/usr/share/hol88-2.02.19940316/contrib/Z/SCHEMA.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 | %****************************************************************************%
% ML code to support definitions of Z-style schemas. %
%****************************************************************************%
%============================================================================%
% Preliminaries. %
%============================================================================%
new_special_symbol `|-?`;;
new_special_symbol `><`;;
new_special_symbol `::`;;
new_special_symbol `<->`;;
new_special_symbol `-+>`;;
new_special_symbol `-->`;;
new_special_symbol `+>`;;
new_special_symbol `<+`;;
new_special_symbol `(+)`;;
new_special_symbol `^^`;;
new_special_symbol `|->`;;
new_special_symbol `..`;;
new_special_symbol `|\\/|`;;
new_special_symbol `|/\\|`;;
new_special_symbol `|==>|`;;
new_special_symbol `|~|`;;
new_special_symbol `=/=`;;
new_alphanum `!`;;
new_alphanum `?`;;
%----------------------------------------------------------------------------%
% Load ELIMINATE_TACS from contrib/smarttacs. %
%----------------------------------------------------------------------------%
load_contrib `smarttacs/ELIMINATE_TACS`;;
load_library `sets`;;
load_library `string`;;
load_library `taut`;;
load_library `reduce`;;
load_library `arith`;;
load_library `unwind`;;
loadf `arith-tools`;;
load_theory `Z` ? ();;
autoload_defs_and_thms `Z`;;
autoload_defs_and_thms `bool`;;
associate_restriction(`!`, `FORALL_RESTRICT`);;
associate_restriction(`?`, `EXISTS_RESTRICT`);;
%============================================================================%
% List and tuple processing routines. %
%============================================================================%
ml_curried_infix `subset`;;
let s1 subset s2 = (subtract s1 s2 = []);;
let appendl l = itlist $append l [];;
%----------------------------------------------------------------------------%
% putprop (x,v) [(x1,v1);...;(xn,vn)] replaces (xi,vi) by (x,v) if x=xi, %
% otherwise the pair (x,v) is added to the front of the list. %
%----------------------------------------------------------------------------%
let putprop (x,v) l =
letrec f l1 l2 =
if null l2
then (x,v).l
if x=fst(hd l2)
then (rev l1)@((x,v).(tl(l2)))
else f(hd l2.l1)(tl l2)
in
f [] l;;
%----------------------------------------------------------------------------%
% [] ---> fail %
% ["t1";...;"tn"] ---> "(t1,...,tn)" %
%----------------------------------------------------------------------------%
letrec mk_tuple tml =
if null tml
then failwith `mk_tuple`
if null(tl tml)
then (hd tml)
else mk_pair(hd tml, mk_tuple(tl tml));;
%----------------------------------------------------------------------------%
% "(t1,...,tn)" ---> ["t1";...;"tn"] %
%----------------------------------------------------------------------------%
letrec dest_tuple t =
(let t1,t2 = dest_pair t
in
t1.dest_tuple t2
) ? [t];;
%----------------------------------------------------------------------------%
% Test whether a term has the form "(v1,...,vn)". %
%----------------------------------------------------------------------------%
let is_var_tuple tm =
(map (\t. is_var t => () | fail) (dest_tuple tm); true) ? false;;
%----------------------------------------------------------------------------%
% Prime a variable. %
%----------------------------------------------------------------------------%
let prime_var tm =
let tok,ty = (dest_var tm ? failwith `prime applied to a non-variable`)
in
mk_var(tok^`'`,ty);;
%============================================================================%
% Some syntax utilities for preterms. %
%============================================================================%
%----------------------------------------------------------------------------%
% Convert a term to a preterm; discard types. %
%----------------------------------------------------------------------------%
let term_to_preterm_list = [`theta`];;
letrec term_to_preterm tm =
(let s,() = dest_var tm
in
preterm_var s)
?
(let s,() = dest_const tm
in
if mem s term_to_preterm_list
then preterm_typed(preterm_const s, type_of tm)
else preterm_const s)
?
(let p1,p2 = dest_comb tm
in
preterm_comb(term_to_preterm p1, term_to_preterm p2))
?
(let p1,p2 = dest_abs tm
in
let s,() = dest_var p1
in
preterm_abs(preterm_var s, term_to_preterm p2))
?
failwith `term_to_preterm`;;
letrec dest_preterm_var =
fun (preterm_var v) . v
| _ . failwith `dest_preterm_var`;;
letrec dest_preterm_const =
fun (preterm_const v) . v
| _ . failwith `dest_preterm_const`;;
letrec dest_preterm_comb =
fun (preterm_comb(p1,p2)) . (p1,p2)
| _ . failwith `dest_preterm_comb`;;
letrec dest_preterm_abs =
fun (preterm_abs(p1,p2)) . (p1,p2)
| _ . failwith `dest_preterm_abs`;;
letrec dest_preterm_typed =
fun (preterm_typed(p,ty)) . (p,ty)
| _ . failwith `dest_preterm_typed`;;
letrec dest_preterm_antiquot =
fun (preterm_antiquot p) . p
| _ . failwith `dest_preterm_antiquot`;;
let is_preterm_var = can dest_preterm_var
and is_preterm_const = can dest_preterm_const
and is_preterm_comb = can dest_preterm_comb
and is_preterm_abs = can dest_preterm_abs
and is_preterm_typed = can dest_preterm_typed
and is_preterm_antiquot = can dest_preterm_antiquot;;
let preterm_rator = fst o dest_preterm_comb
and preterm_rand = snd o dest_preterm_comb;;
let preterm_vb = fst o dest_preterm_abs
and preterm_body = snd o dest_preterm_abs;;
let strip_preterm_comb p =
letrec f p =
case p of
(preterm_comb(p1,p2)). (let op,args = f p1 in (op,p2.args))
|_ . (p,[])
in
(I # rev)(f p);;
letrec list_preterm_comb(op,args) =
if null args
then op
else list_preterm_comb(preterm_comb(op,hd args), tl args);;
let dest_preterm_pair p =
let op,args = strip_preterm_comb p
in
if (op = preterm_const `,`) & (length args = 2)
then (hd args, hd(tl args))
else failwith `dest_preterm_pair`;;
let is_preterm_pair = can dest_preterm_pair;;
let mk_preterm_pair(p1,p2) =
preterm_comb((preterm_comb((preterm_const `,`), p1)), p2);;
letrec list_mk_preterm_comb(p,l) =
if null l
then p
else list_mk_preterm_comb(preterm_comb(p,hd l), tl l);;
letrec dest_preterm_list p =
if p = preterm_const `NIL`
then []
else
let p1,p2 = dest_preterm_comb p
in
let p11,p12 = (dest_preterm_comb p1 ? failwith `dest_preterm_list`)
in
if not(p11 = preterm_const `CONS`)
then failwith `dest_preterm_list`
else p12.(dest_preterm_list p2);;
let is_preterm_list = can dest_preterm_list;;
letrec mk_preterm_list pl =
if null pl
then preterm_const `NIL`
else preterm_comb
(preterm_comb(preterm_const `CONS`, hd pl),mk_preterm_list(tl pl));;
%----------------------------------------------------------------------------%
% [] ---> fail %
% ["t1";...;"tn"] ---> "(t1,...,tn)" %
%----------------------------------------------------------------------------%
letrec mk_preterm_tuple tml =
if null tml
then failwith `mk_preterm_tuple`
if null(tl tml)
then (hd tml)
else mk_preterm_pair(hd tml, mk_preterm_tuple(tl tml));;
%----------------------------------------------------------------------------%
% "(t1,...,tn)" ---> ["t1";...;"tn"] %
%----------------------------------------------------------------------------%
letrec dest_preterm_tuple t =
(let t1,t2 = dest_preterm_pair t
in
t1.dest_preterm_tuple t2
) ? [t];;
%----------------------------------------------------------------------------%
% Test whether a term has the form "(v1,...,vn)". %
%----------------------------------------------------------------------------%
let is_preterm_var_tuple tm =
(map
(\t. is_preterm_var t => () | fail)
(dest_preterm_tuple tm); true)
? false;;
%----------------------------------------------------------------------------%
% Make a preterm conjunction. %
%----------------------------------------------------------------------------%
let mk_preterm_conj(p1,p2) =
preterm_comb(preterm_comb(preterm_const `/\\`,p1),p2);;
%----------------------------------------------------------------------------%
% Split a preterm conjunction into the conjoined preterms. %
%----------------------------------------------------------------------------%
let dest_preterm_conj p =
(let op,[p1;p2] = strip_preterm_comb p
in
if dest_preterm_const op = `/\\`
then (p1,p2)
else fail
) ? failwith `dest_preterm_conj`;;
%----------------------------------------------------------------------------%
% Preterm version of list_mk_conj. %
%----------------------------------------------------------------------------%
letrec list_mk_preterm_conj l =
if null l
then failwith `list_mk_preterm_conj`
if null(tl l)
then hd l
else
mk_preterm_conj(hd l, list_mk_preterm_conj(tl l)) ;;
%----------------------------------------------------------------------------%
% Split a preterm into conjuncts. %
%----------------------------------------------------------------------------%
letrec preterm_conjuncts p =
(let p1,p2 = dest_preterm_conj p
in
(preterm_conjuncts p1 @ preterm_conjuncts p2)
) ? [p];;
%----------------------------------------------------------------------------%
% Make a preterm disjunction. %
%----------------------------------------------------------------------------%
let mk_preterm_disj(p1,p2) =
preterm_comb(preterm_comb(preterm_const `\\/`,p1),p2);;
%----------------------------------------------------------------------------%
% Split a preterm disjunction into the disjoined preterms. %
%----------------------------------------------------------------------------%
let dest_preterm_disj p =
(let op,[p1;p2] = strip_preterm_comb p
in
if dest_preterm_const op = `\\/`
then (p1,p2)
else fail
) ? failwith `dest_preterm_disj`;;
%----------------------------------------------------------------------------%
% Preterm version of list_mk_disj. %
%----------------------------------------------------------------------------%
letrec list_mk_preterm_disj l =
if null l
then failwith `list_mk_preterm_disj`
if null(tl l)
then hd l
else
mk_preterm_disj(hd l, list_mk_preterm_disj(tl l)) ;;
%----------------------------------------------------------------------------%
% Split a preterm into disjuncts. %
%----------------------------------------------------------------------------%
letrec preterm_disjuncts p =
(let p1,p2 = dest_preterm_disj p
in
(preterm_disjuncts p1 @ preterm_disjuncts p2)
) ? [p];;
%----------------------------------------------------------------------------%
% Make a preterm implication. %
%----------------------------------------------------------------------------%
let mk_preterm_imp(p1,p2) =
preterm_comb(preterm_comb(preterm_const `==>`,p1),p2);;
%----------------------------------------------------------------------------%
% Split a preterm implication into the antecedent and consequent. %
%----------------------------------------------------------------------------%
let dest_preterm_imp p =
(let op,[p1;p2] = strip_preterm_comb p
in
if dest_preterm_const op = `==>`
then (p1,p2)
else fail
) ? failwith `dest_preterm_imp`;;
%----------------------------------------------------------------------------%
% Make a preterm equality. %
%----------------------------------------------------------------------------%
let mk_preterm_eq(p1,p2) =
preterm_comb(preterm_comb(preterm_const `=`,p1),p2);;
%----------------------------------------------------------------------------%
% Split a preterm equality into the left and right hand sides. %
%----------------------------------------------------------------------------%
let dest_preterm_eq p =
(let op,[p1;p2] = strip_preterm_comb p
in
if dest_preterm_const op = `=`
then (p1,p2)
else fail
) ? failwith `dest_preterm_eq`;;
%----------------------------------------------------------------------------%
% Syntax functions for preterm quantifiers. %
%----------------------------------------------------------------------------%
let mk_preterm_forall(v,p) =
preterm_comb(preterm_const `!`, preterm_abs(v, p));;
letrec list_mk_preterm_forall(l,p) =
if null l
then p
else mk_preterm_forall(hd l, list_mk_preterm_forall(tl l,p));;
%< Not needed -- delete
let mk_preterm_res_forall((v,t),p) =
preterm_comb
((preterm_comb((preterm_const `FORALL_RESTRICT`), t)), preterm_abs(v, p));;
>%
%----------------------------------------------------------------------------%
% ([("v1","t1");...;("vn","tn")], "p") %
% ---> %
% "!v1...vn. v1::t1 /\ ... /\ vn::tn ==> p" %
%----------------------------------------------------------------------------%
letrec list_mk_preterm_res_forall(l,p) =
let vl,() = split l
and rl =
map (\(v,t). preterm_comb((preterm_comb((preterm_const `::`), v)), t)) l
in
list_mk_preterm_forall
(vl,
if null rl then p else mk_preterm_imp(list_mk_preterm_conj rl,p));;
let mk_preterm_exists(v,p) =
preterm_comb(preterm_const `?`, preterm_abs(v, p));;
%----------------------------------------------------------------------------%
% ([("v1","t1");...;("vn","tn")], "p") %
% ---> %
% "?v1...vn. v1::t1 /\ ... /\ vn::tn /\ p" %
%----------------------------------------------------------------------------%
letrec list_mk_preterm_exists(l,p) =
if null l
then p
else mk_preterm_exists(hd l, list_mk_preterm_exists(tl l,p));;
%< Not needed -- delete
let mk_preterm_res_exists((v,t),p) =
preterm_comb
((preterm_comb((preterm_const `EXISTS_RESTRICT`), t)), preterm_abs(v, p));;
>%
%----------------------------------------------------------------------------%
% ([("v1","t1");...;("vn","tn")], "p") %
% ---> %
% "?v1...vn. v1::t1 /\ ... /\ vn::tn /\ p" %
%----------------------------------------------------------------------------%
letrec list_mk_preterm_res_exists(l,p) =
let vl,() = split l
and rl =
map (\(v,t). preterm_comb((preterm_comb((preterm_const `::`), v)), t)) l
in
list_mk_preterm_exists
(vl,
if null rl then p else mk_preterm_conj(list_mk_preterm_conj rl,p));;
%----------------------------------------------------------------------------%
% preterm_frees computes the free variables in a preterm. %
%----------------------------------------------------------------------------%
letrec preterm_frees p =
case p
of (preterm_var v) . [p]
| (preterm_const c) . []
| (preterm_comb(p1,p2)) . union (preterm_frees p1) (preterm_frees p2)
| (preterm_abs(p1,p2)) . subtract (preterm_frees p2) [p1]
| (preterm_typed(p1,ty)). preterm_frees p1
| (preterm_antiquot t) . map (preterm_var o fst o dest_var) (frees t);;
%----------------------------------------------------------------------------%
% Preterm substitution. No renaming; variable capture causes failure. %
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
% var_capture l v1 v2 is true if substituting l in p2 would result in a %
% variable capture by p1. %
%----------------------------------------------------------------------------%
let var_capture l p1 p2 =
(map
(\v. if (mem p1 (preterm_frees(fst(rev_assoc v l))) ? false) then fail)
(preterm_frees p2);
false
) ? true;;
letrec preterm_subst l p =
case p
of (preterm_var v) . fst(rev_assoc p l) ? p
| (preterm_const c) . p
| (preterm_comb(p1,p2)) . preterm_comb
(preterm_subst l p1, preterm_subst l p2)
| (preterm_abs(p1,p2)) . if var_capture l p1 p2
then failwith `preterm_subst: variable capture`
else preterm_abs(p1, preterm_subst l p2)
| (preterm_typed(p1,ty)). preterm_typed(preterm_subst l p1,ty)
| (preterm_antiquot t) . p;;
%----------------------------------------------------------------------------%
% Prime (dash) a preterm variable. %
%----------------------------------------------------------------------------%
let prime_preterm_var pm =
let tok = (dest_preterm_var pm ? failwith `prime applied to a non-variable`)
in
preterm_var(tok^`'`);;
%----------------------------------------------------------------------------%
% Test whether a preterm_var is decorated (with a dash, ? or !). %
%----------------------------------------------------------------------------%
let is_dashed v =
let cl = explode(dest_preterm_var v)
in
not(null cl) & (last cl = `'`);;
let dest_dashed v =
let cl = explode v
in
if not(null cl) & (last cl = `'`)
then implode(butlast cl)
else failwith `dest_dashed`;;
let iter_dest_dashed v =
letrec f(n,v) = f(n+1,dest_dashed v) ? (n,v)
in
f(0,v);;
let is_input v =
let cl = rev(explode(dest_preterm_var v))
in
not(null cl) & (hd cl = `?`);;
let is_output v =
let cl = rev(explode(dest_preterm_var v))
in
not(null cl) & (hd cl = `!`);;
let is_plain v = not(is_dashed v or is_input v or is_output v);;
%============================================================================%
% Global state variables and routines. %
%============================================================================%
%----------------------------------------------------------------------------%
% Global list of variables declared in schemas and their types. %
%----------------------------------------------------------------------------%
letref schema_variables = []:(string#type)list;;
let lookup_schema_var v =
snd(assoc v schema_variables)
? failwith `lookup_schema_var`;;
let remember_type d =
(let v,ty1 = dest_var(rand(rator d))
in
let (),ty2 = assoc v schema_variables
in
if ty1=ty2
then d
else failwith(v^` already declared with a different type`)
) ? (schema_variables := (dest_var(rand(rator d))).schema_variables;d);;
%----------------------------------------------------------------------------%
% Global list of schema expansions. %
%----------------------------------------------------------------------------%
letref schema_expansions = [] : (term#term)list;;
%----------------------------------------------------------------------------%
% Store preterm schema sc2 as an expansion of preterm schema sc1. %
%----------------------------------------------------------------------------%
let store_preterm_schema_pair(sc1,sc2) =
let tm2 = preterm_to_term sc2
in
let tm1 = preterm_to_term(preterm_typed(sc1, type_of tm2))
in
if tm1 = tm2
then ()
else (schema_expansions := putprop (tm1, tm2) schema_expansions; ());;
%----------------------------------------------------------------------------%
% Store schema sc2 as an expansion of schema sc1 (sc1 and sc2 both terms). %
%----------------------------------------------------------------------------%
let store_schema_pair(sc1,sc2) =
schema_expansions := putprop (sc1, sc2) schema_expansions; ();;
%----------------------------------------------------------------------------%
% Retrieve the abbreviating term for a schema; fail if no abbreviation %
% in schema_expansions. %
%----------------------------------------------------------------------------%
let lookup_schema_abbrev tm = fst(rev_assoc tm schema_expansions);;
%----------------------------------------------------------------------------%
% Retrieve the term a schema expands to. %
%----------------------------------------------------------------------------%
let lookup_schema_expansion tm = snd(assoc tm schema_expansions);;
%----------------------------------------------------------------------------%
% Global list of schema names. %
%----------------------------------------------------------------------------%
letref schema_names = []:string list;;
%----------------------------------------------------------------------------%
% Store the name of a schema. %
%----------------------------------------------------------------------------%
let store_schema_name name sc =
store_schema_pair(mk_var(name,":bool"),sc);
(if not(mem name schema_names)
then (schema_names := name.schema_names; ()));
sc;;
%----------------------------------------------------------------------------%
% Retrieve the schema term associated with a name `name`. %
%----------------------------------------------------------------------------%
let lookup_schema_name s =
(if mem s schema_names
then lookup_schema_expansion(mk_var(s,":bool"))
else fail
) ? failwith `lookup_schema_name`;;
%----------------------------------------------------------------------------%
% Counter used for generating axiom names. %
%----------------------------------------------------------------------------%
letref axiom_count = 1;;
%----------------------------------------------------------------------------%
% List of Z construct not folded on output. %
%----------------------------------------------------------------------------%
letref not_fold_list = [] : string list;;
%----------------------------------------------------------------------------%
% Check whether the head constant of a term is in not_fold_list. %
%----------------------------------------------------------------------------%
let not_fold tm =
mem (fst(dest_const(fst(strip_comb tm)))) not_fold_list ? false;;
%----------------------------------------------------------------------------%
% Stop a Z construct from being folded. %
%----------------------------------------------------------------------------%
let disable_folding s = (not_fold_list := union [s] not_fold_list);;
%----------------------------------------------------------------------------%
% Enable folding of a Z construct. %
%----------------------------------------------------------------------------%
let enable_folding = delete not_fold_list;;
%============================================================================%
% Syntax routines for schemas. %
%============================================================================%
%----------------------------------------------------------------------------%
% A schema is term of the form: %
% %
% "SCHEMA [v1 :: S1; ... ; vn :: Sm] [B1; ... ;Bn]" %
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
% dest_dec "v :: S" ---> ("v","S") %
%----------------------------------------------------------------------------%
let dest_dec pm =
let op,args = strip_preterm_comb pm
in
if is_preterm_const op &
(dest_preterm_const op = `::`) &
(length args = 2) &
is_preterm_var(hd args)
then (hd args, hd(tl args))
else failwith `dest_dec`;;
let dest_input dec =
let v,() = dest_dec dec
in
if is_input v then v else fail;;
let dest_output dec =
let v,() = dest_dec dec
in
if is_output v then v else fail;;
let dest_plain dec =
let v,() = dest_dec dec
in
if is_plain v then v else fail;;
let get_dec_var = fst o dest_dec;;
let get_dec_set = snd o dest_dec;;
%----------------------------------------------------------------------------%
% is_dec pm tests whether pm has the form "v :: S" %
%----------------------------------------------------------------------------%
let is_dec = can dest_dec;;
%----------------------------------------------------------------------------%
% dest_decs "[v1 :: S1; ... ; vn :: Sn]" %
% ---> %
% [("v1","S1");...;("vn","Sn")] %
%----------------------------------------------------------------------------%
let dest_decs pm = map dest_dec (dest_preterm_list pm);;
%----------------------------------------------------------------------------%
% is_decs pm tests whether pm has the form "[v1 :: S1; ... ; vn :: Sn]" %
%----------------------------------------------------------------------------%
let is_decs = can dest_decs;;
%----------------------------------------------------------------------------%
% ("decs", "bdy") ---> "SCHEMA decs bdy" %
% %
% and check that: %
% %
% 1. decs is a list of declarations %
% %
% 2. free variables in bdy are declared in decs %
% %
% 3. no declared variable occurs in the rhs of a declaration %
% %
%----------------------------------------------------------------------------%
let mk_schema(decs,bdy) =
let decsl = dest_preterm_list decs
in
let dec_vars = map get_dec_var decsl
in
map
(\pm. is_dec pm => () | failwith `bad declaration`)
decsl;
if not((preterm_frees bdy) subset dec_vars)
then failwith `undeclared free variable in body`
if not(intersect
dec_vars
(appendl(map (preterm_frees o get_dec_set) decsl)) =
[])
then failwith `variable occurs on both lhs and rhs of declarations`
else preterm_comb(preterm_comb(preterm_const `SCHEMA`, decs), bdy);;
%----------------------------------------------------------------------------%
% "SCHEMA decs bdy" ---> ("decs", "bdy") %
%----------------------------------------------------------------------------%
let dest_schema sc =
(let op,[dec;bdy] = strip_preterm_comb sc
in
if (op = preterm_const `SCHEMA`) &
is_preterm_list dec &
is_preterm_list bdy
then (dec,bdy)
else fail
) ? failwith `dest_schema`;;
let is_schema = can dest_schema;;
%----------------------------------------------------------------------------%
% Get conjuncts making up the declaration and predicate of a schema term. %
%----------------------------------------------------------------------------%
let schema_dec_conjuncts sc =
let op,[decs;bdy] = strip_comb sc
in
fst(dest_list decs);;
let schema_body_conjuncts sc =
let op,[decs;bdy] = strip_comb sc
in
fst(dest_list bdy);;
let schema_conjuncts sc =
let op,[decs;bdy] = strip_comb sc
in
fst(dest_list decs)@fst(dest_list bdy);;
%============================================================================%
% Add explicit types (from the global schema_variables) to previously %
% declared schema variables. %
%============================================================================%
%----------------------------------------------------------------------------%
% Test whether a preterm has the form "v :: S". %
%----------------------------------------------------------------------------%
let is_var_dec p =
let op,args = strip_preterm_comb p
in
(op = preterm_const `::`) & (length args = 2);;
%----------------------------------------------------------------------------%
% If (`v`,ty) is in schema_variables, then %
% %
% add_type `v` ---> (preterm_typed (preterm_var `v`) ty) %
% %
% else %
% %
% add_type `v` ---> (preterm_var `v`) %
%----------------------------------------------------------------------------%
let add_type v =
preterm_typed(preterm_var v, lookup_schema_var v)
?
preterm_var v;;
letrec add_types p =
case p
of (preterm_var v) . (add_type v)
| (preterm_const c) . p
| (preterm_comb(p1,p2)) . (preterm_comb(add_types p1, add_types p2))
| (preterm_abs(p1,p2)) . (preterm_abs(add_types p1, add_types p2))
| (preterm_typed(p1,ty)). (preterm_typed(add_types p1, ty))
| (preterm_antiquot t) . p;;
%============================================================================%
% Preprocess applications "f x" to "f ^^ x", if "f" previously declared %
% to have a type of the form ":(ty1#ty2)set". %
%============================================================================%
%----------------------------------------------------------------------------%
% is_set_fun_ty tests whether a type is of the form ":(ty1#ty2)set" %
%----------------------------------------------------------------------------%
let is_set_fun_ty ty =
(let op,args = dest_type ty
in
(op = `set`) &
(length args = 1) &
(fst(dest_type(hd args)) = `prod`)
) ? false;;
%----------------------------------------------------------------------------%
% is_set_fun (preterm_var `f`) returns true if (`f`, ":(ty1#ty2)set") is in %
% schema_variables, otherwise it returns false. %
%----------------------------------------------------------------------------%
let is_set_fun =
fun (preterm_var v) . (is_set_fun_ty(lookup_schema_var v) ? false)
| _ . false;;
let mk_set_fun p1 p2 =
preterm_comb (preterm_comb((preterm_const `^^`), p1), p2);;
%============================================================================%
% Routines for expanding schemas included in declarations. %
%============================================================================%
%----------------------------------------------------------------------------%
% add_import_decs %
% "SCHEMA[u1 :: S1; ... ; um :: Sm][P1;...;Pp]" %
% "[v1 :: T1; ... ; vn :: Tn]" %
% ---> %
% "[u1 :: S1; ... ; um :: Sm; v1 :: T1; ... ; vn :: Tn]" %
%----------------------------------------------------------------------------%
let add_import_decs import decs2 =
if not(is_schema import)
then failwith `invalid schema import declaration`
else
let decs1,bdy1 = dest_schema import
in
let decsl1 = dest_preterm_list decs1
and decsl2 = dest_preterm_list decs2
in
if not(intersect
(map (get_dec_var) decsl1)
(map (get_dec_var) decsl2) =
[])
then failwith `variable occurs in schema and in import declarations`
else
mk_preterm_list(decsl1 @ decsl2);;
%----------------------------------------------------------------------------%
% mk_schema_decs [imp1;...;impn] pm = %
% add_import_decs imp1 (...(add_import_decs impn pm)...) %
%----------------------------------------------------------------------------%
let mk_schema_decs = itlist add_import_decs;;
%----------------------------------------------------------------------------%
% add_import_body %
% "SCHEMA[u1 :: S1; ... ; um :: Sm][P1; ... ;Pp]" "[Q1; ... ;Qq]" %
% ---> "P1 /\ ... /\ Pp /\ Q1 /\ ... /\ Qq" %
%----------------------------------------------------------------------------%
let add_import_body import bdy2 =
if not(is_schema import)
then failwith `invalid schema import declaration`
else
let decs1,bdy1 = dest_schema import
in
mk_preterm_list(dest_preterm_list bdy1 @ dest_preterm_list bdy2);;
%----------------------------------------------------------------------------%
% mk_schema_body [imp1;...;impn] pm = %
% add_import_body imp1 (...(add_import_body impn pm)...) %
%----------------------------------------------------------------------------%
let mk_schema_body = itlist add_import_body;;
%----------------------------------------------------------------------------%
% v :: S ---> v' :: S %
%----------------------------------------------------------------------------%
let prime_dec pm =
let op,args = strip_preterm_comb pm
in
if not(is_preterm_const op &
(dest_preterm_const op = `::`) &
(length args = 2))
then failwith `prime_dec`
else
list_mk_preterm_comb(op,[prime_preterm_var(el 1 args);el 2 args]);;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is a conjunction. %
%----------------------------------------------------------------------------%
let is_schema_conj p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `AND`)
) ? false;;
%============================================================================%
% Routines for `macroexpanding' schema operations. %
%============================================================================%
%----------------------------------------------------------------------------%
% Schema hiding: %
% hide_schema_vars %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [B1; ... ;Bn]" ["v1";...;"vp"] %
% ---> %
% "SCHEMA [u1' :: S1; ... ; up' :: Sr] %
% [?v1 ... vp. B1 /\ ... /\ Bn]" %
% %
% where [u1';...;ur'] = subtract [u1;...;um] [v1;...;vp] %
%----------------------------------------------------------------------------%
let hide_schema_vars sc vl =
if null vl
then failwith `empty list of hidden variables`
else
let decs,bdy = dest_schema sc
in
let vl1 = intersect vl (preterm_frees bdy)
in
let decsl = dest_preterm_list decs
in
let decsl1 =
mapfilter
((\(v,t). if mem v vl1 then (v,t) else fail) o dest_dec)
decsl
in
mk_schema
(mk_preterm_list
(filter (\d. not(mem (fst(dest_dec d)) vl)) decsl),
mk_preterm_list
[list_mk_preterm_res_exists
(decsl1,
list_mk_preterm_conj(dest_preterm_list bdy))]);;
%----------------------------------------------------------------------------%
% Schema hiding: %
% mk_schema_hide %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [B1; ... ;Bn]" "(v1;...;vp)" %
% ---> %
% "SCHEMA [u1' :: S1; ... ; up' :: Sp] %
% (?v1 ... vp. B1 /\ ... /\ Bn)" %
% %
% where [u1';...;up'] = subtract [u1;...;um] [v1;...;v9] %
%----------------------------------------------------------------------------%
let is_schema_hide p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `HIDE`)
) ? false;;
let mk_schema_hide sc tup =
let sc_hide =
hide_schema_vars sc (dest_preterm_tuple tup)
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `HIDE`,sc),tup),sc_hide);
sc_hide;;
%----------------------------------------------------------------------------%
% mk_schema_pre "SCHEMA [u1 :: S1; ... ; um :: Sm] BL" hides all primed %
% and output variables. %
%----------------------------------------------------------------------------%
let dest_plain_or_dashed dec =
let v,ty = dest_dec dec
in
if is_input v or is_output v then fail else v;;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "pre". %
%----------------------------------------------------------------------------%
let is_schema_pre p1 p2 =
(dest_preterm_const p1 = `pre`) ? false;;
let mk_schema_pre sc =
let decs,bdy = dest_schema sc
in
let vl = map (fst o dest_dec) (dest_preterm_list decs)
in
let sc_pre =
hide_schema_vars
sc
(filter (\v. is_dashed v or is_output v) vl)
in
store_preterm_schema_pair(preterm_comb(preterm_const `pre`,sc),sc_pre);
sc_pre;;
%----------------------------------------------------------------------------%
% Compute signature of a schema. %
%----------------------------------------------------------------------------%
let sig sc =
(let op,[decs;bdy] = strip_comb sc
in
if op = "SCHEMA"
then list_mk_conj(fst(dest_list decs))
else fail)
? failwith `sig applied to a non-schema`;;
%----------------------------------------------------------------------------%
% Compute predicate of a schema. %
%----------------------------------------------------------------------------%
let pred sc =
(let op,[decs;bdy] = strip_comb sc
in
if op = "SCHEMA"
then list_mk_conj(fst(dest_list bdy))
else fail)
? failwith `pred applied to a non-schema`;;
%----------------------------------------------------------------------------%
% Store types of variables declared in a schema in schema_variables. %
%----------------------------------------------------------------------------%
let is_schema_head p =
(let p1,p2 = dest_preterm_comb p
in
((dest_preterm_const p1 = `SCHEMA`) & is_preterm_list p2)
) ? false;;
let store_schema_variables decs =
(let vdecs = filter is_dec (dest_preterm_list decs)
in
map (remember_type o preterm_to_term) vdecs; ()
) ? failwith `store_schema_variables`;;
%----------------------------------------------------------------------------%
% Expand out schemas included as declarations. %
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
% Split a preterm "[d1;...;dn]" into an ML list of the schema declarations %
% (i.e. included schemas) and the preterm consisting of the list of %
% the explicit variable declarations. %
% %
% Remember declared variable types in the global variable schema_variables. %
%----------------------------------------------------------------------------%
let split_dec p =
(let sdecs,vdecs = partition is_schema (dest_preterm_list p)
in
map is_schema sdecs;
(sdecs, mk_preterm_list vdecs)
) ? failwith `undeclared or bad declaration in schema`;;
%----------------------------------------------------------------------------%
% "SCHEMA[schema_spec1;...;schema_specm;d1;...;dn] [B1;...;Bo]" %
% ---> %
% (mk_schema %
% (mk_schema_decs [sc1;...;scm] "[d1 ; ... ;dn]", %
% mk_schema_body [sc1;...;scm] "[B1; ... ; Bo]") %
% %
% where d1,...,dn are the schema values denoted by %
% schema_spec1,...,schema_specm. %
%----------------------------------------------------------------------------%
let mk_schema_construction(p,bdy) =
let includes,dec = split_dec p
in
mk_schema
(mk_schema_decs includes dec,
mk_schema_body includes bdy);;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "theta". %
%----------------------------------------------------------------------------%
let is_schema_theta p1 p2 =
((((is_preterm_const p1) & (dest_preterm_const p1 = `theta`)) or
(dest_preterm_const(fst(dest_preterm_typed p1)) = `theta`)) & is_schema p2)
? false;;
%----------------------------------------------------------------------------%
% theta (SCHEMA[v1' :: S1; ... ; vn' :: Sm] [B1; ... ;Bn]) = %
% ((`vi1`,vi1'), ... ,(`vin`,vin')) %
% %
% where the order i1,...,in is obtained by sorting `v1`,...,`vn` with <<. %
% The decoration may be empty, in which case: %
% %
% theta (SCHEMA[v1 :: S1; ... ; vn :: Sm] [B1; ... ;Bn]) = %
% ((`vi1`,vi1), ... ,(`vin`,vin)) %
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
% `x` --> ``x`` %
%----------------------------------------------------------------------------%
let add_quotes s = `\`` ^ s ^ `\``;;
let mk_theta sc =
let decs,bdy = dest_schema sc
in
let l =
map
(\(v,ty).
(preterm_const(add_quotes(snd(iter_dest_dashed v))),
preterm_typed(preterm_var v,ty)))
(map (dest_var o rand o rator o preterm_to_term) (dest_preterm_list decs))
in
let sc_theta =
mk_preterm_tuple(map mk_preterm_pair (sort (\((s1,v1),(s2,v2)). s1 << s2) l))
in
store_preterm_schema_pair(preterm_comb(preterm_const `theta`,sc), sc_theta);
sc_theta;;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "DELTA". %
%----------------------------------------------------------------------------%
let is_schema_delta p1 p2 =
((dest_preterm_const p1 = `DELTA`) & is_schema p2) ? false;;
%----------------------------------------------------------------------------%
% "S" ---> "S AND dash S" %
%----------------------------------------------------------------------------%
set_flag(`preterm`,true);;
let preterm_handler = I;;
let delta_expansion_preterm = "sc AND (dash sc)";;
let preterm_handler = preterm_to_term;;
let delta_expansion sc =
preterm_subst[sc, preterm_var `sc`]delta_expansion_preterm;;
%<
preterm_comb((preterm_comb((preterm_const `AND`), sc)),
preterm_comb((preterm_const `dash`), sc));;
>%
let mk_schema_delta sc =
let sc_delta = delta_expansion sc
in
store_preterm_schema_pair(preterm_comb(preterm_const `DELTA`,sc),sc_delta);
sc_delta;;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "XI". %
%----------------------------------------------------------------------------%
let is_schema_xi p1 p2 =
((dest_preterm_const p1 = `XI`) & is_schema p2) ? false;;
%----------------------------------------------------------------------------%
% "S" ---> "SCHEMA [DELTA S] [theta(dash S) = theta S]" %
%----------------------------------------------------------------------------%
let preterm_handler = I;;
let xi_expansion_preterm = "SCHEMA [DELTA sc] [theta(dash sc) = theta sc]";;
let preterm_handler = preterm_to_term;;
%----------------------------------------------------------------------------%
% Substitute for either a variable or a constant. %
%----------------------------------------------------------------------------%
letrec preterm_var_or_const_subst l p =
case p
of (preterm_var v) . fst(rev_assoc p l) ? p
| (preterm_const c) . fst(rev_assoc p l) ? p
| (preterm_comb(p1,p2)) . preterm_comb
(preterm_var_or_const_subst l p1,
preterm_var_or_const_subst l p2)
| (preterm_abs(p1,p2)) . if var_capture l p1 p2
then failwith `preterm_var_or_const_subst: variable capture`
else preterm_abs(p1, preterm_var_or_const_subst l p2)
| (preterm_typed(p1,ty)). preterm_typed(preterm_var_or_const_subst l p1,ty)
| (preterm_antiquot t) . p;;
let xi_expansion sc =
let theta_ty = ":bool -> ^(type_of(preterm_to_term(mk_theta sc)))"
in
preterm_var_or_const_subst
[preterm_typed(preterm_const `theta`, theta_ty), preterm_const `theta`;
sc, preterm_var `sc`]
xi_expansion_preterm;;
%<
preterm_comb
((preterm_comb
((preterm_const `SCHEMA`),
preterm_comb((preterm_comb((preterm_const `CONS`),
preterm_comb((preterm_const `DELTA`), sc))),
preterm_const `NIL`))),
preterm_comb
((preterm_comb
((preterm_const `CONS`),
preterm_comb
((preterm_comb
((preterm_const `=`),
preterm_comb((preterm_const `theta`),
preterm_comb((preterm_const `dash`), sc)))),
preterm_comb((preterm_const `theta`), sc)))),
preterm_const `NIL`));;
>%
let mk_schema_xi sc =
let sc_xi = xi_expansion sc
in
store_preterm_schema_pair(preterm_comb(preterm_const `XI`,sc),sc_xi);
sc_xi;;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "sig". %
%----------------------------------------------------------------------------%
let is_schema_sig p1 p2 =
(dest_preterm_const p1 = `sig`) ? false;;
let mk_sig sc =
let decs,bdy = dest_schema sc
in
let vl = map (fst o dest_dec) (dest_preterm_list decs)
in
let sc_sig = list_mk_preterm_conj(dest_preterm_list decs)
in
store_preterm_schema_pair(preterm_comb(preterm_const `sig`,sc),sc_sig);
sc_sig;;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an application of "pred". %
%----------------------------------------------------------------------------%
let is_schema_pred p1 p2 =
(dest_preterm_const p1 = `pred`) ? false;;
let mk_pred sc =
let decs,bdy = dest_schema sc
in
let vl = map (fst o dest_dec) (dest_preterm_list decs)
in
let sc_pred = list_mk_preterm_conj(dest_preterm_list bdy)
in
store_preterm_schema_pair(preterm_comb(preterm_const `pred`,sc),sc_pred);
sc_pred;;
%----------------------------------------------------------------------------%
% mk_schema_dash "SCHEMA [u1 :: S1; ... um :: Sm] BL" dashes all variables %
%----------------------------------------------------------------------------%
let is_schema_dash p1 p2 =
(dest_preterm_const p1 = `dash`) ? false;;
let mk_schema_dash sc =
let decs,bdy = dest_schema sc
in
let vl = map (fst o dest_dec) (dest_preterm_list decs)
in
preterm_subst(map (\v. (prime_preterm_var v, v)) vl)sc;;
%----------------------------------------------------------------------------%
% dash "SCHEMA [u1 :: S1; ... um :: Sm] BL" dashes all variables in a term %
%----------------------------------------------------------------------------%
let dash sc =
let (), [decs;bdy] = strip_comb sc
in
let vl = map (rand o rator) (fst(dest_list decs))
in
subst(map (\v. (prime_var v, v)) vl)sc;;
letrec iter_dash(n,sc) = if n=0 then sc else iter_dash(n-1,dash sc);;
%----------------------------------------------------------------------------%
% Expand dashed schema names. %
%----------------------------------------------------------------------------%
let expand_schema_name v =
term_to_preterm(lookup_schema_name v)
? let (n,x) = iter_dest_dashed v
in
let tm = iter_dash(n,lookup_schema_name x)
in
store_schema_name v tm;
term_to_preterm tm;;
%----------------------------------------------------------------------------%
% mk_schema_conj %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]" %
% "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]" %
% ---> %
% "SCHEMA [u1 :: S1; ... ; um :: Sm; %
% v1':: T1'; ... ; vr':: Tr'] %
% [P1; ... ;Pp; Q1; ... ;Qq]" %
% where: %
% %
% ["v1' :: T1'"; ... ; "vr' :: Tr'"] = %
% subtract ["v1 :: T1"; ... ;"vn :: Tn"] ["u1 :: S1"; ... ;"um :: Sm"] %
%----------------------------------------------------------------------------%
let mk_schema_conj(sc1,sc2) =
let decs1,bdy1 = (dest_schema sc1
? failwith `first argument of AND not a schema`)
and decs2,bdy2 = (dest_schema sc2
? failwith `second argument of AND not a schema`)
in
let decsl1 = dest_preterm_list decs1
and decsl2 = dest_preterm_list decs2
in
let sc_conj =
mk_schema
(mk_preterm_list(decsl1 @ subtract decsl2 decsl1),
mk_preterm_list(dest_preterm_list bdy1 @ dest_preterm_list bdy2))
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `AND`,sc1),sc2),sc_conj);
sc_conj;;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is a disjunction. %
%----------------------------------------------------------------------------%
let is_schema_disj p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `OR`)
) ? false;;
%----------------------------------------------------------------------------%
% mk_schema_disj %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]" %
% "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]" %
% ---> %
% "SCHEMA [u1 :: S1; ... ; um :: Sm; %
% v1':: T1'; ... ; vr':: Tr'] %
% [(P1 /\ ... /\ Pp) \/ (Q1 /\ ... /\ Qq)]" %
% where: %
% %
% ["v1' :: T1'"; ... ; "vr' :: Tr'"] = %
% subtract ["v1 :: T1"; ... ;"vn :: Tn"] ["u1 :: S1"; ... ;"um :: Sm"] %
%----------------------------------------------------------------------------%
let mk_schema_disj(sc1,sc2) =
let decs1,bdy1 = (dest_schema sc1
? failwith `first argument of OR not a schema`)
and decs2,bdy2 = (dest_schema sc2
? failwith `second argument of OR not a schema`)
in
let decsl1 = dest_preterm_list decs1
and decsl2 = dest_preterm_list decs2
in
let sc_disj =
mk_schema
(mk_preterm_list(decsl1 @ subtract decsl2 decsl1),
mk_preterm_list
[mk_preterm_disj
(list_mk_preterm_conj(dest_preterm_list bdy1),
list_mk_preterm_conj(dest_preterm_list bdy2))])
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `OR`,sc1),sc2),sc_disj);
sc_disj;;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is an implication. %
%----------------------------------------------------------------------------%
let is_schema_imp p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `IMPLIES`)
) ? false;;
%----------------------------------------------------------------------------%
% mk_schema_imp %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]" %
% "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]" %
% ---> %
% "SCHEMA [u1 :: S1; ... ; um :: Sm; %
% v1':: T1'; ... ; vr':: Tr'] %
% [(P1 /\ ... /\ Pp) ==> (Q1 /\ ... /\ Qq)]" %
% where: %
% %
% ["v1' :: T1'"; ... ; "vr' :: Tr'"] = %
% subtract ["v1 :: T1"; ... ;"vn :: Tn"] ["u1 :: S1"; ... ;"um :: Sm"] %
%----------------------------------------------------------------------------%
let mk_schema_imp(sc1,sc2) =
let decs1,bdy1 = (dest_schema sc1
? failwith `first argument of IMPLIES not a schema`)
and decs2,bdy2 = (dest_schema sc2
? failwith `second argument of IMPLIES not a schema`)
in
let decsl1 = dest_preterm_list decs1
and decsl2 = dest_preterm_list decs2
in
let sc_imp =
mk_schema
(mk_preterm_list(decsl1 @ subtract decsl2 decsl1),
mk_preterm_list
[mk_preterm_imp
(list_mk_preterm_conj(dest_preterm_list bdy1),
list_mk_preterm_conj(dest_preterm_list bdy2))])
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `IMPLIES`,sc1),sc2),sc_imp);
sc_imp;;
%----------------------------------------------------------------------------%
% mk_schema_forall %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]" %
% "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]" %
% ---> %
% "SCHEMA [v1' :: T1; ... ; vp' :: Tr] %
% [!u1 ... um. (u1 :: S1) /\ ... /\ (um :: Sm) /\ P1 /\ ... /\ Pp %
% ==> (Q1 /\ ... /\ Qq)]" %
% %
% where {u1::S1, ... ,um::Sm} must be included in {v1::T1, ... ,vn::Tn} %
% and %
% %
% [v1'::T1; ... ;vp'::Tr] = %
% subtract [v1::T1; ... ;vn::Tn] [u1::S1; ... ;um::Sm] %
%----------------------------------------------------------------------------%
let is_schema_forall p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `SCHEMA_FORALL`)
) ? false;;
let mk_schema_forall(sc1,sc2) =
let decs1,bdy1 = dest_schema sc1
and decs2,bdy2 = dest_schema sc2
in
let decsl1 = dest_preterm_list decs1
and decsl2 = dest_preterm_list decs2
in
if not(decsl1 subset decsl2)
then failwith `Universally quantified schema variable not declared in body`
else
let sc_forall =
mk_schema
(mk_preterm_list(subtract decsl2 decsl1),
mk_preterm_list
[list_mk_preterm_res_forall
(map dest_dec decsl1,
mk_preterm_imp(list_mk_preterm_conj(decsl1@[bdy1]),bdy2))])
in
store_preterm_schema_pair
(preterm_comb
(preterm_comb(preterm_const `SCHEMA_FORALL`,sc1),sc2),sc_forall);
sc_forall;;
%----------------------------------------------------------------------------%
% mk_pred_forall %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]" %
% "P" %
% ---> %
% "!u1 ... um. (u1 :: S1) /\ ... /\ (um :: Sm) /\ P1 /\ ... /\ Pp ==> P %
% %
% mk_pred_forall %
% "u :: S" %
% "P" %
% ---> %
% "!u. (u :: S) ==> P %
%----------------------------------------------------------------------------%
let is_pred_forall p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `FORALL`)
) ? false;;
%----------------------------------------------------------------------------%
% Quantified variable is a schema. %
%----------------------------------------------------------------------------%
let mk_pred_forall1(sc,pm) =
let decs,bdy = dest_schema sc
in
let decsl = dest_preterm_list decs
in
let sc_forall =
list_mk_preterm_res_forall
(map dest_dec decsl,
mk_preterm_imp(list_mk_preterm_conj(decsl @ dest_preterm_list bdy),pm))
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `FORALL`,sc),pm),sc_forall);
sc_forall;;
%----------------------------------------------------------------------------%
% Quantified variable is a declaration. %
%----------------------------------------------------------------------------%
let mk_pred_forall2(dec,pm) =
let v,ty = dest_dec dec
in
let sc_forall =
mk_preterm_forall(v, mk_preterm_imp(dec,pm))
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `FORALL`,dec),pm),sc_forall);
sc_forall;;
%----------------------------------------------------------------------------%
% Invoke mk_pred_forall1 or mk_pred_forall2 depending on type of argument. %
%----------------------------------------------------------------------------%
let mk_pred_forall3 sc_dec pm =
if is_schema sc_dec then mk_pred_forall1(sc_dec,pm)
if is_dec sc_dec then mk_pred_forall2(sc_dec,pm)
else failwith `Bad first argument to FORALL`;;
let list_mk_pred_forall(pml,pm) =
let sc_forall =
itlist mk_pred_forall3 (dest_preterm_list pml) pm
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `FORALL`,pml),pm),sc_forall);
sc_forall;;
let mk_pred_forall(pm1,pm2) =
if is_preterm_list pm1
then list_mk_pred_forall(pm1,pm2)
else mk_pred_forall3 pm1 pm2;;
%----------------------------------------------------------------------------%
% mk_schema_exists %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]" %
% "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]" %
% ---> %
% "SCHEMA [v1' :: T1; ... ; vp' :: Tr] %
% [?u1 ... um. (u1 :: S1) /\ ... /\ (um :: Sm) /\ %
% P1 /\ ... /\ Pp /\ %
% Q1 /\ ... /\ Qq]" %
% %
% where {u1::S1, ... ,um::Sm} must be included in {v1::T1, ... ,vn::Tn} %
% and %
% %
% [v1'::T1; ... ;vp'::Tr] = %
% subtract [v1::T1; ... ;vn::Tn] [u1::S1; ... ;um::Sm] %
%----------------------------------------------------------------------------%
let is_schema_exists p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `SCHEMA_EXISTS`)
) ? false;;
let mk_schema_exists(sc1,sc2) =
let decs1,bdy1 = dest_schema sc1
and decs2,bdy2 = dest_schema sc2
in
let decsl1 = dest_preterm_list decs1
and decsl2 = dest_preterm_list decs2
in
if not(decsl1 subset decsl2)
then failwith `Existentially quantified schema variable not declared in body`
else
let sc_exists =
mk_schema
(mk_preterm_list(subtract decsl2 decsl1),
mk_preterm_list
[list_mk_preterm_res_exists
(map dest_dec decsl1,
list_mk_preterm_conj
(decsl1 @ dest_preterm_list bdy1 @ dest_preterm_list bdy2))])
in
store_preterm_schema_pair
(preterm_comb
(preterm_comb(preterm_const `SCHEMA_EXISTS`,sc1),sc2),sc_exists);
sc_exists;;
%----------------------------------------------------------------------------%
% mk_pred_exists %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]" %
% "P" %
% ---> %
% "?u1 ... um. (u1 :: S1) /\ ... /\ (um :: Sm) /\ P1 /\ ... /\ Pp /\ P %
% %
% mk_pred_exists %
% "u :: S" %
% "P" %
% ---> %
% "?u. (u :: S) /\ P %
%----------------------------------------------------------------------------%
let is_pred_exists p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `EXISTS`)
) ? false;;
%----------------------------------------------------------------------------%
% Quantified variable is a schema. %
%----------------------------------------------------------------------------%
let mk_pred_exists1(sc,pm) =
let decs,bdy = dest_schema sc
in
let decsl = dest_preterm_list decs
in
let sc_exists =
list_mk_preterm_res_exists
(map dest_dec decsl,
list_mk_preterm_conj(decsl @ dest_preterm_list bdy @ [pm]))
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `EXISTS`,sc),pm),sc_exists);
sc_exists;;
%----------------------------------------------------------------------------%
% Quantified variable is a declaration. %
%----------------------------------------------------------------------------%
let mk_pred_exists2(dec,pm) =
let v,ty = dest_dec dec
in
let sc_exists =
mk_preterm_exists(v, mk_preterm_conj(dec,pm))
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `EXISTS`,dec),pm),sc_exists);
sc_exists;;
%----------------------------------------------------------------------------%
% Invoke mk_pred_exists1 or mk_pred_exists2 depending on type of argument. %
%----------------------------------------------------------------------------%
let mk_pred_exists3 sc_dec pm =
if is_schema sc_dec then mk_pred_exists1(sc_dec,pm)
if is_dec sc_dec then mk_pred_exists2(sc_dec,pm)
else failwith `Bad first argument to EXISTS`;;
let list_mk_pred_exists(pml,pm) =
let sc_exists =
itlist mk_pred_exists3 (dest_preterm_list pml) pm
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `EXISTS`,pml),pm),sc_exists);
sc_exists;;
let mk_pred_exists(pm1,pm2) =
if is_preterm_list pm1
then list_mk_pred_exists(pm1,pm2)
else mk_pred_exists3 pm1 pm2;;
%----------------------------------------------------------------------------%
% Test whether preterm_comb(p1,p2) is a sequence. %
%----------------------------------------------------------------------------%
let is_schema_seq p1 p2 =
(let p11,p12 = dest_preterm_comb p1
in
(dest_preterm_const p11 = `SEQ`)
) ? false;;
% Some doodlings concerning possible formats for
a pattern matching implementation of SEQ
let (s1,s2) = preterm_match "s1 SEQ s2" p
in
let State = extract_state_schema(s1,s2)
in
"EXISTS[State'']
[SCHEMA_EXISTS
[State']
(SCHEMA[s1;State''][theta(State') = theta(State'')]) AND
SCHEMA_EXISTS
[State]
(SCHEMA[s2;State''][theta(State) = theta(State'')])]"
"s1 SEQ s2" --> "EXISTS[State'']
[SCHEMA_EXISTS
[State']
(SCHEMA[s1;State''][theta(State') = theta(State'')]) AND
SCHEMA_EXISTS
[State]
(SCHEMA[s2;State''][theta(State) = theta(State'')])]"
%
%----------------------------------------------------------------------------%
% mk_schema_seq %
% "SCHEMA [u1 :: S1; ... ; um :: Sm] [P1; ... ;Pp]" %
% "SCHEMA [v1 :: T1; ... ; vn :: Tn] [Q1; ... ;Qq]" %
% ---> %
% "SCHEMA %
% [u1 :: S1; ... ; um :: Sm; v1 :: T1; ... ; vn :: Tn] %
% (?uv1 ... uvr. %
% P1[uv1,...,uvr/u1',...,ur'] /\ ... /\ Pp[uv1,...,uvr/u1',...,ur'] /\ %
% Q1[uv1,...,uvr/v1,...,vr] /\ ... /\ Qq[uv1,...,uvr/v1,...,vr])" %
% %
% where (following page 147 of Potter, Sinclair and Till): %
% %
% (a) The subsets of {u1 :: S1,...,um :: Sm} and %
% {v1 :: T1,...,vn :: Tn} that consist of "dashed" and "plain" %
% variables are identical. Input and output variables are %
% considered neither plain nor dashed. %
% uv1,...,uvp are the plain/ashed variables. %
% %
% (b) No type clashes in the input and output variables. %
% %
% (c) u1',...,ur' are the dashed variables in the first schema %
% %
% (d) vi,...,vr are the plain variables in the second schema. %
%----------------------------------------------------------------------------%
let mk_schema_seq(sc1,sc2) =
let decs1,bdy1 = dest_schema sc1
and decs2,bdy2 = dest_schema sc2
in
let decsl1 = dest_preterm_list decs1
and decsl2 = dest_preterm_list decs2
in
let shvarsl1 = mapfilter dest_plain_or_dashed decsl1
and shvarsl2 = mapfilter dest_plain_or_dashed decsl2
%< Need to add check corresponding to (b)
and ivarsl1 = mapfilter dest_input decsl1
and ivarsl2 = mapfilter dest_input decsl2
and ovarsl1 = mapfilter dest_output decsl1
and ovarsl2 = mapfilter dest_output decsl2
>%
in
let prime_twice = prime_preterm_var o prime_preterm_var
in
if not(set_equal shvarsl1 shvarsl2)
then failwith `attempt to compose incompatible schemas`
else
let exist_quant_vars = mapfilter dest_plain decsl1
and primed_exist_quant_res_vars =
mapfilter
(\p. let v,t = dest_dec p in if is_plain v then (prime_twice v,t) else fail)
decsl1
in
let sc_seq =
mk_schema
(mk_preterm_list(decsl1 @ subtract decsl2 decsl1),
mk_preterm_list
[list_mk_preterm_res_exists
(primed_exist_quant_res_vars,
list_mk_preterm_conj
(map
(preterm_subst
(map(\v.(prime_twice v, prime_preterm_var v))exist_quant_vars))
(dest_preterm_list bdy1)
@
map
(preterm_subst
(map(\v.(prime_twice v, v))exist_quant_vars))
(dest_preterm_list bdy2)))])
in
store_preterm_schema_pair
(preterm_comb(preterm_comb(preterm_const `SEQ`,sc1),sc2),sc_seq);
sc_seq;;
%============================================================================%
% Some proof utilities. %
%============================================================================%
let ASM_F_TAC = IMP_RES_TAC(DISCH_ALL(ASSUME "F"));;
let APPLY_ASMS_TAC f =
POP_ASSUM_LIST
(\assums. MAP_EVERY ASSUME_TAC (rev (map f assums)));;
let REWRITE_ASMS_TAC = APPLY_ASMS_TAC o REWRITE_RULE;;
let REWRITE_ALL_TAC thl =
REWRITE_ASMS_TAC thl THEN ASM_REWRITE_TAC [] THEN REWRITE_TAC thl;;
let simp_thms = [SCHEMA;CONJL;FORALL_RESTRICT;EXISTS_RESTRICT];;
let SIMP_TAC =
APPLY_ASMS_TAC (BETA_RULE o REWRITE_RULE simp_thms)
THEN ASM_REWRITE_TAC simp_thms
THEN BETA_TAC;;
%----------------------------------------------------------------------------%
% Remove restricted quantifications. %
%----------------------------------------------------------------------------%
let REMOVE_RESTRICT_TAC =
APPLY_ASMS_TAC (BETA_RULE o REWRITE_RULE[RES_FORALL;RES_EXISTS;FORALL_RESTRICT;EXISTS_RESTRICT])
THEN REWRITE_TAC[RES_FORALL;RES_EXISTS;FORALL_RESTRICT;EXISTS_RESTRICT]
THEN BETA_TAC;;
%----------------------------------------------------------------------------%
% RW_ASM_THEN ttac [f1;...;fn] f = %
% ASSUM_LIST(\thl. ttac(REWRITE_RULE[f1 thl;...;fn thl](f thl))) %
%----------------------------------------------------------------------------%
let RW_ASM_THEN ttac fl f =
ASSUM_LIST(\thl. ttac(REWRITE_RULE(map (\f. f thl) fl)(f thl)));;
%----------------------------------------------------------------------------%
% POP_ASSUMS n f = f[a1;...;an], %
% %
% where a1,...,an are the last n assumptions, which are popped. %
%----------------------------------------------------------------------------%
letrec POP_ASSUMS n f =
if n=0
then ALL_TAC
if n=1
then POP_ASSUM(\th. f[th])
else POP_ASSUM(\th. POP_ASSUMS (n-1) (\l. f (th.l)));;
letrec ITER n (tac:tactic) =
if n < 0 then failwith `ITER`
if n = 0 then ALL_TAC
else tac THEN ITER (n-1) tac;;
%----------------------------------------------------------------------------%
% Generalized beta-reduction (useful for reducing schema applications). %
%----------------------------------------------------------------------------%
let GEN_BETA_TAC = CONV_TAC(DEPTH_CONV GEN_BETA_CONV);;
%----------------------------------------------------------------------------%
% Rule and Tactic for simplifying terms of the form "x IN {...|...}" %
%----------------------------------------------------------------------------%
let SET_SPEC_RULE = CONV_RULE(DEPTH_CONV SET_SPEC_CONV)
and SET_SPEC_TAC = CONV_TAC(DEPTH_CONV SET_SPEC_CONV);;
let simp sc =
(let th1 =
(RAND_CONV(RATOR_CONV(RAND_CONV(UNWIND_AUTO_CONV THENC PRUNE_CONV)))
ORELSEC ALL_CONV) sc
in
let th2 =
RIGHT_CONV_RULE
(REWRITE_CONV([SCHEMA;CONJL;PAIR_EQ]) THENC REWRITE_CONV[])
th1
in
let tyl =
filter
(\t. (fst(dest_const(rator(rator t))) = `::`) ? false)
(conjuncts(rhs(concl th2)))
in
RIGHT_CONV_RULE(REWRITE_CONV(map ASSUME tyl))th2
) ? failwith `simp`;;
%----------------------------------------------------------------------------%
% Resolution with filters. %
% Code written for HOL90 by chou@cs.ucla.edu. Ported to HOL88 by MJCG. %
%----------------------------------------------------------------------------%
let FILTER_STRIP_ASSUME_TAC (f : term -> bool) th =
if (f (concl th)) then (STRIP_ASSUME_TAC th) else (ALL_TAC) ;;
let FILTER_IMP_RES_TAC (f : term -> bool) th g =
IMP_RES_THEN (REPEAT_GTCL IMP_RES_THEN (FILTER_STRIP_ASSUME_TAC f)) th g
? ALL_TAC g ;;
let FILTER_RES_TAC (f : term -> bool) g =
RES_THEN (REPEAT_GTCL IMP_RES_THEN (FILTER_STRIP_ASSUME_TAC f)) g
? ALL_TAC g ;;
let no_imp (tm) = not (free_in "==>" tm) ;;
let LITE_IMP_RES_TAC = FILTER_IMP_RES_TAC no_imp;;
%============================================================================%
% Outputting schemas. %
%============================================================================%
%----------------------------------------------------------------------------%
% Compress a term for printing by replacing schemas by their names in %
% the global list schema_expansions. %
%----------------------------------------------------------------------------%
new_flag(`fold_schemas`,true)
? (print_newline();
print_string `fold_schemas already declared`;
print_newline());;
let show_schemas b = not(set_flag(`fold_schemas`, not b));;
let bool_ty = ":bool";;
letrec fold_schemas tm =
if (is_var tm or is_const tm)
then tm
if is_abs tm
then
(let x,bdy = dest_abs tm
in
mk_abs(x, fold_schemas bdy))
else
(fold_schemas(lookup_schema_abbrev tm)
?
let tm1,tm2 = dest_comb tm
in
mk_comb(fold_schemas tm1, fold_schemas tm2));;
let print_schemas_term tm =
if get_flag_value `fold_schemas`
then print_term(fold_schemas tm)
else print_term tm;;
let print_schemas_thm th =
if get_flag_value `fold_schemas`
then (let asl,t = dest_thm th
in
print_all_thm(mk_thm(map fold_schemas asl, fold_schemas t)))
else print_all_thm th;;
top_print print_schemas_term;;
top_print print_schemas_thm;;
%============================================================================%
% Declare sets. %
%============================================================================%
%----------------------------------------------------------------------------%
% sets `S1 S2 ... Sn` defines: %
% %
% "S1 = (UNIV : *S1 set)" %
% "S2 = (UNIV : *S2 set)" %
% . %
% . %
% . %
% "S2 = (UNIV : *S2 set)" %
%----------------------------------------------------------------------------%
let sets str =
let mk_ty tyname = ":^(mk_type(tyname^``,[]))set"
in
map
(\s. new_type 0 (s^``);
new_definition
(s, mk_eq(mk_var(s,mk_ty s), mk_const(`UNIV`,mk_ty s)));
autoload_theory(`definition`,(current_theory()),s))
(words str);
();;
%----------------------------------------------------------------------------%
% free_set `<name> = ...` expands to: %
% %
% let <name>_Axiom = define_type `<name> = ...`; %
% define "<name> = UNIV : <name> set" %
%----------------------------------------------------------------------------%
letref free_set_name_buffer = ``;;
let make_new_free_set [] =
let name = free_set_name_buffer
and ty = ":^(mk_type(free_set_name_buffer,[])) set"
in
new_definition
(free_set_name_buffer,
mk_eq(mk_var(name,ty), "UNIV : ^ty"));;
let free_set s =
let name = hd(words s)
in
let_before(name^`_Axiom`, `make_new_structure_definition`, [name;s]);
free_set_name_buffer := name;
let_after(name, `make_new_free_set`, []);;
%============================================================================%
% Declare Z axioms. %
%============================================================================%
%----------------------------------------------------------------------------%
% declare_axiom "t[x1,...,xn]" delares "x1", ... , "xn" as new constants %
% and then asserts |- t[x1,...,xn] as an axiom with name Axiom_<axiom_count> %
% and binds the axiom to this name in ML. %
%----------------------------------------------------------------------------%
letref axiom_buffer = "T";;
let make_new_axiom[name] = new_axiom(name,axiom_buffer);;
let declare_axiom tm =
(let vl = frees tm
in
map (new_constant o dest_var) vl;
let pl = map (\v. (mk_const(dest_var v),v)) vl
and ax_name = `Axiom_`^(string_of_int axiom_count)
in
(axiom_count := axiom_count+1;
axiom_buffer := subst pl tm;
let_after(ax_name, `make_new_axiom`, [ax_name]))
) ? failwith `declare_axiom`;;
%============================================================================%
% Declare schemas. %
%============================================================================%
%----------------------------------------------------------------------------%
% declare `name` "B" %
% parses "B", adds the name-schema pair to the global variables %
% schema_expansions and binds `name` in ML to the expanded schema %
%(if the flag `bind_schemas` is true (default false). %
%----------------------------------------------------------------------------%
new_flag(`bind_schemas`,false) ? ();;
letref schema_buffer = "T";;
let make_new_schema_declaration [] = schema_buffer;;
let declare name tm =
store_schema_name name tm;
if get_flag_value `bind_schemas`
then (schema_buffer := tm;
let_before(name, `make_new_schema_declaration`,[]);
tm)
else tm;;
%----------------------------------------------------------------------------%
% Macroexpand schema operations. %
%----------------------------------------------------------------------------%
letrec expand_Z p =
case p
of (preterm_var v) . (expand_schema_name v ? p)
| (preterm_const c) . p
| (preterm_comb(p1,p2)) . (if is_set_fun p1
then mk_set_fun p1 (expand_Z p2)
else
((if is_schema_head p1
then store_schema_variables(preterm_rand p1));
let p1e = expand_Z p1
and p2e = expand_Z p2
in
if is_schema p
then mk_schema_construction
(preterm_rand p1e,p2e)
if is_schema_delta p1e p2e
then expand_Z(mk_schema_delta p2e)
if is_schema_xi p1e p2e
then expand_Z(mk_schema_xi p2e)
if is_schema_conj p1e p2e
then mk_schema_conj(preterm_rand p1e,p2e)
if is_schema_disj p1e p2e
then mk_schema_disj(preterm_rand p1e,p2e)
if is_schema_imp p1e p2e
then mk_schema_imp(preterm_rand p1e,p2e)
if is_schema_forall p1e p2e
then mk_schema_forall(preterm_rand p1e,p2e)
if is_pred_forall p1e p2e
then mk_pred_forall(preterm_rand p1e,p2e)
if is_schema_exists p1e p2e
then mk_schema_exists(preterm_rand p1e,p2e)
if is_pred_exists p1e p2e
then mk_pred_exists(preterm_rand p1e,p2e)
if is_schema_seq p1e p2e
then mk_schema_seq(preterm_rand p1e,p2e)
if is_schema_pre p1e p2e
then mk_schema_pre p2e
if is_schema_sig p1e p2e
then mk_sig p2e
if is_schema_theta p1e p2e
then mk_theta p2e
if is_schema_pred p1e p2e
then mk_pred p2e
if is_schema_dash p1e p2e
then mk_schema_dash p2e
if is_schema_hide p1e p2e
then mk_schema_hide p1e p2e
else preterm_comb(p1e,p2e)))
| (preterm_abs(p1,p2)) . (preterm_abs(p1, expand_Z p2))
| (preterm_typed(p1,ty)). (preterm_typed(expand_Z p1, ty))
| (preterm_antiquot t) . p;;
%----------------------------------------------------------------------------%
% Setup input preprocessing. %
%----------------------------------------------------------------------------%
let preterm_handler p =
preterm_to_term(add_types(expand_Z p));;
|