<name> = ...`;                          %
%    define "<name> = UNIV : <name> set"                                     %
%----------------------------------------------------------------------------%

letref free_set_name_buffer = ``;;

let make_new_free_set [] =
 let name = free_set_name_buffer
 and ty   = ":^(mk_type(free_set_name_buffer,[])) set"
 in
 new_definition
  (free_set_name_buffer,
   mk_eq(mk_var(name,ty), "UNIV : ^ty"));;

let free_set s =
 let name = hd(words s)
 in
 let_before(name^`_Axiom`, `make_new_structure_definition`, [name;s]);
 free_set_name_buffer := name;
 let_after(name, `make_new_free_set`, []);;


%============================================================================%
% Declare Z axioms.                                                          %
%============================================================================%

%----------------------------------------------------------------------------%
% declare_axiom "t[x1,...,xn]" delares "x1", ... , "xn" as new constants     %
% and then asserts |- t[x1,...,xn] as an axiom with name Axiom_<axiom_count> %
% and binds the axiom to this name in ML.                                    %
%----------------------------------------------------------------------------%

letref axiom_buffer = "T";;

let make_new_axiom[name] = new_axiom(name,axiom_buffer);;

let declare_axiom tm =
 (let vl = frees tm
  in
  map (new_constant o dest_var) vl;
  let pl = map (\v. (mk_const(dest_var v),v)) vl
  and ax_name = `Axiom_`^(string_of_int axiom_count)
  in
  (axiom_count := axiom_count+1;
   axiom_buffer := subst pl tm;
   let_after(ax_name, `make_new_axiom`, [ax_name]))
 ) ? failwith `declare_axiom`;;


%============================================================================%
% Declare schemas.                                                           %
%============================================================================%

%----------------------------------------------------------------------------%
% declare `name` "B"                                                         %
% parses "B", adds the name-schema pair to the global variables              %
% schema_expansions and binds `name` in ML to the expanded schema            %
%(if the flag `bind_schemas` is true (default false).                        %
%----------------------------------------------------------------------------%

new_flag(`bind_schemas`,false) ? ();;

letref schema_buffer = "T";;

let make_new_schema_declaration [] = schema_buffer;;

let declare name tm =
 store_schema_name name tm;
 if get_flag_value `bind_schemas`
 then (schema_buffer := tm;
       let_before(name, `make_new_schema_declaration`,[]);
       tm)
 else tm;;

%----------------------------------------------------------------------------%
% Macroexpand schema operations.                                             %
%----------------------------------------------------------------------------%

letrec expand_Z p =
 case p
  of (preterm_var v)       . (expand_schema_name v ? p)
  |  (preterm_const c)     . p
  |  (preterm_comb(p1,p2)) . (if is_set_fun p1
                              then mk_set_fun p1 (expand_Z p2)
                              else
                              ((if is_schema_head p1
                                then store_schema_variables(preterm_rand p1));
                               let p1e = expand_Z p1
                               and p2e = expand_Z p2
                               in
                               if is_schema p
                               then mk_schema_construction
                                     (preterm_rand p1e,p2e)
                               if is_schema_delta p1e p2e
                               then expand_Z(mk_schema_delta p2e)
                               if is_schema_xi p1e p2e
                               then expand_Z(mk_schema_xi p2e)
                               if is_schema_conj p1e p2e
                               then mk_schema_conj(preterm_rand p1e,p2e)
                               if is_schema_disj p1e p2e
                               then mk_schema_disj(preterm_rand p1e,p2e)
                               if is_schema_imp p1e p2e
                               then mk_schema_imp(preterm_rand p1e,p2e)
                               if is_schema_forall p1e p2e
                               then mk_schema_forall(preterm_rand p1e,p2e)
                               if is_pred_forall p1e p2e
                               then mk_pred_forall(preterm_rand p1e,p2e)
                               if is_schema_exists p1e p2e
                               then mk_schema_exists(preterm_rand p1e,p2e)
                               if is_pred_exists p1e p2e
                               then mk_pred_exists(preterm_rand p1e,p2e)
                               if is_schema_seq p1e p2e
                               then mk_schema_seq(preterm_rand p1e,p2e)
                               if is_schema_pre p1e p2e
                               then mk_schema_pre p2e
                               if is_schema_sig p1e p2e
                               then mk_sig p2e
                               if is_schema_theta p1e p2e
                               then mk_theta p2e
                               if is_schema_pred p1e p2e
                               then mk_pred p2e
                               if is_schema_dash p1e p2e
                               then mk_schema_dash p2e
                               if is_schema_hide p1e p2e
                               then mk_schema_hide p1e p2e
                               else preterm_comb(p1e,p2e)))
  |  (preterm_abs(p1,p2))  . (preterm_abs(p1, expand_Z p2))
  |  (preterm_typed(p1,ty)). (preterm_typed(expand_Z p1, ty))
  |  (preterm_antiquot t)  . p;;

%----------------------------------------------------------------------------%
% Setup input preprocessing.                                                 %
%----------------------------------------------------------------------------%

let preterm_handler p = 
 preterm_to_term(add_types(expand_Z p));;