This file is indexed.

/usr/share/gocode/src/golang.org/x/text/unicode/bidi/core.go is in golang-golang-x-text-dev 0.0~git20170627.0.6353ef0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package bidi

import "log"

// This implementation is a port based on the reference implementation found at:
// http://www.unicode.org/Public/PROGRAMS/BidiReferenceJava/
//
// described in Unicode Bidirectional Algorithm (UAX #9).
//
// Input:
// There are two levels of input to the algorithm, since clients may prefer to
// supply some information from out-of-band sources rather than relying on the
// default behavior.
//
// - Bidi class array
// - Bidi class array, with externally supplied base line direction
//
// Output:
// Output is separated into several stages:
//
//  - levels array over entire paragraph
//  - reordering array over entire paragraph
//  - levels array over line
//  - reordering array over line
//
// Note that for conformance to the Unicode Bidirectional Algorithm,
// implementations are only required to generate correct reordering and
// character directionality (odd or even levels) over a line. Generating
// identical level arrays over a line is not required. Bidi explicit format
// codes (LRE, RLE, LRO, RLO, PDF) and BN can be assigned arbitrary levels and
// positions as long as the rest of the input is properly reordered.
//
// As the algorithm is defined to operate on a single paragraph at a time, this
// implementation is written to handle single paragraphs. Thus rule P1 is
// presumed by this implementation-- the data provided to the implementation is
// assumed to be a single paragraph, and either contains no 'B' codes, or a
// single 'B' code at the end of the input. 'B' is allowed as input to
// illustrate how the algorithm assigns it a level.
//
// Also note that rules L3 and L4 depend on the rendering engine that uses the
// result of the bidi algorithm. This implementation assumes that the rendering
// engine expects combining marks in visual order (e.g. to the left of their
// base character in RTL runs) and that it adjusts the glyphs used to render
// mirrored characters that are in RTL runs so that they render appropriately.

// level is the embedding level of a character. Even embedding levels indicate
// left-to-right order and odd levels indicate right-to-left order. The special
// level of -1 is reserved for undefined order.
type level int8

const implicitLevel level = -1

// in returns if x is equal to any of the values in set.
func (c Class) in(set ...Class) bool {
	for _, s := range set {
		if c == s {
			return true
		}
	}
	return false
}

// A paragraph contains the state of a paragraph.
type paragraph struct {
	initialTypes []Class

	// Arrays of properties needed for paired bracket evaluation in N0
	pairTypes  []bracketType // paired Bracket types for paragraph
	pairValues []rune        // rune for opening bracket or pbOpen and pbClose; 0 for pbNone

	embeddingLevel level // default: = implicitLevel;

	// at the paragraph levels
	resultTypes  []Class
	resultLevels []level

	// Index of matching PDI for isolate initiator characters. For other
	// characters, the value of matchingPDI will be set to -1. For isolate
	// initiators with no matching PDI, matchingPDI will be set to the length of
	// the input string.
	matchingPDI []int

	// Index of matching isolate initiator for PDI characters. For other
	// characters, and for PDIs with no matching isolate initiator, the value of
	// matchingIsolateInitiator will be set to -1.
	matchingIsolateInitiator []int
}

// newParagraph initializes a paragraph. The user needs to supply a few arrays
// corresponding to the preprocessed text input. The types correspond to the
// Unicode BiDi classes for each rune. pairTypes indicates the bracket type for
// each rune. pairValues provides a unique bracket class identifier for each
// rune (suggested is the rune of the open bracket for opening and matching
// close brackets, after normalization). The embedding levels are optional, but
// may be supplied to encode embedding levels of styled text.
//
// TODO: return an error.
func newParagraph(types []Class, pairTypes []bracketType, pairValues []rune, levels level) *paragraph {
	validateTypes(types)
	validatePbTypes(pairTypes)
	validatePbValues(pairValues, pairTypes)
	validateParagraphEmbeddingLevel(levels)

	p := &paragraph{
		initialTypes:   append([]Class(nil), types...),
		embeddingLevel: levels,

		pairTypes:  pairTypes,
		pairValues: pairValues,

		resultTypes: append([]Class(nil), types...),
	}
	p.run()
	return p
}

func (p *paragraph) Len() int { return len(p.initialTypes) }

// The algorithm. Does not include line-based processing (Rules L1, L2).
// These are applied later in the line-based phase of the algorithm.
func (p *paragraph) run() {
	p.determineMatchingIsolates()

	// 1) determining the paragraph level
	// Rule P1 is the requirement for entering this algorithm.
	// Rules P2, P3.
	// If no externally supplied paragraph embedding level, use default.
	if p.embeddingLevel == implicitLevel {
		p.embeddingLevel = p.determineParagraphEmbeddingLevel(0, p.Len())
	}

	// Initialize result levels to paragraph embedding level.
	p.resultLevels = make([]level, p.Len())
	setLevels(p.resultLevels, p.embeddingLevel)

	// 2) Explicit levels and directions
	// Rules X1-X8.
	p.determineExplicitEmbeddingLevels()

	// Rule X9.
	// We do not remove the embeddings, the overrides, the PDFs, and the BNs
	// from the string explicitly. But they are not copied into isolating run
	// sequences when they are created, so they are removed for all
	// practical purposes.

	// Rule X10.
	// Run remainder of algorithm one isolating run sequence at a time
	for _, seq := range p.determineIsolatingRunSequences() {
		// 3) resolving weak types
		// Rules W1-W7.
		seq.resolveWeakTypes()

		// 4a) resolving paired brackets
		// Rule N0
		resolvePairedBrackets(seq)

		// 4b) resolving neutral types
		// Rules N1-N3.
		seq.resolveNeutralTypes()

		// 5) resolving implicit embedding levels
		// Rules I1, I2.
		seq.resolveImplicitLevels()

		// Apply the computed levels and types
		seq.applyLevelsAndTypes()
	}

	// Assign appropriate levels to 'hide' LREs, RLEs, LROs, RLOs, PDFs, and
	// BNs. This is for convenience, so the resulting level array will have
	// a value for every character.
	p.assignLevelsToCharactersRemovedByX9()
}

// determineMatchingIsolates determines the matching PDI for each isolate
// initiator and vice versa.
//
// Definition BD9.
//
// At the end of this function:
//
//  - The member variable matchingPDI is set to point to the index of the
//    matching PDI character for each isolate initiator character. If there is
//    no matching PDI, it is set to the length of the input text. For other
//    characters, it is set to -1.
//  - The member variable matchingIsolateInitiator is set to point to the
//    index of the matching isolate initiator character for each PDI character.
//    If there is no matching isolate initiator, or the character is not a PDI,
//    it is set to -1.
func (p *paragraph) determineMatchingIsolates() {
	p.matchingPDI = make([]int, p.Len())
	p.matchingIsolateInitiator = make([]int, p.Len())

	for i := range p.matchingIsolateInitiator {
		p.matchingIsolateInitiator[i] = -1
	}

	for i := range p.matchingPDI {
		p.matchingPDI[i] = -1

		if t := p.resultTypes[i]; t.in(LRI, RLI, FSI) {
			depthCounter := 1
			for j := i + 1; j < p.Len(); j++ {
				if u := p.resultTypes[j]; u.in(LRI, RLI, FSI) {
					depthCounter++
				} else if u == PDI {
					if depthCounter--; depthCounter == 0 {
						p.matchingPDI[i] = j
						p.matchingIsolateInitiator[j] = i
						break
					}
				}
			}
			if p.matchingPDI[i] == -1 {
				p.matchingPDI[i] = p.Len()
			}
		}
	}
}

// determineParagraphEmbeddingLevel reports the resolved paragraph direction of
// the substring limited by the given range [start, end).
//
// Determines the paragraph level based on rules P2, P3. This is also used
// in rule X5c to find if an FSI should resolve to LRI or RLI.
func (p *paragraph) determineParagraphEmbeddingLevel(start, end int) level {
	var strongType Class = unknownClass

	// Rule P2.
	for i := start; i < end; i++ {
		if t := p.resultTypes[i]; t.in(L, AL, R) {
			strongType = t
			break
		} else if t.in(FSI, LRI, RLI) {
			i = p.matchingPDI[i] // skip over to the matching PDI
			if i > end {
				log.Panic("assert (i <= end)")
			}
		}
	}
	// Rule P3.
	switch strongType {
	case unknownClass: // none found
		// default embedding level when no strong types found is 0.
		return 0
	case L:
		return 0
	default: // AL, R
		return 1
	}
}

const maxDepth = 125

// This stack will store the embedding levels and override and isolated
// statuses
type directionalStatusStack struct {
	stackCounter        int
	embeddingLevelStack [maxDepth + 1]level
	overrideStatusStack [maxDepth + 1]Class
	isolateStatusStack  [maxDepth + 1]bool
}

func (s *directionalStatusStack) empty()     { s.stackCounter = 0 }
func (s *directionalStatusStack) pop()       { s.stackCounter-- }
func (s *directionalStatusStack) depth() int { return s.stackCounter }

func (s *directionalStatusStack) push(level level, overrideStatus Class, isolateStatus bool) {
	s.embeddingLevelStack[s.stackCounter] = level
	s.overrideStatusStack[s.stackCounter] = overrideStatus
	s.isolateStatusStack[s.stackCounter] = isolateStatus
	s.stackCounter++
}

func (s *directionalStatusStack) lastEmbeddingLevel() level {
	return s.embeddingLevelStack[s.stackCounter-1]
}

func (s *directionalStatusStack) lastDirectionalOverrideStatus() Class {
	return s.overrideStatusStack[s.stackCounter-1]
}

func (s *directionalStatusStack) lastDirectionalIsolateStatus() bool {
	return s.isolateStatusStack[s.stackCounter-1]
}

// Determine explicit levels using rules X1 - X8
func (p *paragraph) determineExplicitEmbeddingLevels() {
	var stack directionalStatusStack
	var overflowIsolateCount, overflowEmbeddingCount, validIsolateCount int

	// Rule X1.
	stack.push(p.embeddingLevel, ON, false)

	for i, t := range p.resultTypes {
		// Rules X2, X3, X4, X5, X5a, X5b, X5c
		switch t {
		case RLE, LRE, RLO, LRO, RLI, LRI, FSI:
			isIsolate := t.in(RLI, LRI, FSI)
			isRTL := t.in(RLE, RLO, RLI)

			// override if this is an FSI that resolves to RLI
			if t == FSI {
				isRTL = (p.determineParagraphEmbeddingLevel(i+1, p.matchingPDI[i]) == 1)
			}
			if isIsolate {
				p.resultLevels[i] = stack.lastEmbeddingLevel()
				if stack.lastDirectionalOverrideStatus() != ON {
					p.resultTypes[i] = stack.lastDirectionalOverrideStatus()
				}
			}

			var newLevel level
			if isRTL {
				// least greater odd
				newLevel = (stack.lastEmbeddingLevel() + 1) | 1
			} else {
				// least greater even
				newLevel = (stack.lastEmbeddingLevel() + 2) &^ 1
			}

			if newLevel <= maxDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0 {
				if isIsolate {
					validIsolateCount++
				}
				// Push new embedding level, override status, and isolated
				// status.
				// No check for valid stack counter, since the level check
				// suffices.
				switch t {
				case LRO:
					stack.push(newLevel, L, isIsolate)
				case RLO:
					stack.push(newLevel, R, isIsolate)
				default:
					stack.push(newLevel, ON, isIsolate)
				}
				// Not really part of the spec
				if !isIsolate {
					p.resultLevels[i] = newLevel
				}
			} else {
				// This is an invalid explicit formatting character,
				// so apply the "Otherwise" part of rules X2-X5b.
				if isIsolate {
					overflowIsolateCount++
				} else { // !isIsolate
					if overflowIsolateCount == 0 {
						overflowEmbeddingCount++
					}
				}
			}

		// Rule X6a
		case PDI:
			if overflowIsolateCount > 0 {
				overflowIsolateCount--
			} else if validIsolateCount == 0 {
				// do nothing
			} else {
				overflowEmbeddingCount = 0
				for !stack.lastDirectionalIsolateStatus() {
					stack.pop()
				}
				stack.pop()
				validIsolateCount--
			}
			p.resultLevels[i] = stack.lastEmbeddingLevel()

		// Rule X7
		case PDF:
			// Not really part of the spec
			p.resultLevels[i] = stack.lastEmbeddingLevel()

			if overflowIsolateCount > 0 {
				// do nothing
			} else if overflowEmbeddingCount > 0 {
				overflowEmbeddingCount--
			} else if !stack.lastDirectionalIsolateStatus() && stack.depth() >= 2 {
				stack.pop()
			}

		case B: // paragraph separator.
			// Rule X8.

			// These values are reset for clarity, in this implementation B
			// can only occur as the last code in the array.
			stack.empty()
			overflowIsolateCount = 0
			overflowEmbeddingCount = 0
			validIsolateCount = 0
			p.resultLevels[i] = p.embeddingLevel

		default:
			p.resultLevels[i] = stack.lastEmbeddingLevel()
			if stack.lastDirectionalOverrideStatus() != ON {
				p.resultTypes[i] = stack.lastDirectionalOverrideStatus()
			}
		}
	}
}

type isolatingRunSequence struct {
	p *paragraph

	indexes []int // indexes to the original string

	types          []Class // type of each character using the index
	resolvedLevels []level // resolved levels after application of rules
	level          level
	sos, eos       Class
}

func (i *isolatingRunSequence) Len() int { return len(i.indexes) }

func maxLevel(a, b level) level {
	if a > b {
		return a
	}
	return b
}

// Rule X10, second bullet: Determine the start-of-sequence (sos) and end-of-sequence (eos) types,
// 			 either L or R, for each isolating run sequence.
func (p *paragraph) isolatingRunSequence(indexes []int) *isolatingRunSequence {
	length := len(indexes)
	types := make([]Class, length)
	for i, x := range indexes {
		types[i] = p.resultTypes[x]
	}

	// assign level, sos and eos
	prevChar := indexes[0] - 1
	for prevChar >= 0 && isRemovedByX9(p.initialTypes[prevChar]) {
		prevChar--
	}
	prevLevel := p.embeddingLevel
	if prevChar >= 0 {
		prevLevel = p.resultLevels[prevChar]
	}

	var succLevel level
	lastType := types[length-1]
	if lastType.in(LRI, RLI, FSI) {
		succLevel = p.embeddingLevel
	} else {
		// the first character after the end of run sequence
		limit := indexes[length-1] + 1
		for ; limit < p.Len() && isRemovedByX9(p.initialTypes[limit]); limit++ {

		}
		succLevel = p.embeddingLevel
		if limit < p.Len() {
			succLevel = p.resultLevels[limit]
		}
	}
	level := p.resultLevels[indexes[0]]
	return &isolatingRunSequence{
		p:       p,
		indexes: indexes,
		types:   types,
		level:   level,
		sos:     typeForLevel(maxLevel(prevLevel, level)),
		eos:     typeForLevel(maxLevel(succLevel, level)),
	}
}

// Resolving weak types Rules W1-W7.
//
// Note that some weak types (EN, AN) remain after this processing is
// complete.
func (s *isolatingRunSequence) resolveWeakTypes() {

	// on entry, only these types remain
	s.assertOnly(L, R, AL, EN, ES, ET, AN, CS, B, S, WS, ON, NSM, LRI, RLI, FSI, PDI)

	// Rule W1.
	// Changes all NSMs.
	preceedingCharacterType := s.sos
	for i, t := range s.types {
		if t == NSM {
			s.types[i] = preceedingCharacterType
		} else {
			if t.in(LRI, RLI, FSI, PDI) {
				preceedingCharacterType = ON
			}
			preceedingCharacterType = t
		}
	}

	// Rule W2.
	// EN does not change at the start of the run, because sos != AL.
	for i, t := range s.types {
		if t == EN {
			for j := i - 1; j >= 0; j-- {
				if t := s.types[j]; t.in(L, R, AL) {
					if t == AL {
						s.types[i] = AN
					}
					break
				}
			}
		}
	}

	// Rule W3.
	for i, t := range s.types {
		if t == AL {
			s.types[i] = R
		}
	}

	// Rule W4.
	// Since there must be values on both sides for this rule to have an
	// effect, the scan skips the first and last value.
	//
	// Although the scan proceeds left to right, and changes the type
	// values in a way that would appear to affect the computations
	// later in the scan, there is actually no problem. A change in the
	// current value can only affect the value to its immediate right,
	// and only affect it if it is ES or CS. But the current value can
	// only change if the value to its right is not ES or CS. Thus
	// either the current value will not change, or its change will have
	// no effect on the remainder of the analysis.

	for i := 1; i < s.Len()-1; i++ {
		t := s.types[i]
		if t == ES || t == CS {
			prevSepType := s.types[i-1]
			succSepType := s.types[i+1]
			if prevSepType == EN && succSepType == EN {
				s.types[i] = EN
			} else if s.types[i] == CS && prevSepType == AN && succSepType == AN {
				s.types[i] = AN
			}
		}
	}

	// Rule W5.
	for i, t := range s.types {
		if t == ET {
			// locate end of sequence
			runStart := i
			runEnd := s.findRunLimit(runStart, ET)

			// check values at ends of sequence
			t := s.sos
			if runStart > 0 {
				t = s.types[runStart-1]
			}
			if t != EN {
				t = s.eos
				if runEnd < len(s.types) {
					t = s.types[runEnd]
				}
			}
			if t == EN {
				setTypes(s.types[runStart:runEnd], EN)
			}
			// continue at end of sequence
			i = runEnd
		}
	}

	// Rule W6.
	for i, t := range s.types {
		if t.in(ES, ET, CS) {
			s.types[i] = ON
		}
	}

	// Rule W7.
	for i, t := range s.types {
		if t == EN {
			// set default if we reach start of run
			prevStrongType := s.sos
			for j := i - 1; j >= 0; j-- {
				t = s.types[j]
				if t == L || t == R { // AL's have been changed to R
					prevStrongType = t
					break
				}
			}
			if prevStrongType == L {
				s.types[i] = L
			}
		}
	}
}

// 6) resolving neutral types Rules N1-N2.
func (s *isolatingRunSequence) resolveNeutralTypes() {

	// on entry, only these types can be in resultTypes
	s.assertOnly(L, R, EN, AN, B, S, WS, ON, RLI, LRI, FSI, PDI)

	for i, t := range s.types {
		switch t {
		case WS, ON, B, S, RLI, LRI, FSI, PDI:
			// find bounds of run of neutrals
			runStart := i
			runEnd := s.findRunLimit(runStart, B, S, WS, ON, RLI, LRI, FSI, PDI)

			// determine effective types at ends of run
			var leadType, trailType Class

			// Note that the character found can only be L, R, AN, or
			// EN.
			if runStart == 0 {
				leadType = s.sos
			} else {
				leadType = s.types[runStart-1]
				if leadType.in(AN, EN) {
					leadType = R
				}
			}
			if runEnd == len(s.types) {
				trailType = s.eos
			} else {
				trailType = s.types[runEnd]
				if trailType.in(AN, EN) {
					trailType = R
				}
			}

			var resolvedType Class
			if leadType == trailType {
				// Rule N1.
				resolvedType = leadType
			} else {
				// Rule N2.
				// Notice the embedding level of the run is used, not
				// the paragraph embedding level.
				resolvedType = typeForLevel(s.level)
			}

			setTypes(s.types[runStart:runEnd], resolvedType)

			// skip over run of (former) neutrals
			i = runEnd
		}
	}
}

func setLevels(levels []level, newLevel level) {
	for i := range levels {
		levels[i] = newLevel
	}
}

func setTypes(types []Class, newType Class) {
	for i := range types {
		types[i] = newType
	}
}

// 7) resolving implicit embedding levels Rules I1, I2.
func (s *isolatingRunSequence) resolveImplicitLevels() {

	// on entry, only these types can be in resultTypes
	s.assertOnly(L, R, EN, AN)

	s.resolvedLevels = make([]level, len(s.types))
	setLevels(s.resolvedLevels, s.level)

	if (s.level & 1) == 0 { // even level
		for i, t := range s.types {
			// Rule I1.
			if t == L {
				// no change
			} else if t == R {
				s.resolvedLevels[i] += 1
			} else { // t == AN || t == EN
				s.resolvedLevels[i] += 2
			}
		}
	} else { // odd level
		for i, t := range s.types {
			// Rule I2.
			if t == R {
				// no change
			} else { // t == L || t == AN || t == EN
				s.resolvedLevels[i] += 1
			}
		}
	}
}

// Applies the levels and types resolved in rules W1-I2 to the
// resultLevels array.
func (s *isolatingRunSequence) applyLevelsAndTypes() {
	for i, x := range s.indexes {
		s.p.resultTypes[x] = s.types[i]
		s.p.resultLevels[x] = s.resolvedLevels[i]
	}
}

// Return the limit of the run consisting only of the types in validSet
// starting at index. This checks the value at index, and will return
// index if that value is not in validSet.
func (s *isolatingRunSequence) findRunLimit(index int, validSet ...Class) int {
loop:
	for ; index < len(s.types); index++ {
		t := s.types[index]
		for _, valid := range validSet {
			if t == valid {
				continue loop
			}
		}
		return index // didn't find a match in validSet
	}
	return len(s.types)
}

// Algorithm validation. Assert that all values in types are in the
// provided set.
func (s *isolatingRunSequence) assertOnly(codes ...Class) {
loop:
	for i, t := range s.types {
		for _, c := range codes {
			if t == c {
				continue loop
			}
		}
		log.Panicf("invalid bidi code %v present in assertOnly at position %d", t, s.indexes[i])
	}
}

// determineLevelRuns returns an array of level runs. Each level run is
// described as an array of indexes into the input string.
//
// Determines the level runs. Rule X9 will be applied in determining the
// runs, in the way that makes sure the characters that are supposed to be
// removed are not included in the runs.
func (p *paragraph) determineLevelRuns() [][]int {
	run := []int{}
	allRuns := [][]int{}
	currentLevel := implicitLevel

	for i := range p.initialTypes {
		if !isRemovedByX9(p.initialTypes[i]) {
			if p.resultLevels[i] != currentLevel {
				// we just encountered a new run; wrap up last run
				if currentLevel >= 0 { // only wrap it up if there was a run
					allRuns = append(allRuns, run)
					run = nil
				}
				// Start new run
				currentLevel = p.resultLevels[i]
			}
			run = append(run, i)
		}
	}
	// Wrap up the final run, if any
	if len(run) > 0 {
		allRuns = append(allRuns, run)
	}
	return allRuns
}

// Definition BD13. Determine isolating run sequences.
func (p *paragraph) determineIsolatingRunSequences() []*isolatingRunSequence {
	levelRuns := p.determineLevelRuns()

	// Compute the run that each character belongs to
	runForCharacter := make([]int, p.Len())
	for i, run := range levelRuns {
		for _, index := range run {
			runForCharacter[index] = i
		}
	}

	sequences := []*isolatingRunSequence{}

	var currentRunSequence []int

	for _, run := range levelRuns {
		first := run[0]
		if p.initialTypes[first] != PDI || p.matchingIsolateInitiator[first] == -1 {
			currentRunSequence = nil
			// int run = i;
			for {
				// Copy this level run into currentRunSequence
				currentRunSequence = append(currentRunSequence, run...)

				last := currentRunSequence[len(currentRunSequence)-1]
				lastT := p.initialTypes[last]
				if lastT.in(LRI, RLI, FSI) && p.matchingPDI[last] != p.Len() {
					run = levelRuns[runForCharacter[p.matchingPDI[last]]]
				} else {
					break
				}
			}
			sequences = append(sequences, p.isolatingRunSequence(currentRunSequence))
		}
	}
	return sequences
}

// Assign level information to characters removed by rule X9. This is for
// ease of relating the level information to the original input data. Note
// that the levels assigned to these codes are arbitrary, they're chosen so
// as to avoid breaking level runs.
func (p *paragraph) assignLevelsToCharactersRemovedByX9() {
	for i, t := range p.initialTypes {
		if t.in(LRE, RLE, LRO, RLO, PDF, BN) {
			p.resultTypes[i] = t
			p.resultLevels[i] = -1
		}
	}
	// now propagate forward the levels information (could have
	// propagated backward, the main thing is not to introduce a level
	// break where one doesn't already exist).

	if p.resultLevels[0] == -1 {
		p.resultLevels[0] = p.embeddingLevel
	}
	for i := 1; i < len(p.initialTypes); i++ {
		if p.resultLevels[i] == -1 {
			p.resultLevels[i] = p.resultLevels[i-1]
		}
	}
	// Embedding information is for informational purposes only so need not be
	// adjusted.
}

//
// Output
//

// getLevels computes levels array breaking lines at offsets in linebreaks.
// Rule L1.
//
// The linebreaks array must include at least one value. The values must be
// in strictly increasing order (no duplicates) between 1 and the length of
// the text, inclusive. The last value must be the length of the text.
func (p *paragraph) getLevels(linebreaks []int) []level {
	// Note that since the previous processing has removed all
	// P, S, and WS values from resultTypes, the values referred to
	// in these rules are the initial types, before any processing
	// has been applied (including processing of overrides).
	//
	// This example implementation has reinserted explicit format codes
	// and BN, in order that the levels array correspond to the
	// initial text. Their final placement is not normative.
	// These codes are treated like WS in this implementation,
	// so they don't interrupt sequences of WS.

	validateLineBreaks(linebreaks, p.Len())

	result := append([]level(nil), p.resultLevels...)

	// don't worry about linebreaks since if there is a break within
	// a series of WS values preceding S, the linebreak itself
	// causes the reset.
	for i, t := range p.initialTypes {
		if t.in(B, S) {
			// Rule L1, clauses one and two.
			result[i] = p.embeddingLevel

			// Rule L1, clause three.
			for j := i - 1; j >= 0; j-- {
				if isWhitespace(p.initialTypes[j]) { // including format codes
					result[j] = p.embeddingLevel
				} else {
					break
				}
			}
		}
	}

	// Rule L1, clause four.
	start := 0
	for _, limit := range linebreaks {
		for j := limit - 1; j >= start; j-- {
			if isWhitespace(p.initialTypes[j]) { // including format codes
				result[j] = p.embeddingLevel
			} else {
				break
			}
		}
		start = limit
	}

	return result
}

// getReordering returns the reordering of lines from a visual index to a
// logical index for line breaks at the given offsets.
//
// Lines are concatenated from left to right. So for example, the fifth
// character from the left on the third line is
//
// 		getReordering(linebreaks)[linebreaks[1] + 4]
//
// (linebreaks[1] is the position after the last character of the second
// line, which is also the index of the first character on the third line,
// and adding four gets the fifth character from the left).
//
// The linebreaks array must include at least one value. The values must be
// in strictly increasing order (no duplicates) between 1 and the length of
// the text, inclusive. The last value must be the length of the text.
func (p *paragraph) getReordering(linebreaks []int) []int {
	validateLineBreaks(linebreaks, p.Len())

	return computeMultilineReordering(p.getLevels(linebreaks), linebreaks)
}

// Return multiline reordering array for a given level array. Reordering
// does not occur across a line break.
func computeMultilineReordering(levels []level, linebreaks []int) []int {
	result := make([]int, len(levels))

	start := 0
	for _, limit := range linebreaks {
		tempLevels := make([]level, limit-start)
		copy(tempLevels, levels[start:])

		for j, order := range computeReordering(tempLevels) {
			result[start+j] = order + start
		}
		start = limit
	}
	return result
}

// Return reordering array for a given level array. This reorders a single
// line. The reordering is a visual to logical map. For example, the
// leftmost char is string.charAt(order[0]). Rule L2.
func computeReordering(levels []level) []int {
	result := make([]int, len(levels))
	// initialize order
	for i := range result {
		result[i] = i
	}

	// locate highest level found on line.
	// Note the rules say text, but no reordering across line bounds is
	// performed, so this is sufficient.
	highestLevel := level(0)
	lowestOddLevel := level(maxDepth + 2)
	for _, level := range levels {
		if level > highestLevel {
			highestLevel = level
		}
		if level&1 != 0 && level < lowestOddLevel {
			lowestOddLevel = level
		}
	}

	for level := highestLevel; level >= lowestOddLevel; level-- {
		for i := 0; i < len(levels); i++ {
			if levels[i] >= level {
				// find range of text at or above this level
				start := i
				limit := i + 1
				for limit < len(levels) && levels[limit] >= level {
					limit++
				}

				for j, k := start, limit-1; j < k; j, k = j+1, k-1 {
					result[j], result[k] = result[k], result[j]
				}
				// skip to end of level run
				i = limit
			}
		}
	}

	return result
}

// isWhitespace reports whether the type is considered a whitespace type for the
// line break rules.
func isWhitespace(c Class) bool {
	switch c {
	case LRE, RLE, LRO, RLO, PDF, LRI, RLI, FSI, PDI, BN, WS:
		return true
	}
	return false
}

// isRemovedByX9 reports whether the type is one of the types removed in X9.
func isRemovedByX9(c Class) bool {
	switch c {
	case LRE, RLE, LRO, RLO, PDF, BN:
		return true
	}
	return false
}

// typeForLevel reports the strong type (L or R) corresponding to the level.
func typeForLevel(level level) Class {
	if (level & 0x1) == 0 {
		return L
	}
	return R
}

// TODO: change validation to not panic

func validateTypes(types []Class) {
	if len(types) == 0 {
		log.Panic("types is null")
	}
	for i, t := range types[:len(types)-1] {
		if t == B {
			log.Panicf("B type before end of paragraph at index: %d", i)
		}
	}
}

func validateParagraphEmbeddingLevel(embeddingLevel level) {
	if embeddingLevel != implicitLevel &&
		embeddingLevel != 0 &&
		embeddingLevel != 1 {
		log.Panicf("illegal paragraph embedding level: %d", embeddingLevel)
	}
}

func validateLineBreaks(linebreaks []int, textLength int) {
	prev := 0
	for i, next := range linebreaks {
		if next <= prev {
			log.Panicf("bad linebreak: %d at index: %d", next, i)
		}
		prev = next
	}
	if prev != textLength {
		log.Panicf("last linebreak was %d, want %d", prev, textLength)
	}
}

func validatePbTypes(pairTypes []bracketType) {
	if len(pairTypes) == 0 {
		log.Panic("pairTypes is null")
	}
	for i, pt := range pairTypes {
		switch pt {
		case bpNone, bpOpen, bpClose:
		default:
			log.Panicf("illegal pairType value at %d: %v", i, pairTypes[i])
		}
	}
}

func validatePbValues(pairValues []rune, pairTypes []bracketType) {
	if pairValues == nil {
		log.Panic("pairValues is null")
	}
	if len(pairTypes) != len(pairValues) {
		log.Panic("pairTypes is different length from pairValues")
	}
}