/usr/share/hol88-2.02.19940316/contrib/Z/BirthdayBook.ml is in hol88-contrib-source 2.02.19940316-35.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | %============================================================================%
% HOL theory to represent the "Birthday Book" from Chapter 1 of Spivey's %
% "The Z Notation". %
%============================================================================%
%----------------------------------------------------------------------------%
% First load the ML code to support Z. %
%----------------------------------------------------------------------------%
loadf `SCHEMA`;;
%----------------------------------------------------------------------------%
% Declare a new theory called `BirthdayBook`. %
%----------------------------------------------------------------------------%
force_new_theory `BirthdayBook`;;
%----------------------------------------------------------------------------%
% 1.2 The birthday book %
%----------------------------------------------------------------------------%
sets `NAME DATE`;;
declare
`BirthdayBook`
"SCHEMA
[known :: (P NAME);
birthday :: (NAME -+> DATE)]
%---------------------------%
[known = dom birthday]";;
declare
`AddBirthday`
"SCHEMA
[DELTA BirthdayBook;
name? :: NAME;
date? :: DATE]
%--------------------------------------------%
[~(name? IN known);
birthday' = birthday UNION {name? |-> date?}]";;
%----------------------------------------------------------------------------%
% Calculate the precondition of AddBirthday. %
%----------------------------------------------------------------------------%
simp "pre AddBirthday";;
%----------------------------------------------------------------------------%
% The lemmma on page 5: known' = known U {name?} %
%----------------------------------------------------------------------------%
prove_theorem
(`known_UNION`,
"[AddBirthday] |-? (known' = known UNION {name?})",
REWRITE_ALL_TAC[SCHEMA;CONJL;dom_UNION;dom_SING]);;
declare
`FindBirthday`
"SCHEMA
[XI BirthdayBook;
name? :: NAME;
date! :: DATE]
%-----------------------%
[name? :: known;
date! = birthday(name?)]";;
%----------------------------------------------------------------------------%
% Lemma proposed by Jonathan Bowen. %
%----------------------------------------------------------------------------%
prove_theorem
(`SEQ_AddBirthday_FindBirthday`,
"[AddBirthday SEQ FindBirthday] |-? (date! = date?)",
SIMP_TAC
THEN POP_ASSUM STRIP_ASSUME_TAC
THEN SMART_ELIMINATE_TAC
THEN IMP_RES_TAC Ap_UNION2
THEN ASM_REWRITE_TAC[]);;
declare
`Remind`
"SCHEMA
[XI BirthdayBook;
today? :: DATE;
cards! :: P NAME]
%---------------------------------------------------%
[cards! = {n | n :: known /\ (birthday(n) = today?)}]";;
declare
`InitBirthdayBook`
"SCHEMA
[BirthdayBook]
%------------%
[known = {}]";;
%----------------------------------------------------------------------------%
% 1.3 Strengthening the specification %
%----------------------------------------------------------------------------%
free_set `REPORT = ok | already_known | not_known`;;
declare
`Success`
"SCHEMA
[result! :: REPORT]
%-----------------%
[result! = ok]";;
declare
`AlreadyKnown`
"SCHEMA
[XI BirthdayBook;
name? :: NAME;
result! :: REPORT]
%-----------------------%
[name? :: known;
result! = already_known]";;
declare
`RAddBirthday`
"(AddBirthday AND Success) OR AlreadyKnown";;
%----------------------------------------------------------------------------%
% Checking RAddBirthday has correct precondition. %
%----------------------------------------------------------------------------%
simp "pre RAddBirthday";;
prove_theorem
(`pre_RAddBirthday`,
"[BirthdayBook; sig RAddBirthday] |-? pre RAddBirthday",
REWRITE_ALL_TAC[SCHEMA;CONJL;::]
THEN POP_ASSUM_LIST
(\[th1;th2]. STRIP_ASSUME_TAC th2 THEN STRIP_ASSUME_TAC th1)
THEN LITE_IMP_RES_TAC domPfunIN
THEN ASM_REWRITE_TAC[]
THEN EXISTS_TAC
"(name? IN dom birthday) => dom birthday |
dom(birthday UNION {name? |-> date?})"
THEN EXISTS_TAC "(name? IN dom birthday) => birthday
| birthday UNION {name? |-> date?}"
THEN EXISTS_TAC "(name? IN dom birthday) => already_known | ok"
THEN ASM_CASES_TAC "name? IN dom birthday"
THEN ASM_REWRITE_TAC[REPORT;IN_UNIV]
THEN LITE_IMP_RES_TAC UNION_SING_Pfun
THEN LITE_IMP_RES_TAC domPfunIN
THEN ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Equivalence between the definitions of RAddBirthday on pages 9 and 10. %
%----------------------------------------------------------------------------%
prove_theorem
(`RAddBirthdayLemma`,
"(AddBirthday AND Success) OR AlreadyKnown =
SCHEMA
[DELTA BirthdayBook;
name? :: NAME;
date? :: DATE;
result! :: REPORT]
%---------------------------------------------------------%
[(~(name? IN known) /\
(birthday' = birthday UNION {name? |-> date?}) /\
(result! = ok)) \/
(name? IN known /\
(birthday' = birthday) /\
(result! = already_known))]",
REWRITE_TAC[SCHEMA;PAIR_EQ;CONJL;::]
THEN EQ_TAC
THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC[]);;
declare
`NotKnown`
"SCHEMA
[XI BirthdayBook;
name? :: NAME;
result! :: REPORT]
%-------------------%
[~(name? IN known);
result! = not_known]";;
declare
`RFindBirthday`
"(FindBirthday AND Success) OR NotKnown";;
declare
`RRemind`
"Remind AND Success";;
%----------------------------------------------------------------------------%
% 1.4 From specifications to designs %
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
% 1.5 Implementing the birthday book %
%----------------------------------------------------------------------------%
declare
`BirthdayBook1`
"SCHEMA
[names :: (NN_1-->NAME);
dates :: (NN_1-->DATE);
hwm :: NN]
%---------------------------------------------------%
[!i j::(1..hwm). ~(i = j) ==> ~(names(i) = names(j))]";;
declare
`Abs`
"SCHEMA
[BirthdayBook;
BirthdayBook1]
%-------------------------------------------%
[known = {names(i) | i::(1..hwm)};
!i::(1..hwm). birthday(names(i)) = dates(i)]";;
declare
`AddBirthday1`
"SCHEMA
[DELTA BirthdayBook1;
name? :: NAME;
date? :: DATE]
%-----------------------------------%
[!i::(1..hwm). ~(name? = names(i));
hwm' = hwm + 1;
names' = names (+) {hwm' |-> name?};
dates' = dates (+) {hwm' |-> date?}]";;
declare
`FindBirthday1`
"SCHEMA
[XI BirthdayBook1;
name? :: NAME;
date! :: DATE]
%------------------------------------------------------%
[?i::(1..hwm). (name? = names(i)) /\ (date! = dates(i))]";;
declare
`AbsCards`
"SCHEMA
[cards :: P NAME;
cardlist :: (NN_1-->NAME);
ncards :: NN]
%----------------------------------------------%
[cards = {cardlist(i) | i::(1..ncards)}]";;
declare
`Remind1`
"SCHEMA
[XI BirthdayBook1;
today? :: DATE;
cardlist! :: (NN_1-->NAME);
ncards! :: NN]
%---------------------------------------------------------%
[{cardlist!(i) | i::(1..ncards!)} =
{names(j) | j::(1..hwm) /\ (dates(j) = today?)}]";;
declare
`InitBirthdayBook1`
"SCHEMA
[BirthdayBook1]
%-------------%
[hwm = 0]";;
prove_theorem
(`AbsThm1`,
"FORALL [BirthdayBook; BirthdayBook1; (name?::NAME); (date?::DATE)]
((pre AddBirthday /\ Abs) ==> (pre AddBirthday1))",
REWRITE_TAC[SCHEMA;CONJL;::;Interval_to;IN_Interval]
THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC[]
THEN SMART_ELIMINATE_TAC
THEN EXISTS_TAC "names (+) {(hwm+1) |-> name?}"
THEN EXISTS_TAC "dates (+) {(hwm+1) |-> date?}"
THEN EXISTS_TAC "hwm+1"
THEN LITE_IMP_RES_TAC OverrideSingFun
THEN ASM_REWRITE_TAC[IN_NN]
THEN CONJ_TAC
THENL
[REMOVE_RESTRICT_TAC
THEN REWRITE_TAC[IncInterval;UnitInterval;|\/|]
THEN REPEAT STRIP_TAC
THENL
[IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalSINGLemma)
THEN POP_ASSUMS 2 (MAP_EVERY (ASSUME_TAC o SPEC "name?:NAME"))
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma1)
THEN RES_TAC
THEN RW_ASM_THEN ACCEPT_TAC [GSYM o el 7;GSYM o el 8;el 11] (el 2);
IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalSINGLemma)
THEN POP_ASSUMS 1 (MAP_EVERY (ASSUME_TAC o SPEC "name?:NAME"))
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma1)
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma2)
THEN POP_ASSUM(ASSUME_TAC o SPEC "hwm:num")
THEN RW_ASM_THEN ASSUME_TAC [el 6;el 4;el 1] (el 2)
THEN ASSUM_LIST
(IMP_RES_TAC o SPEC "x:num" o CONV_RULE NOT_EXISTS_CONV o
SET_SPEC_RULE o el 12);
SMART_ELIMINATE_TAC
THEN IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalSINGLemma)
THEN POP_ASSUMS 1 (MAP_EVERY (ASSUME_TAC o SPEC "name?:NAME"))
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma1)
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma2)
THEN POP_ASSUM(ASSUME_TAC o SPEC "hwm:num")
THEN RW_ASM_THEN ASSUME_TAC [el 4;el 2] (GSYM o el 1)
THEN ASSUM_LIST
(IMP_RES_TAC o SPEC "x:num" o CONV_RULE NOT_EXISTS_CONV o
SET_SPEC_RULE o el 11);
SMART_ELIMINATE_TAC
THEN IMP_RES_TAC (ARITH_PROVE "~(n+1 = n+1) ==> F")];
REMOVE_RESTRICT_TAC
THEN REPEAT STRIP_TAC
THEN ASSUM_LIST
(IMP_RES_TAC o SPEC "x:num" o CONV_RULE NOT_EXISTS_CONV o
SET_SPEC_RULE o el 6)]);;
prove_theorem
(`AbsThm2`,
"FORALL [BirthdayBook; BirthdayBook1; BirthdayBook1';
(name?::NAME); (date?::DATE)]
((pre AddBirthday /\ Abs /\ AddBirthday1)
==>
(EXISTS BirthdayBook' (Abs' /\ AddBirthday)))",
REWRITE_TAC[SCHEMA;::;CONJL;Interval_to;IN_Interval]
THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC[]
THEN SMART_ELIMINATE_TAC
THEN EXISTS_TAC "dom(birthday UNION {name? |-> date?})"
THEN EXISTS_TAC "birthday UNION {name? |-> date?}"
THEN IMP_RES_TAC domPfunIN
THEN ASM_REWRITE_TAC[EXTENSION]
THEN SET_SPEC_TAC
THEN REWRITE_TAC[dom_UNION;dom_SING;IN_UNION;IN_SING]
THEN ASSUM_LIST(\thl. REWRITE_TAC[GSYM(el 20 thl)])
THEN SET_SPEC_TAC
THEN SMART_ELIMINATE_TAC
THEN REPEAT STRIP_TAC
THENL
[EQ_TAC
THEN REPEAT STRIP_TAC
THEN SMART_ELIMINATE_TAC
THENL
[EXISTS_TAC "i:num"
THEN ASM_REWRITE_TAC[IncInterval;|\/|]
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma1);
EXISTS_TAC "hwm+1"
THEN ASM_REWRITE_TAC[IncInterval;|\/|;UnitInterval]
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma2);
POP_ASSUM(DISJ_CASES_TAC o REWRITE_RULE[IncInterval;|\/|;UnitInterval])
THENL
[DISJ1_TAC
THEN EXISTS_TAC "i:num"
THEN ASM_REWRITE_TAC[IncInterval;|\/|]
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma1);
DISJ2_TAC
THEN SMART_ELIMINATE_TAC
THEN ASM_REWRITE_TAC[IncInterval;|\/|;UnitInterval]
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma2)]]
THEN ASM_REWRITE_TAC[];
REMOVE_RESTRICT_TAC
THEN REWRITE_TAC[IncInterval;|\/|;UnitInterval]
THEN REPEAT STRIP_TAC
THENL
[RES_TAC
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma1)
THEN LITE_IMP_RES_TAC(INST_TYPE[":DATE",":*"]IntervalApLemma1)
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*";":DATE",":**"]Ap_UNION1);
SMART_ELIMINATE_TAC
THEN LITE_IMP_RES_TAC(INST_TYPE[":DATE",":*"]IntervalApLemma2)
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*"]IntervalApLemma2)
THEN ASM_REWRITE_TAC[]
THEN RW_ASM_THEN ASSUME_TAC [el 9] (AP_TERM "$IN(name?:NAME)" o el 22)
THEN LITE_IMP_RES_TAC(INST_TYPE[":NAME",":*";":DATE",":**"]Ap_UNION2)]
THEN ASM_REWRITE_TAC[]]);;
%----------------------------------------------------------------------------%
% Spivey's "sufficient condition" for the correct implementation of %
% %
% AddBirthday;Findbirthday %
% %
% See page 134 of ZRM2. %
%----------------------------------------------------------------------------%
prove_theorem
(`AddFindSeq`,
"FORALL
[BirthdayBook'']
((EXISTS [AddBirthday] (theta BirthdayBook' = theta BirthdayBook''))
==>
(EXISTS [FindBirthday] (theta BirthdayBook = theta BirthdayBook'')))",
REWRITE_TAC[SCHEMA;::;CONJL;Interval_to;IN_Interval;PAIR_EQ]
THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC[]
THEN SMART_ELIMINATE_TAC
THEN EXISTS_TAC "known'':NAME set"
THEN EXISTS_TAC "birthday'':(NAME # DATE)set"
THEN EXISTS_TAC "known'':NAME set"
THEN EXISTS_TAC "birthday'':(NAME # DATE)set"
THEN EXISTS_TAC "name?:NAME"
THEN EXISTS_TAC "date?:DATE"
THEN ASM_REWRITE_TAC[dom_UNION;IN_UNION;dom_SING;IN_SING]
THEN LITE_IMP_RES_TAC Ap_UNION2
THEN ASM_REWRITE_TAC[]);;
%----------------------------------------------------------------------------%
% Spivey's "sufficient condition" for the correct implementation of %
% %
% AddBirthday1;Findbirthday1 %
% %
% See page 134 of ZRM2. %
%----------------------------------------------------------------------------%
prove_theorem
(`AddFindSeq1`,
"FORALL
[BirthdayBook1'']
((EXISTS [AddBirthday1] (theta BirthdayBook1' = theta BirthdayBook1''))
==>
(EXISTS [FindBirthday1] (theta BirthdayBook1 = theta BirthdayBook1'')))",
REWRITE_TAC[SCHEMA;::;CONJL;Interval_to;IN_Interval;PAIR_EQ]
THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC[]
THEN SMART_ELIMINATE_TAC
THEN EXISTS_TAC "names'':(num # NAME)set"
THEN EXISTS_TAC "dates'':(num # DATE)set"
THEN EXISTS_TAC "hwm'':num"
THEN EXISTS_TAC "names'':(num # NAME)set"
THEN EXISTS_TAC "dates'':(num # DATE)set"
THEN EXISTS_TAC "hwm'':num"
THEN EXISTS_TAC "name?:NAME"
THEN EXISTS_TAC "date?:DATE"
THEN ASM_REWRITE_TAC[]
THEN REMOVE_RESTRICT_TAC
THEN EXISTS_TAC "hwm+1"
THEN REWRITE_TAC[IncInterval;|\/|;UnitInterval]
THEN SMART_ELIMINATE_TAC
THEN LITE_IMP_RES_TAC IntervalApLemma2
THEN ASM_REWRITE_TAC[]);;
|