/usr/share/gromacs/top/sw.itp is in gromacs-data 2018.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | ;
; Topology file for SW
;
; Paul van Maaren and David van der Spoel
; Molecular Dynamics Simulations of Water with Novel Shell Model Potentials
; J. Phys. Chem. B. 105 (2618-2626), 2001
;
; Force constants for the shell are given by:
;
; k = qs^2/(4 pi eps0 alpha)
; However, in the current version of the itp file and software (3.2+)
; force constants are computed in mdrun, and the input is the
; polarizability in nm^3.
;
; Some data: mu (water) = 1.8546 D ( 0.0386116 e nm)
; 1/(4 pi eps0 alpha) = 94513.94
;
; Alpha-X = 1.415 kx = 608069
; Alpha-Y = 1.528 ky = 563101
; Alpha-Z = 1.468 kz = 586116
;
; Alpha = 1.470 k = 585318
;
; Bonding parameters from (but without cubic term):
; D. M. Ferguson:
; Parametrization and Evaluation of a Flexible Water Model
; J. Comp. Chem. 16(4), 501-511 (1995)
;
; Possible defines that you can put in your topol.top:
; -DANISOTROPIC Select anisotropic polarizibility (isotropic is default).
; -DRIGID Rigid model (flexible is default)
; -DPOSRES Position restrain oxygen atoms
;
[ defaults ]
LJ Geometric
[ atomtypes ]
;name mass charge ptype c6 c12
WO 15.99940 0.0 A 0.0 0.0
WH 1.00800 0.0 A 0.0 0.0
WS 0.0 0.0 S 0.0 0.0
WD 0.0 0.0 D 0.0 0.0
[ nonbond_params ]
#ifdef RIGID
#ifdef ANISOTROPIC
WH WH 1 4.0e-5 4.0e-8
WS WO 1 1.0e-6 1.0e-12
WS WH 1 4.0e-5 2.766e-08
WO WO 1 2.0e-3 1.174e-06
#else
WH WH 1 4.0e-5 4.0e-8
WS WO 1 1.0e-6 1.0e-12
WS WH 1 4.0e-5 2.769e-08
WO WO 1 2.0e-3 1.176e-06
#endif
#else
#ifdef ANISOTROPIC
WH WH 1 4.0e-5 4.0e-8
WS WO 1 1.0e-6 1.0e-12
WS WH 1 4.0e-5 2.910e-08
WO WO 1 2.0e-3 1.189e-06
#else
WH WH 1 4.0e-5 4.0e-8
WS WO 1 1.0e-6 1.0e-12
WS WH 1 4.0e-5 2.937e-08
WO WO 1 2.0e-3 1.187e-06
#endif
#endif
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; This is a the 'classical YAW' model, in which we do have the dummy.
;; The shell is attached to the dummy, in this case the gas-phase
;; quadrupole is correct. Water_pol routine can be used for this
;; model. This has four interaction sites.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[ moleculetype ]
; molname nrexcl
SW 2
[ atoms ]
; id at type res nr residu name at name cg nr charge
1 WO 1 SM2 OW1 1 1.24588
2 WH 1 SM2 HW2 1 0.62134
3 WH 1 SM2 HW3 1 0.62134
4 WD 1 SM2 DW 1 0.0
5 WS 1 SM2 SW 1 -2.48856
#ifdef ANISOTROPIC
[ water_polarization ]
; See notes above. Alphas in nm^3 (See ref. above)
; O H H D S funct al_x al_y al_z rOH rHH rOD
1 2 3 4 5 1 0.001415 0.001528 0.001468 0.09572 0.15139 0.0137408
#else
[ polarization ]
; See notes above. alpha (nm^3)
4 5 1 0.00147
#endif
#ifdef RIGID
[ settles ]
; i funct dOH dHH
1 1 0.09572 0.15139
#else
[ bonds ]
1 2 1 0.09572 458148.
1 3 1 0.09572 458148.
[ angles ]
; i j k
2 1 3 1 104.52 417.6
#endif
[ dummies3 ]
; The position of the dummies is computed as follows:
;
; O
;
; D
;
; H H
;
; 2 * b = distance (OD) / [ cos (angle(DOH)) * distance (OH) ]
; 0.0137408 nm / [ cos (104.52 / 2 deg) * 0.09572 nm ]
; 0.01557 nm
; Dummy pos x4 = x1 + a*(x2-x1) + b*(x3-X1)
;
; Dummy from funct a b
4 1 2 3 1 0.117265878 0.117265878
[ exclusions ]
; iatom excluded from interaction with i
1 2 3 4 5
2 1 3 4 5
3 1 2 4 5
4 1 2 3 5
5 1 2 3 4
#ifdef POSRES
; Restrain the oxygen...
[ position_restraints ]
; iatom type fx fy fz
1 1 100 100 100
#endif
|