This file is indexed.

/usr/share/doc/gri/html/Convert.html is in gri-html-doc 2.12.26-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Gri: `convert' command</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"></head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000EE" vlink="#551A8B" alink="FF0000">
<!-- newfile Convert.html "Gri: `convert' command" "Gri Commands" --> 

<!-- @node   Convert, Convert Columns To Grid, Close, List Of Gri Commands -->
<a name="Convert" ></a>

<img src="./resources/top_banner.gif" alt="navigation map" usemap="#navigate_top" border="0">
<table summary="top banner" border="0" cellspacing="0" cellpadding="0">
<tr>
<td width="150" valign="top">
<font size=-1>
<br>
Chapters:
<br>
&nbsp;&nbsp;<a href="Introduction.html">1: Introduction</a><br>
&nbsp;&nbsp;<a href="SimpleExample.html">2: Simple example</a><br>
&nbsp;&nbsp;<a href="InvokingGri.html">3: Invocation</a><br>
&nbsp;&nbsp;<a href="GettingMoreControl.html">4: Finer Control</a><br>
&nbsp;&nbsp;<a href="X-Y.html">5: X-Y Plots</a><br>
&nbsp;&nbsp;<a href="ContourPlots.html">6: Contour Plots</a><br>
&nbsp;&nbsp;<a href="Images.html">7: Image Plots</a><br>
&nbsp;&nbsp;<a href="Examples.html">8: Examples</a><br>
&nbsp;&nbsp;<a href="Commands.html">9: Gri Commands</a><br>
&nbsp;&nbsp;<a href="Programming.html">10: Programming</a><br>
&nbsp;&nbsp;<a href="Environment.html">11: Environment</a><br>
&nbsp;&nbsp;<a href="Emacs.html">12: Emacs Mode</a><br>
&nbsp;&nbsp;<a href="History.html">13: History</a><br>
&nbsp;&nbsp;<a href="Installation.html">14: Installation</a><br>
&nbsp;&nbsp;<a href="Bugs.html">15: Gri Bugs</a><br>
&nbsp;&nbsp;<a href="TestSuite.html">16: Test Suite</a><br>
&nbsp;&nbsp;<a href="GriInThePress.html">17: Gri in Press</a><br>
&nbsp;&nbsp;<a href="Acknowledgments.html">18: Acknowledgments</a><br>
&nbsp;&nbsp;<a href="License.html">19: License</a><br>
<br>
Indices:<br>
&nbsp;&nbsp;<a href="ConceptIndex.html"><i>Concepts</i></a><br>
&nbsp;&nbsp;<a href="CommandIndex.html"><i>Commands</i></a><br>
&nbsp;&nbsp;<a href="BuiltinIndex.html"><i>Variables</i></a><br>
</font>
<td width="500" valign="top">
<map name="navigate_top">
<area alt="index.html#Top" shape="rect" coords="5,2,218,24" href="index.html#Top">
<area alt="ListOfGriCommands.html#ListOfGriCommands" shape="rect" coords="516,2,532,24" href="ListOfGriCommands.html#ListOfGriCommands">
<area alt="Gri: `close' command" shape="rect" coords="557,2,573,24" href="Close.html">
<area alt="Gri: `create' command" shape="rect" coords="581,2,599,24" href="Create.html">
</map>
<map name="navigate_bottom">
<area alt="index.html#Top" shape="rect" coords="5,2,218,24" href="index.html#Top">
<area alt="Gri: `create' command" shape="rect" coords="581,2,599,24" href="Create.html">
</map>
<h3>9.3.4: The `<font color="#82140F"><code>convert</code></font>' commands</h3>


<UL>
<LI><a href="Convert.html#ConvertColumnsToGrid">Convert Columns To Grid</a>: Create grid from (x,y,f) data
<LI><a href="Convert.html#ConvertColumnsToSpline">Convert Columns To Spline</a>: Create spline (x',y') from (x,y) data
<LI><a href="Convert.html#ConvertGridToColumns">Convert Grid To Columns</a>: Create (x,y,f) data from grid
<LI><a href="Convert.html#ConvertGridToImage">Convert Grid To Image</a>: Create an image from grid data
<LI><a href="Convert.html#ConvertImageToGrid">Convert Image To Grid</a>: Create a grid from image data
</UL>


<!-- @node   Convert Columns To Grid, Convert Columns To Spline, Convert, Convert -->
<a name="ConvertColumnsToGrid" ></a>
<h4>9.3.4.1: `<font color="#82140F"><code>convert columns to grid</code></font>'</h4>

<!-- latex: \index{convert columns to grid} -->
Various forms exist:
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert columns to grid OPTIONS'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

where the `<font color="#82140F"><code>OPTIONS</code></font>' may be omitted or
selected from this list:
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`neighbor'
`boxcar    [.xr. .yr. [.n. .e.]]'
`objective [.xr. .yr. [.n. .e.]]'
`barnes    [.xr. .yr. .gamma. .iter.]'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

For more discussion on the methods see see <a href="ContourPlots.html#UngriddedData">Ungridded Data</a>.
<p>
All these commands ``grid'' columnar (x,y,z) data.  That is, they fill
up a grid based on some form of interpolation of the possibly randomly-spaced 
columnar data.  There are many methods in existence for doing
this, and Gri implements several of them as alternatives.
<p>
The grid will have been defined by commands such as `<font color="#82140F"><code>set x grid</code></font>',
`<font color="#82140F"><code>set y grid</code></font>', `<font color="#82140F"><code>read grid x</code></font>' and `<font color="#82140F"><code>read grid y</code></font>'.  As of
version 2.1.9, Gri does not require a grid to have been pre-defined; it
will create a regular 20 by 20 grid, spanning the range of x and y data,
as a default.  This is a good starting point in many cases.
<p>
<dl>
<p>
<dt> <i>`neighbor' method</i>
<dd>Very fast but very limited.
<p>
<dt> <i>`boxcar' method</i>
<dd>Slower but a lot better.  Still, this can produce noisy contours if the
data are not densely and uniformly ditributed through domain.
<p>
<dt> <i>`objective' method</i>
<dd>Somewhat slower than `boxcar', but produces better fields since the
averaging function is smooth.
<p>
<dt> <i>`barnes' method</i>
<dd>Somewhat slower than `objective', but only by a constant factor (that
is, independent of number of data).  This produces by far the best
results, since the smoothing function has variable spatial scale.  This
is the default method if no method is supplied.
</dl>

All except the `<font color="#82140F"><code>neighbor</code></font>' method may take optional arguments to
define the x and y scales of the smoothing function (called `<font color="#82140F"><code>.xr.</code></font>'
and `<font color="#82140F"><code>.yr.</code></font>').  (The barnes method has two other optional arguments
-- see below.)  If you do not supply these arguments, Gri will make a
reasonable choice and inform you of its decision.  Many users find that
it is best to `<font color="#82140F"><code>convert columns to grid</code></font>' with no additional
parameters as a first step, to get advice on values to use for the
optional parameters.
<p>
The default `<font color="#82140F"><code>.xr.</code></font>' and `<font color="#82140F"><code>.yr.</code></font>' are calculated by determining
the span in x and in y directions, and dividing each by the square root
of the number of data points.  These numbers are then multiplied by the
square root of 2.  The method is as proposed by S. E. Koch and M.
DesJardins and P. J. Kocin, 1983.  ``An interactive Barnes objective map
anlaysis scheme for use with satellite and conventional data,'',
J. Climate Appl.  Met., vol 22, p. 1487-1503.
<p>
If `<font color="#82140F"><code>.xr.</code></font>' and `<font color="#82140F"><code>.yr.</code></font>' were supplied but negative, then Gri
interprets this as an instruction to modify the default values,
described in last paragraph, by multiplying by the absolute values of
the negative numbers given, instead of muliplying by square root of 2.
<p>
If the `<font color="#82140F"><code>chatty</code></font>' option is turned on 
then Gri will print out the values of
(dx,dy) that it has 
calculated; this gives you some guidance for supplying your own values
of `<font color="#82140F"><code>(.xr.,.yr.)</code></font>' if you choose to supply them yourself.  It is also
a good idea to let these parameters be a guide for your grid spacing;
for example, Koch et al., 1983, suggest using grid spacing of 0.3 to 0.5
times (dx,dy).
<p>
And now, the details ...
<p>
<ul>
<p>
<li> <b>``Neighbor'' method</b>
The `<font color="#82140F"><code>convert columns to grid neighbor</code></font>' method is useful for (x,y,z)
data which are already gridded (i.e., for which x and y take only values
which lie on the grid), or nearly gridded.  The (x,y,z) data are scanned
from start to finish. For each data point, the nearest grid point is
found.  Nearness is measured as Cartesian distance, with scale factor
given by the distance between the first and second grid points.  In
other words, distance is given by D=sqrt(dx*dx+dy*dy) where dx is ratio
of distance from data point to nearest grid point, in x-units, divided
by the difference between the first two elements of the x-grid, and dy
is similarly defined.  Once the grid point nearest the data point is
determined, Gri adds the z-value to a list of possible values to store
in the grid.  Once the entire data set has been scanned, Gri then goes
back to each grid point, and chooses the z-value of the data point that
was nearest to the grid point -- that is, it stores the z value of the
(x,y,z) data triplet which has minimal D value.  Note that this scheme
is independent of the order of the data within the columns.
<p>

The `<font color="#82140F"><code>neighbor</code></font>' method is useful when the data are already
pre-gridded, meaning that the (x,y,z) triplets have x and y values which
are already aligned with the grid.  <b>Computational cost:</b> For
`<font color="#82140F"><code>P</code></font>' data points, `<font color="#82140F"><code>X</code></font>' x-grid points, and `<font color="#82140F"><code>Y</code></font>' y-grid
points, the method calculation cost is proportional to
`<font color="#82140F"><code>P*[log2(X)+log2(Y)]</code></font>' where `<font color="#82140F"><code>log2</code></font>' is logarithm base 2.
As discussed below, this is often several orders of magnitude lower than
the other methods of gridding.
<p>
<li> <b>``Objective'' method</b>
In the `<font color="#82140F"><code>objective</code></font>' method, a smoothing technique known as objective
mapping is applied.  It is essentially a variable-size smoothing filter
of approximately Gaussian shape (it is method ``two'' of Levy and Brown
[1986 J. Geophysical Res. vol 91, p 5153-5158]) The parameters
`<font color="#82140F"><code>.xr.</code></font>' and `<font color="#82140F"><code>.yr.</code></font>' give the width of the filter.
<p>
With the optional additional parameters `<font color="#82140F"><code>.n.</code></font>' and `<font color="#82140F"><code>.e.</code></font>' are
specified, then grid values will be assigned the missing value if there
are fewer than `<font color="#82140F"><code>.n.</code></font>' (x,y,f) data in the neighborhood of the
gridpoint, even after enlarging the neighborhood by widening and
heightening by root(2) up to `<font color="#82140F"><code>.e.</code></font>' times.  (The enlargement is only
done if fewer than `<font color="#82140F"><code>.n.</code></font>' points are found.)  If these parameters
are not specified in the command, then values `<font color="#82140F"><code>.n.</code></font>'=5 and
`<font color="#82140F"><code>.e.</code></font>'=1 are assumed.  The special case where `<font color="#82140F"><code>.e.</code></font>' is negative
tells Gri to <b>always</b> fill in each grid point, by extending the
neighborhood to enclose the entire dataset if necessary.
<p>
<b>Computational cost:</b> For `<font color="#82140F"><code>P</code></font>' data points, `<font color="#82140F"><code>X</code></font>' x-grid
points, and `<font color="#82140F"><code>Y</code></font>' y-grid points, the method calculation cost is
proportional to `<font color="#82140F"><code>P*X*Y</code></font>'.  Given that `<font color="#82140F"><code>X</code></font>' and `<font color="#82140F"><code>Y</code></font>' are
determined by the requirement for smoothness of contours and the size of
the graph, they are more or less fixed for all applications.  They are
often in the range of 20 or so -- on 10 cm wide graph, this yields a
contour footprint of 1/2 cm, which is often small enough to yield smooth
contours.  Therefore, the computational cost scales linearly with the
number of data points.  Compared to the ``neighborhood'' method, this is
more costly by a factor of `<font color="#82140F"><code>X*Y/log_2(X)/log_2(Y)</code></font>' which is
normally in the range from 20 to 50.
<p>
<li> <b>``Boxcar'' method</b>
In the `<font color="#82140F"><code>boxcar</code></font>' method, the grid points are derived from simple
averages calculated in rectangles `<font color="#82140F"><code>.xr.</code></font>' wide and `<font color="#82140F"><code>.yr.</code></font>' tall,
centred on the gridpoints.  The `<font color="#82140F"><code>.n.</code></font>' and `<font color="#82140F"><code>.e.</code></font>' parameters
have similar meanings as in the ``objective'' method.
<p>
<b>Computational cost:</b> Roughly same as `<font color="#82140F"><code>objective</code></font>' method
described above.
<p>
<li> <b>``Barnes'' method</b>
This is the default scheme.
<p>
The Barnes algorithm is applied.  If no parameters are specified,
`<font color="#82140F"><code>.xr.</code></font>' and `<font color="#82140F"><code>.yr.</code></font>' are determined as above, with `<font color="#82140F"><code>.gamma.</code></font>'
set to 0.5, and `<font color="#82140F"><code>.iter.</code></font>' set to 2 so that two iterations are done.
On successive iterations, the smoothing lengthscales `<font color="#82140F"><code>.xr</code></font>' and
`<font color="#82140F"><code>.yr</code></font>' are each reduced by multiplying by the square root of
`<font color="#82140F"><code>.gamma.</code></font>'.  Smaller `<font color="#82140F"><code>.gamma.</code></font>' values yield better resolution
of small-scale features on successive iterations.  Koch et al., 1983,
recommend using a `<font color="#82140F"><code>.gamma.</code></font>' value in the range 0.2 to 1, with two
iterations.
<p>
Provided that all the grid points are close enough to at least some
column data, the entire grid is filled.  But if `<font color="#82140F"><code>.xr.</code></font>' and
`<font color="#82140F"><code>.yr.</code></font>' are too small, the weighting function can fall to zero,
since it is exponential in the sum of the squares of the
x-distance/`<font color="#82140F"><code>.xr.</code></font>' and the y-distance/`<font color="#82140F"><code>.yr.</code></font>'; in that case
missing values result at those grid points.  On a 32 bit computer, the
weighting function will fall to zero when x-distance/`<font color="#82140F"><code>.xr.</code></font>'  and
y-distance/`<font color="#82140F"><code>.yr.</code></font>'  are less than about 15 to 20.
<p>
If weights have been read in (see <a href="Read.html#ReadColumns">Read Columns</a>), then these values are
applied in addition to the distance-based weighting.  (The normalization
means that weights for two data points of e.g. 1 and 2 will yield the
same result as if the weights had been given as 10 and 20.)
<p>
The computational cost at each iteration scales as `<font color="#82140F"><code>P*X*Y)</code></font>'.  This
is comparable to that of the ``objective'' and ``boxcar'' methods.
Since normally two iterations are done, ``barnes'' is about double the
cost of these methods.  (Note: versions prior to 2.1.8 were much slower
for large datasets, being proportional to `<font color="#82140F"><code>P*P</code></font>'.)
<p>
References: (1) Section 3.6 in Roger Daley, 1991, ``Atmospheric data
analysis,'' Cambridge Press, New York. (2) S. E. Koch and M. DesJardins
and P. J. Kocin, 1983.  ``An interactive Barnes objective map anlaysis
scheme for use with satellite and conventional data,'', J. Climate Appl.
Met., vol 22, p. 1487-1503.
</ul>
<p>
The Barnes algorithm is as follows:
<p>


The gridded field is estimated iteratively.  Successive iterations
retain largescale features from previous iterations, while adding
details at smaller scales.
<p>
The first estimate of the gridded field, here denoted
`<font color="#82140F"><code>G_(ij)^0</code></font>' (the superscript indicating the order of the
iteration) is given by a weighted sum of the input data, with
`<font color="#82140F"><code>z_k</code></font>' denoting the k-th `<font color="#82140F"><code>z</code></font>' value.
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
             sum_1^n W_(ijk)^0 z_k
G_(ij)^(0) = ----------------------
               sum_1^n W_(ijk)0
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
where the notation `<font color="#82140F"><code>sum_1^n</code></font>' means to sum the elements
for the `<font color="#82140F"><code>k</code></font>' index ranging from 1 to `<font color="#82140F"><code>n</code></font>'.
<p>
The weights `<font color="#82140F"><code>W_(ijk)^0</code></font>' are defined in terms of a Guassian
function decaying with distance from observation point to grid point:
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
               (   (x_k - X_i)^2       (y_k - Y_j)^2  )
W_(ijk)^0 = exp(-  --------------  -  --------------- )
               (      L_x^2                L_y^2      )
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

Here `<font color="#82140F"><code>L_x</code></font>' and `<font color="#82140F"><code>L_y</code></font>' are lengths which define the smallest
`<font color="#82140F"><code>(x,y)</code></font>' scales over which the gridded field will have significant
variations (for details of the spectral response see Koch et al. 1983).
<p>
Note: if the user has supplied weights then these
are applied in addition to the distance-based weights.  That is,
`<font color="#82140F"><code>w_i W_(ijk)</code></font>' is used instead of `<font color="#82140F"><code>W_(ijk)</code></font>'.
<p>
The second iteration derives a grid `<font color="#82140F"><code>G_(ij)^1</code></font>' in terms of the
first grid `<font color="#82140F"><code>G_(ij)^0</code></font>' and ``analysis values'' `<font color="#82140F"><code>f_k^0</code></font>'
calculated at the `<font color="#82140F"><code>(x_k,y_k)</code></font>' using a formula analogous to that
above.  (Interpolation based on the first estimate of the grid
`<font color="#82140F"><code>G_(ij)^0</code></font>' can also be used to calculate `<font color="#82140F"><code>f_k^0</code></font>', with
equivalent results for a grid of sufficiently fine mesh.)  In this
iteration, however, the weighted average is based on the difference
between the data and the gridded field, so that no further adjustment
of the gridded field is done in regions where it is already close to
through the observed values.  The second estimate of the gridded field
is given by
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
                       sum_1^n W_(ijk)^1 (f_k - f_k^0)
G_(ij)^1 = G_(ij)^0 +  -------------------------------
                              sum_1^n W_(ijk)^1
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
 where the weights `<font color="#82140F"><code>w_{ik,1}</code></font>' are defined by analogy
with `<font color="#82140F"><code>W_{ik}^0</code></font>' except that `<font color="#82140F"><code>L_x</code></font>' and `<font color="#82140F"><code>L_y</code></font>' are
replaced by `<font color="#82140F"><code>gamma^{1/2}L_x</code></font>' and `<font color="#82140F"><code>gamma^{1/2}L_y</code></font>'.  The
nondimensional parameter `<font color="#82140F"><code>gamma</code></font>' (`<font color="#82140F"><code>0&lt;gamma&lt;1</code></font>') controls the
degree to which the focus is improved on the second iteration.  Just
as the weighting function forced the gridded field to be smooth over
scales smaller than `<font color="#82140F"><code>L_x</code></font>' and `<font color="#82140F"><code>L_y</code></font>' on the first iteration,
so it forces the second estimate of the gridded field to be smooth
over the smaller scales `<font color="#82140F"><code>gamma^{1/2}L_x</code></font>' and
`<font color="#82140F"><code>gamma^{1/2}L_y</code></font>'.
<p>
The first iteration yields a gridded field which represents the
observations over scales larger than `<font color="#82140F"><code>(L_x,L_y)</code></font>', while successive
iterations fill in details at smaller scales, without greatly
modifying the larger scale field.
<p>
In principle, the iterative process may be continued an arbitrary number
of times, each time reducing the scale of variation in the gridded field
by the factor `<font color="#82140F"><code>gamma^{1/2}</code></font>'.  Koch et al. 1983 suggest that there
is little utility in performing more than two iterations, providing an
appropriate choice of the focussing parameter `<font color="#82140F"><code>gamma</code></font>' has been made.
Thus the gridding procedure defines a gridded field based on three
tunable parameters: `<font color="#82140F"><code>(L_x,L_y,gamma)</code></font>'.
<p>




<!-- @node   Convert Columns To Spline, Convert Grid To Columns, Convert Columns To Grid, Convert -->
<a name="ConvertColumnsToSpline" ></a>
<h4>9.3.4.2: `<font color="#82140F"><code>convert columns to spline</code></font>'</h4>

<!-- latex: \index{convert columns to spline} -->

<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert columns to spline \
    [.gamma.] \
    [.xmin. .xmax. .xinc.]'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
Fit a normal or taut interpolating spline, y=y(x), through the (x,y)
data.  Then subsample this spline to get a new set of (x,y) data.  If
the spline x-values, `<font color="#82140F"><code>.xmin.</code></font>', etc, are not specified, the spline
ranges from the smallest x-value with legitimate data to the largest
one, with 200 steps in between.
<p>
The parameter `<font color="#82140F"><code>.gamma.</code></font>' determines the type of spline used.  If
`<font color="#82140F"><code>.gamma.</code></font>' is not specified, or is given as zero, a standard
interpolating spline is used.  A knot appears at each x location, with
cubic polynomials spanning the space between the knots.  If
`<font color="#82140F"><code>.gamma.</code></font>' lies between 0 and 6, a taut spline is used; this tends
to have fewer wiggles than a normal spline.  If `<font color="#82140F"><code>.gamma.</code></font>'  lies in
the range 0 to 3, a taut spline is used, with the possible insertion of
knots between interior x pairs.  The value 2.5 is used commonly.  If
`<font color="#82140F"><code>.gamma.</code></font>' lies in the range 3 to 6, extra knots are permitted in
the x pairs at the ends of the domain.  A value of 5.5 is used commonly.
<p>
<b>Reference</b> Chapter 16 of Carl de Boar, 1987. ``A Practical Guide
to Splines'' Springer-Verlag.
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
read columns x y  # function is y=x^2
0 0
1 1
2 4
3 9
4 16
<p>
set symbol size 0.2
draw symbol bullet
convert columns to spline
draw curve
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

<!-- @node   Convert Grid To Columns, Convert Grid To Image, Convert Columns To Spline, Convert  -->
<a name="ConvertGridToColumns" ></a>
<h4>9.3.4.3: `<font color="#82140F"><code>convert grid to columns</code></font>'</h4>

<!-- latex: \index{convert grid to columns} -->

<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert grid to columns'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

Create column data from grid data.  Each non-missing gridpoint is
translated into a single (x,y,z) triplet.  If column data already exist,
then they are first erased.  This command is useful in changing the grid
configuration, perhaps from a non-uniform grid to a uniform grid.  In
the following example, a new grid with x=(0, 0.05, 0.1, ..., 0.1) and
y=(10, 11, ..., 20) is created.  The default gridding method
(`<font color="#82140F"><code>convert columns to grid</code></font>') is used here, but of course one is free
to adjust the method as usual.
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
# ... read/create grid
convert grid to columns
delete grid
set x grid  0  1 0.05
set y grid 10 20 1
convert columns to grid
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

<!-- @node   Convert Grid To Image, Convert Image To Grid, Convert Grid To Columns, Convert -->
<a name="ConvertGridToImage" ></a>
<h4>9.3.4.4: `<font color="#82140F"><code>convert grid to image</code></font>'</h4>

<!-- latex: \index{convert grid to image} -->

<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert grid to image [directly] [size .width. .height.] \
    [box .xleft. .ybottom. .xright. .ytop.]'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

With no options specified, convert grid to a 128x128 image,
using an image range as previously set by `<font color="#82140F"><code>set image range</code></font>', and using
interpolation (see below).
<p>
With the `<font color="#82140F"><code>directly</code></font>' option, no interpolation is used; each grid
point is used to calculate the colour of a single image pixel.  Since
images are always uniform in Gri, this will only work if the grid is
also uniform, i.e. there must be a constant distance between columns
in the grid, and the same for the rows.  This method is useful for
fine-grained grids, especially if they contain isolated points (e.g. a
numerical model might have a trace of points representing a river).
<p>
With the `<font color="#82140F"><code>size</code></font>' options `<font color="#82140F"><code>.width.</code></font>' and `<font color="#82140F"><code>.height.</code></font>'
specified, they set the number of rectangular patches in the image.
Interpolation is used.
<p>
With the `<font color="#82140F"><code>box</code></font>' options specified, they set the bounding box for
the image.  If `<font color="#82140F"><code>box</code></font>' is not given, the image spans the same
bounding box as the grid as set by `<font color="#82140F"><code>set x grid</code></font>' and `<font color="#82140F"><code>set y grid</code></font>'.  Again, interpolation is used in this form.
<p>
Normally, missing values in the grid become white in the image, but this
can be changed using the `<font color="#82140F"><code>set image missing value color to</code></font>'...
command.
<p>

<b>Interpolation method:</b> The interpolation scheme is the same used for
contouring.  Image points that lie outside the grid domain are
considered missing.  For points within the grid, the first step is to
locate the patch of the grid upon which the pixel lies.  Then the 4
neighboring grid points are examined, and one of the following cases
holds.
<ol>
<li>
If 3 or more of them are missing, the pixel is considered missing.
<li>
If just one of the neighboring grid points is missing, then the image
pixel value is determined by bilinear interpolation on the remaining 3
non-missing grid points.  (This amounts to fitting a plane to three
measurements of height.)
<li>
If all 4 of the grid points are non-missing, then the rectangle defined
by the grid patch is subdivided into four triangles.  The triangles are
defined by the two diagonal lines joining opposite corners of the
rectangle.  An ``image point'' is constructed at the center of the grid
patch, with f(x,y) value taken to be the average of the values of the
four neighbors.  This value is taken to be the value at the common
vertex of the four triangles, and then bilinear interpolation is used to
calculate the image pixel value.
</ol>
<p>
<!-- @node   Convert Image To Grid, Create, Convert Grid To Image, Convert -->
<a name="ConvertImageToGrid" ></a>
<h4>9.3.4.5: `<font color="#82140F"><code>convert image to grid</code></font>'</h4>

<!-- latex: \index{convert image to grid} -->

<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert image to grid'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

Convert image to grid, using current graylevel/colorlevel mapping.  For
example, if one had a linear mapping of pixel values 0-&gt;255 into the
user values 10-&gt;20, as in
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
set image range 10 20
set image grayscale black 10 white 20
</font></PRE>
</TD>
</TR>
</TABLE>
<p>

then the output grid will be of value 10 where the pixel value is 0,
etc.  If the image is in color, the grid values will represent the
result of mapping the colors to grayscale in the standard way (Foley and
VanDam, 1984). [BUG: as of 1.063, the colorscale is ignored completely,
and I'm not sure what happens.] The image data are interpolated onto the
grid using a nearest-neighbor substitution.  This command insists that
the image x/y grids have already been defined.
<p>




</table>
<img src="./resources/bottom_banner.gif" alt="navigation map" usemap="#navigate_bottom" border="0">

</body>
</html>