This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/CSP/mu.ml is in hol88-contrib-source 2.02.19940316-35.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
% Trace Semantics for the recursive process MU.				%
% 									%
% FILE		  : mu.ml 						%
% 									%
% READS FILES	  : process_fix.th, rules_and_tacs.ml          		%
% LOADS LIBRARIES : sets, string		          		%
% WRITES FILES    : mu.th						%
%									%
% AUTHOR	  : Albert J Camilleri					%
% AFFILIATION     : Hewlett-Packard Laboratories, Bristol		%
% DATE		  : 89.03.15						%
% REVISED	  : 91.10.01						%


load_library `sets`;;
load_library `string`;;
loadf `rules_and_tacs`;;

new_theory `mu`;;

new_parent `process_fix`;;

load_definition `process_ty` `IS_PROCESS`;;
map (load_theorem `process_ty`)
    [`PROCESS_LEMMA6`; `ALPHA_FST`; `TRACES_SND`;
     `NIL_IN_TRACES`; `APPEND_IN_TRACES`; `TRACES_IN_STAR`];;

load_theorem `stop` `ALPHA_STOP`;;

map (load_definition `process_fix`)
    [`ITER`; `LIM_PROC`; `IT_UNION`; `CONTINUOUS`];;
map (load_theorem `process_fix`) [`LIM_PROC_THM`; `IS_PROCESS_LIMIT`];;

let EXISTS_MU =
    prove_thm
       (`EXISTS_MU`,
	"?f. !A G.
         (CONTINUOUS G) ==> (f A G = (LIM_PROC (\n. ITER n G (STOP A))))",
	EXISTS_TAC "\ A G. LIM_PROC (\n. ITER n G (STOP A))" THEN
	BETA_TAC THEN
	REWRITE_TAC []);;

let MU = new_specification `MU` [(`constant`,`MU`)] EXISTS_MU;;

%
|- !G A.
    CHAIN(\n. ITER n G(STOP A)) ==>
    IS_PROCESS(A,IT_UNION(\n. TRACES(ITER n G(STOP A))))
%
let IS_PROCESS_MU =
    save_thm
       (`IS_PROCESS_MU`,
	GEN_ALL
	 (REWRITE_RULE
	  [ITER; ALPHA_STOP]
	  (BETA_RULE (SPEC "\n. ITER n G (STOP A)" IS_PROCESS_LIMIT))));;

%
|- !G A.
    CHAIN(\n. ITER n G(STOP A)) ==>
    CONTINUOUS G ==>
    IS_PROCESS(A,IT_UNION(\n. TRACES(ITER n G(STOP A))))

%
let IS_PROCESS_MU' =
    prove_thm
       (`IS_PROCESS_MU'`,
	"!G A.
         CHAIN(\n. ITER n G(STOP A)) ==>
         (CONTINUOUS G) ==>
         IS_PROCESS(A,IT_UNION(\n. TRACES(ITER n G(STOP A))))",
	REPEAT STRIP_TAC THEN
	IMP_RES_TAC IS_PROCESS_MU THEN
	ASM_REWRITE_TAC []);;

%
|- CHAIN(\n. ITER n G(STOP A)) ==>
   CONTINUOUS G ==>
   (MU A G = ABS_process(A,IT_UNION(\n. TRACES(ITER n G(STOP A)))))
%

let MU_THM =
    DISCH_ALL
     (SUBS
	  [UNDISCH
	   (REWRITE_RULE
	    [ITER; ALPHA_STOP]
	    (BETA_RULE (SPEC "\n. ITER n G (STOP A)" LIM_PROC_THM)))]
	  (SPEC_ALL MU));;

let ALPHA_MU =
    save_thm
       (`ALPHA_MU`,
	DISCH_ALL
	 (DISCH "CONTINUOUS G"
	  (REWRITE_RULE
	   [SYM (UNDISCH_ALL (SPEC_ALL MU_THM))]
	   (MP (SPECL ["A:alphabet"; "IT_UNION(\n. TRACES(ITER n G(STOP A)))"]
		      ALPHA_FST)
	       (UNDISCH (SPEC_ALL IS_PROCESS_MU))))));;

let TRACES_MU =
    save_thm
       (`TRACES_MU`,
	DISCH_ALL
	 (DISCH "CONTINUOUS G"
	  (REWRITE_RULE
	   [SYM (UNDISCH_ALL (SPEC_ALL MU_THM))]
	   (MP (SPECL ["A:alphabet"; "IT_UNION(\n. TRACES(ITER n G(STOP A)))"]
		      TRACES_SND)
	       (UNDISCH (SPEC_ALL IS_PROCESS_MU))))));;

close_theory();;