/usr/share/doc/gri/html/Convert.html is in gri-html-doc 2.12.26-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Gri: `convert' command</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"></head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000EE" vlink="#551A8B" alink="FF0000">
<!-- newfile Convert.html "Gri: `convert' command" "Gri Commands" -->
<!-- @node Convert, Convert Columns To Grid, Close, List Of Gri Commands -->
<a name="Convert" ></a>
<img src="./resources/top_banner.gif" alt="navigation map" usemap="#navigate_top" border="0">
<table summary="top banner" border="0" cellspacing="0" cellpadding="0">
<tr>
<td width="150" valign="top">
<font size=-1>
<br>
Chapters:
<br>
<a href="Introduction.html">1: Introduction</a><br>
<a href="SimpleExample.html">2: Simple example</a><br>
<a href="InvokingGri.html">3: Invocation</a><br>
<a href="GettingMoreControl.html">4: Finer Control</a><br>
<a href="X-Y.html">5: X-Y Plots</a><br>
<a href="ContourPlots.html">6: Contour Plots</a><br>
<a href="Images.html">7: Image Plots</a><br>
<a href="Examples.html">8: Examples</a><br>
<a href="Commands.html">9: Gri Commands</a><br>
<a href="Programming.html">10: Programming</a><br>
<a href="Environment.html">11: Environment</a><br>
<a href="Emacs.html">12: Emacs Mode</a><br>
<a href="History.html">13: History</a><br>
<a href="Installation.html">14: Installation</a><br>
<a href="Bugs.html">15: Gri Bugs</a><br>
<a href="TestSuite.html">16: Test Suite</a><br>
<a href="GriInThePress.html">17: Gri in Press</a><br>
<a href="Acknowledgments.html">18: Acknowledgments</a><br>
<a href="License.html">19: License</a><br>
<br>
Indices:<br>
<a href="ConceptIndex.html"><i>Concepts</i></a><br>
<a href="CommandIndex.html"><i>Commands</i></a><br>
<a href="BuiltinIndex.html"><i>Variables</i></a><br>
</font>
<td width="500" valign="top">
<map name="navigate_top">
<area alt="index.html#Top" shape="rect" coords="5,2,218,24" href="index.html#Top">
<area alt="ListOfGriCommands.html#ListOfGriCommands" shape="rect" coords="516,2,532,24" href="ListOfGriCommands.html#ListOfGriCommands">
<area alt="Gri: `close' command" shape="rect" coords="557,2,573,24" href="Close.html">
<area alt="Gri: `create' command" shape="rect" coords="581,2,599,24" href="Create.html">
</map>
<map name="navigate_bottom">
<area alt="index.html#Top" shape="rect" coords="5,2,218,24" href="index.html#Top">
<area alt="Gri: `create' command" shape="rect" coords="581,2,599,24" href="Create.html">
</map>
<h3>9.3.4: The `<font color="#82140F"><code>convert</code></font>' commands</h3>
<UL>
<LI><a href="Convert.html#ConvertColumnsToGrid">Convert Columns To Grid</a>: Create grid from (x,y,f) data
<LI><a href="Convert.html#ConvertColumnsToSpline">Convert Columns To Spline</a>: Create spline (x',y') from (x,y) data
<LI><a href="Convert.html#ConvertGridToColumns">Convert Grid To Columns</a>: Create (x,y,f) data from grid
<LI><a href="Convert.html#ConvertGridToImage">Convert Grid To Image</a>: Create an image from grid data
<LI><a href="Convert.html#ConvertImageToGrid">Convert Image To Grid</a>: Create a grid from image data
</UL>
<!-- @node Convert Columns To Grid, Convert Columns To Spline, Convert, Convert -->
<a name="ConvertColumnsToGrid" ></a>
<h4>9.3.4.1: `<font color="#82140F"><code>convert columns to grid</code></font>'</h4>
<!-- latex: \index{convert columns to grid} -->
Various forms exist:
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert columns to grid OPTIONS'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
where the `<font color="#82140F"><code>OPTIONS</code></font>' may be omitted or
selected from this list:
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`neighbor'
`boxcar [.xr. .yr. [.n. .e.]]'
`objective [.xr. .yr. [.n. .e.]]'
`barnes [.xr. .yr. .gamma. .iter.]'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
For more discussion on the methods see see <a href="ContourPlots.html#UngriddedData">Ungridded Data</a>.
<p>
All these commands ``grid'' columnar (x,y,z) data. That is, they fill
up a grid based on some form of interpolation of the possibly randomly-spaced
columnar data. There are many methods in existence for doing
this, and Gri implements several of them as alternatives.
<p>
The grid will have been defined by commands such as `<font color="#82140F"><code>set x grid</code></font>',
`<font color="#82140F"><code>set y grid</code></font>', `<font color="#82140F"><code>read grid x</code></font>' and `<font color="#82140F"><code>read grid y</code></font>'. As of
version 2.1.9, Gri does not require a grid to have been pre-defined; it
will create a regular 20 by 20 grid, spanning the range of x and y data,
as a default. This is a good starting point in many cases.
<p>
<dl>
<p>
<dt> <i>`neighbor' method</i>
<dd>Very fast but very limited.
<p>
<dt> <i>`boxcar' method</i>
<dd>Slower but a lot better. Still, this can produce noisy contours if the
data are not densely and uniformly ditributed through domain.
<p>
<dt> <i>`objective' method</i>
<dd>Somewhat slower than `boxcar', but produces better fields since the
averaging function is smooth.
<p>
<dt> <i>`barnes' method</i>
<dd>Somewhat slower than `objective', but only by a constant factor (that
is, independent of number of data). This produces by far the best
results, since the smoothing function has variable spatial scale. This
is the default method if no method is supplied.
</dl>
All except the `<font color="#82140F"><code>neighbor</code></font>' method may take optional arguments to
define the x and y scales of the smoothing function (called `<font color="#82140F"><code>.xr.</code></font>'
and `<font color="#82140F"><code>.yr.</code></font>'). (The barnes method has two other optional arguments
-- see below.) If you do not supply these arguments, Gri will make a
reasonable choice and inform you of its decision. Many users find that
it is best to `<font color="#82140F"><code>convert columns to grid</code></font>' with no additional
parameters as a first step, to get advice on values to use for the
optional parameters.
<p>
The default `<font color="#82140F"><code>.xr.</code></font>' and `<font color="#82140F"><code>.yr.</code></font>' are calculated by determining
the span in x and in y directions, and dividing each by the square root
of the number of data points. These numbers are then multiplied by the
square root of 2. The method is as proposed by S. E. Koch and M.
DesJardins and P. J. Kocin, 1983. ``An interactive Barnes objective map
anlaysis scheme for use with satellite and conventional data,'',
J. Climate Appl. Met., vol 22, p. 1487-1503.
<p>
If `<font color="#82140F"><code>.xr.</code></font>' and `<font color="#82140F"><code>.yr.</code></font>' were supplied but negative, then Gri
interprets this as an instruction to modify the default values,
described in last paragraph, by multiplying by the absolute values of
the negative numbers given, instead of muliplying by square root of 2.
<p>
If the `<font color="#82140F"><code>chatty</code></font>' option is turned on
then Gri will print out the values of
(dx,dy) that it has
calculated; this gives you some guidance for supplying your own values
of `<font color="#82140F"><code>(.xr.,.yr.)</code></font>' if you choose to supply them yourself. It is also
a good idea to let these parameters be a guide for your grid spacing;
for example, Koch et al., 1983, suggest using grid spacing of 0.3 to 0.5
times (dx,dy).
<p>
And now, the details ...
<p>
<ul>
<p>
<li> <b>``Neighbor'' method</b>
The `<font color="#82140F"><code>convert columns to grid neighbor</code></font>' method is useful for (x,y,z)
data which are already gridded (i.e., for which x and y take only values
which lie on the grid), or nearly gridded. The (x,y,z) data are scanned
from start to finish. For each data point, the nearest grid point is
found. Nearness is measured as Cartesian distance, with scale factor
given by the distance between the first and second grid points. In
other words, distance is given by D=sqrt(dx*dx+dy*dy) where dx is ratio
of distance from data point to nearest grid point, in x-units, divided
by the difference between the first two elements of the x-grid, and dy
is similarly defined. Once the grid point nearest the data point is
determined, Gri adds the z-value to a list of possible values to store
in the grid. Once the entire data set has been scanned, Gri then goes
back to each grid point, and chooses the z-value of the data point that
was nearest to the grid point -- that is, it stores the z value of the
(x,y,z) data triplet which has minimal D value. Note that this scheme
is independent of the order of the data within the columns.
<p>
The `<font color="#82140F"><code>neighbor</code></font>' method is useful when the data are already
pre-gridded, meaning that the (x,y,z) triplets have x and y values which
are already aligned with the grid. <b>Computational cost:</b> For
`<font color="#82140F"><code>P</code></font>' data points, `<font color="#82140F"><code>X</code></font>' x-grid points, and `<font color="#82140F"><code>Y</code></font>' y-grid
points, the method calculation cost is proportional to
`<font color="#82140F"><code>P*[log2(X)+log2(Y)]</code></font>' where `<font color="#82140F"><code>log2</code></font>' is logarithm base 2.
As discussed below, this is often several orders of magnitude lower than
the other methods of gridding.
<p>
<li> <b>``Objective'' method</b>
In the `<font color="#82140F"><code>objective</code></font>' method, a smoothing technique known as objective
mapping is applied. It is essentially a variable-size smoothing filter
of approximately Gaussian shape (it is method ``two'' of Levy and Brown
[1986 J. Geophysical Res. vol 91, p 5153-5158]) The parameters
`<font color="#82140F"><code>.xr.</code></font>' and `<font color="#82140F"><code>.yr.</code></font>' give the width of the filter.
<p>
With the optional additional parameters `<font color="#82140F"><code>.n.</code></font>' and `<font color="#82140F"><code>.e.</code></font>' are
specified, then grid values will be assigned the missing value if there
are fewer than `<font color="#82140F"><code>.n.</code></font>' (x,y,f) data in the neighborhood of the
gridpoint, even after enlarging the neighborhood by widening and
heightening by root(2) up to `<font color="#82140F"><code>.e.</code></font>' times. (The enlargement is only
done if fewer than `<font color="#82140F"><code>.n.</code></font>' points are found.) If these parameters
are not specified in the command, then values `<font color="#82140F"><code>.n.</code></font>'=5 and
`<font color="#82140F"><code>.e.</code></font>'=1 are assumed. The special case where `<font color="#82140F"><code>.e.</code></font>' is negative
tells Gri to <b>always</b> fill in each grid point, by extending the
neighborhood to enclose the entire dataset if necessary.
<p>
<b>Computational cost:</b> For `<font color="#82140F"><code>P</code></font>' data points, `<font color="#82140F"><code>X</code></font>' x-grid
points, and `<font color="#82140F"><code>Y</code></font>' y-grid points, the method calculation cost is
proportional to `<font color="#82140F"><code>P*X*Y</code></font>'. Given that `<font color="#82140F"><code>X</code></font>' and `<font color="#82140F"><code>Y</code></font>' are
determined by the requirement for smoothness of contours and the size of
the graph, they are more or less fixed for all applications. They are
often in the range of 20 or so -- on 10 cm wide graph, this yields a
contour footprint of 1/2 cm, which is often small enough to yield smooth
contours. Therefore, the computational cost scales linearly with the
number of data points. Compared to the ``neighborhood'' method, this is
more costly by a factor of `<font color="#82140F"><code>X*Y/log_2(X)/log_2(Y)</code></font>' which is
normally in the range from 20 to 50.
<p>
<li> <b>``Boxcar'' method</b>
In the `<font color="#82140F"><code>boxcar</code></font>' method, the grid points are derived from simple
averages calculated in rectangles `<font color="#82140F"><code>.xr.</code></font>' wide and `<font color="#82140F"><code>.yr.</code></font>' tall,
centred on the gridpoints. The `<font color="#82140F"><code>.n.</code></font>' and `<font color="#82140F"><code>.e.</code></font>' parameters
have similar meanings as in the ``objective'' method.
<p>
<b>Computational cost:</b> Roughly same as `<font color="#82140F"><code>objective</code></font>' method
described above.
<p>
<li> <b>``Barnes'' method</b>
This is the default scheme.
<p>
The Barnes algorithm is applied. If no parameters are specified,
`<font color="#82140F"><code>.xr.</code></font>' and `<font color="#82140F"><code>.yr.</code></font>' are determined as above, with `<font color="#82140F"><code>.gamma.</code></font>'
set to 0.5, and `<font color="#82140F"><code>.iter.</code></font>' set to 2 so that two iterations are done.
On successive iterations, the smoothing lengthscales `<font color="#82140F"><code>.xr</code></font>' and
`<font color="#82140F"><code>.yr</code></font>' are each reduced by multiplying by the square root of
`<font color="#82140F"><code>.gamma.</code></font>'. Smaller `<font color="#82140F"><code>.gamma.</code></font>' values yield better resolution
of small-scale features on successive iterations. Koch et al., 1983,
recommend using a `<font color="#82140F"><code>.gamma.</code></font>' value in the range 0.2 to 1, with two
iterations.
<p>
Provided that all the grid points are close enough to at least some
column data, the entire grid is filled. But if `<font color="#82140F"><code>.xr.</code></font>' and
`<font color="#82140F"><code>.yr.</code></font>' are too small, the weighting function can fall to zero,
since it is exponential in the sum of the squares of the
x-distance/`<font color="#82140F"><code>.xr.</code></font>' and the y-distance/`<font color="#82140F"><code>.yr.</code></font>'; in that case
missing values result at those grid points. On a 32 bit computer, the
weighting function will fall to zero when x-distance/`<font color="#82140F"><code>.xr.</code></font>' and
y-distance/`<font color="#82140F"><code>.yr.</code></font>' are less than about 15 to 20.
<p>
If weights have been read in (see <a href="Read.html#ReadColumns">Read Columns</a>), then these values are
applied in addition to the distance-based weighting. (The normalization
means that weights for two data points of e.g. 1 and 2 will yield the
same result as if the weights had been given as 10 and 20.)
<p>
The computational cost at each iteration scales as `<font color="#82140F"><code>P*X*Y)</code></font>'. This
is comparable to that of the ``objective'' and ``boxcar'' methods.
Since normally two iterations are done, ``barnes'' is about double the
cost of these methods. (Note: versions prior to 2.1.8 were much slower
for large datasets, being proportional to `<font color="#82140F"><code>P*P</code></font>'.)
<p>
References: (1) Section 3.6 in Roger Daley, 1991, ``Atmospheric data
analysis,'' Cambridge Press, New York. (2) S. E. Koch and M. DesJardins
and P. J. Kocin, 1983. ``An interactive Barnes objective map anlaysis
scheme for use with satellite and conventional data,'', J. Climate Appl.
Met., vol 22, p. 1487-1503.
</ul>
<p>
The Barnes algorithm is as follows:
<p>
The gridded field is estimated iteratively. Successive iterations
retain largescale features from previous iterations, while adding
details at smaller scales.
<p>
The first estimate of the gridded field, here denoted
`<font color="#82140F"><code>G_(ij)^0</code></font>' (the superscript indicating the order of the
iteration) is given by a weighted sum of the input data, with
`<font color="#82140F"><code>z_k</code></font>' denoting the k-th `<font color="#82140F"><code>z</code></font>' value.
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
sum_1^n W_(ijk)^0 z_k
G_(ij)^(0) = ----------------------
sum_1^n W_(ijk)0
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
where the notation `<font color="#82140F"><code>sum_1^n</code></font>' means to sum the elements
for the `<font color="#82140F"><code>k</code></font>' index ranging from 1 to `<font color="#82140F"><code>n</code></font>'.
<p>
The weights `<font color="#82140F"><code>W_(ijk)^0</code></font>' are defined in terms of a Guassian
function decaying with distance from observation point to grid point:
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
( (x_k - X_i)^2 (y_k - Y_j)^2 )
W_(ijk)^0 = exp(- -------------- - --------------- )
( L_x^2 L_y^2 )
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
Here `<font color="#82140F"><code>L_x</code></font>' and `<font color="#82140F"><code>L_y</code></font>' are lengths which define the smallest
`<font color="#82140F"><code>(x,y)</code></font>' scales over which the gridded field will have significant
variations (for details of the spectral response see Koch et al. 1983).
<p>
Note: if the user has supplied weights then these
are applied in addition to the distance-based weights. That is,
`<font color="#82140F"><code>w_i W_(ijk)</code></font>' is used instead of `<font color="#82140F"><code>W_(ijk)</code></font>'.
<p>
The second iteration derives a grid `<font color="#82140F"><code>G_(ij)^1</code></font>' in terms of the
first grid `<font color="#82140F"><code>G_(ij)^0</code></font>' and ``analysis values'' `<font color="#82140F"><code>f_k^0</code></font>'
calculated at the `<font color="#82140F"><code>(x_k,y_k)</code></font>' using a formula analogous to that
above. (Interpolation based on the first estimate of the grid
`<font color="#82140F"><code>G_(ij)^0</code></font>' can also be used to calculate `<font color="#82140F"><code>f_k^0</code></font>', with
equivalent results for a grid of sufficiently fine mesh.) In this
iteration, however, the weighted average is based on the difference
between the data and the gridded field, so that no further adjustment
of the gridded field is done in regions where it is already close to
through the observed values. The second estimate of the gridded field
is given by
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
sum_1^n W_(ijk)^1 (f_k - f_k^0)
G_(ij)^1 = G_(ij)^0 + -------------------------------
sum_1^n W_(ijk)^1
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
where the weights `<font color="#82140F"><code>w_{ik,1}</code></font>' are defined by analogy
with `<font color="#82140F"><code>W_{ik}^0</code></font>' except that `<font color="#82140F"><code>L_x</code></font>' and `<font color="#82140F"><code>L_y</code></font>' are
replaced by `<font color="#82140F"><code>gamma^{1/2}L_x</code></font>' and `<font color="#82140F"><code>gamma^{1/2}L_y</code></font>'. The
nondimensional parameter `<font color="#82140F"><code>gamma</code></font>' (`<font color="#82140F"><code>0<gamma<1</code></font>') controls the
degree to which the focus is improved on the second iteration. Just
as the weighting function forced the gridded field to be smooth over
scales smaller than `<font color="#82140F"><code>L_x</code></font>' and `<font color="#82140F"><code>L_y</code></font>' on the first iteration,
so it forces the second estimate of the gridded field to be smooth
over the smaller scales `<font color="#82140F"><code>gamma^{1/2}L_x</code></font>' and
`<font color="#82140F"><code>gamma^{1/2}L_y</code></font>'.
<p>
The first iteration yields a gridded field which represents the
observations over scales larger than `<font color="#82140F"><code>(L_x,L_y)</code></font>', while successive
iterations fill in details at smaller scales, without greatly
modifying the larger scale field.
<p>
In principle, the iterative process may be continued an arbitrary number
of times, each time reducing the scale of variation in the gridded field
by the factor `<font color="#82140F"><code>gamma^{1/2}</code></font>'. Koch et al. 1983 suggest that there
is little utility in performing more than two iterations, providing an
appropriate choice of the focussing parameter `<font color="#82140F"><code>gamma</code></font>' has been made.
Thus the gridding procedure defines a gridded field based on three
tunable parameters: `<font color="#82140F"><code>(L_x,L_y,gamma)</code></font>'.
<p>
<!-- @node Convert Columns To Spline, Convert Grid To Columns, Convert Columns To Grid, Convert -->
<a name="ConvertColumnsToSpline" ></a>
<h4>9.3.4.2: `<font color="#82140F"><code>convert columns to spline</code></font>'</h4>
<!-- latex: \index{convert columns to spline} -->
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert columns to spline \
[.gamma.] \
[.xmin. .xmax. .xinc.]'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
Fit a normal or taut interpolating spline, y=y(x), through the (x,y)
data. Then subsample this spline to get a new set of (x,y) data. If
the spline x-values, `<font color="#82140F"><code>.xmin.</code></font>', etc, are not specified, the spline
ranges from the smallest x-value with legitimate data to the largest
one, with 200 steps in between.
<p>
The parameter `<font color="#82140F"><code>.gamma.</code></font>' determines the type of spline used. If
`<font color="#82140F"><code>.gamma.</code></font>' is not specified, or is given as zero, a standard
interpolating spline is used. A knot appears at each x location, with
cubic polynomials spanning the space between the knots. If
`<font color="#82140F"><code>.gamma.</code></font>' lies between 0 and 6, a taut spline is used; this tends
to have fewer wiggles than a normal spline. If `<font color="#82140F"><code>.gamma.</code></font>' lies in
the range 0 to 3, a taut spline is used, with the possible insertion of
knots between interior x pairs. The value 2.5 is used commonly. If
`<font color="#82140F"><code>.gamma.</code></font>' lies in the range 3 to 6, extra knots are permitted in
the x pairs at the ends of the domain. A value of 5.5 is used commonly.
<p>
<b>Reference</b> Chapter 16 of Carl de Boar, 1987. ``A Practical Guide
to Splines'' Springer-Verlag.
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
read columns x y # function is y=x^2
0 0
1 1
2 4
3 9
4 16
<p>
set symbol size 0.2
draw symbol bullet
convert columns to spline
draw curve
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
<!-- @node Convert Grid To Columns, Convert Grid To Image, Convert Columns To Spline, Convert -->
<a name="ConvertGridToColumns" ></a>
<h4>9.3.4.3: `<font color="#82140F"><code>convert grid to columns</code></font>'</h4>
<!-- latex: \index{convert grid to columns} -->
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert grid to columns'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
Create column data from grid data. Each non-missing gridpoint is
translated into a single (x,y,z) triplet. If column data already exist,
then they are first erased. This command is useful in changing the grid
configuration, perhaps from a non-uniform grid to a uniform grid. In
the following example, a new grid with x=(0, 0.05, 0.1, ..., 0.1) and
y=(10, 11, ..., 20) is created. The default gridding method
(`<font color="#82140F"><code>convert columns to grid</code></font>') is used here, but of course one is free
to adjust the method as usual.
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
# ... read/create grid
convert grid to columns
delete grid
set x grid 0 1 0.05
set y grid 10 20 1
convert columns to grid
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
<!-- @node Convert Grid To Image, Convert Image To Grid, Convert Grid To Columns, Convert -->
<a name="ConvertGridToImage" ></a>
<h4>9.3.4.4: `<font color="#82140F"><code>convert grid to image</code></font>'</h4>
<!-- latex: \index{convert grid to image} -->
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert grid to image [directly] [size .width. .height.] \
[box .xleft. .ybottom. .xright. .ytop.]'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
With no options specified, convert grid to a 128x128 image,
using an image range as previously set by `<font color="#82140F"><code>set image range</code></font>', and using
interpolation (see below).
<p>
With the `<font color="#82140F"><code>directly</code></font>' option, no interpolation is used; each grid
point is used to calculate the colour of a single image pixel. Since
images are always uniform in Gri, this will only work if the grid is
also uniform, i.e. there must be a constant distance between columns
in the grid, and the same for the rows. This method is useful for
fine-grained grids, especially if they contain isolated points (e.g. a
numerical model might have a trace of points representing a river).
<p>
With the `<font color="#82140F"><code>size</code></font>' options `<font color="#82140F"><code>.width.</code></font>' and `<font color="#82140F"><code>.height.</code></font>'
specified, they set the number of rectangular patches in the image.
Interpolation is used.
<p>
With the `<font color="#82140F"><code>box</code></font>' options specified, they set the bounding box for
the image. If `<font color="#82140F"><code>box</code></font>' is not given, the image spans the same
bounding box as the grid as set by `<font color="#82140F"><code>set x grid</code></font>' and `<font color="#82140F"><code>set y grid</code></font>'. Again, interpolation is used in this form.
<p>
Normally, missing values in the grid become white in the image, but this
can be changed using the `<font color="#82140F"><code>set image missing value color to</code></font>'...
command.
<p>
<b>Interpolation method:</b> The interpolation scheme is the same used for
contouring. Image points that lie outside the grid domain are
considered missing. For points within the grid, the first step is to
locate the patch of the grid upon which the pixel lies. Then the 4
neighboring grid points are examined, and one of the following cases
holds.
<ol>
<li>
If 3 or more of them are missing, the pixel is considered missing.
<li>
If just one of the neighboring grid points is missing, then the image
pixel value is determined by bilinear interpolation on the remaining 3
non-missing grid points. (This amounts to fitting a plane to three
measurements of height.)
<li>
If all 4 of the grid points are non-missing, then the rectangle defined
by the grid patch is subdivided into four triangles. The triangles are
defined by the two diagonal lines joining opposite corners of the
rectangle. An ``image point'' is constructed at the center of the grid
patch, with f(x,y) value taken to be the average of the values of the
four neighbors. This value is taken to be the value at the common
vertex of the four triangles, and then bilinear interpolation is used to
calculate the image pixel value.
</ol>
<p>
<!-- @node Convert Image To Grid, Create, Convert Grid To Image, Convert -->
<a name="ConvertImageToGrid" ></a>
<h4>9.3.4.5: `<font color="#82140F"><code>convert image to grid</code></font>'</h4>
<!-- latex: \index{convert image to grid} -->
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
`convert image to grid'
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
Convert image to grid, using current graylevel/colorlevel mapping. For
example, if one had a linear mapping of pixel values 0->255 into the
user values 10->20, as in
<p>
<TABLE SUMMARY="Example" BORDER="0" BGCOLOR="#efefef" WIDTH="100%">
<TR>
<TD>
<PRE>
<font color="#82140F">
set image range 10 20
set image grayscale black 10 white 20
</font></PRE>
</TD>
</TR>
</TABLE>
<p>
then the output grid will be of value 10 where the pixel value is 0,
etc. If the image is in color, the grid values will represent the
result of mapping the colors to grayscale in the standard way (Foley and
VanDam, 1984). [BUG: as of 1.063, the colorscale is ignored completely,
and I'm not sure what happens.] The image data are interpolated onto the
grid using a nearest-neighbor substitution. This command insists that
the image x/y grids have already been defined.
<p>
</table>
<img src="./resources/bottom_banner.gif" alt="navigation map" usemap="#navigate_bottom" border="0">
</body>
</html>
|