This file is indexed.

/usr/share/gocode/src/github.com/hashicorp/hil/eval.go is in golang-github-hashicorp-hil-dev 0.0~git20160711.1e86c6b-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
package hil

import (
	"bytes"
	"fmt"
	"sync"

	"github.com/hashicorp/hil/ast"
)

// EvalConfig is the configuration for evaluating.
type EvalConfig struct {
	// GlobalScope is the global scope of execution for evaluation.
	GlobalScope *ast.BasicScope

	// SemanticChecks is a list of additional semantic checks that will be run
	// on the tree prior to evaluating it. The type checker, identifier checker,
	// etc. will be run before these automatically.
	SemanticChecks []SemanticChecker
}

// SemanticChecker is the type that must be implemented to do a
// semantic check on an AST tree. This will be called with the root node.
type SemanticChecker func(ast.Node) error

// EvalType represents the type of the output returned from a HIL
// evaluation.
type EvalType uint32

const (
	TypeInvalid EvalType = 0
	TypeString  EvalType = 1 << iota
	TypeList
	TypeMap
)

//go:generate stringer -type=EvalType

// EvaluationResult is a struct returned from the hil.Eval function,
// representing the result of an interpolation. Results are returned in their
// "natural" Go structure rather than in terms of the HIL AST.  For the types
// currently implemented, this means that the Value field can be interpreted as
// the following Go types:
//     TypeInvalid: undefined
//     TypeString:  string
//     TypeList:    []interface{}
//     TypeMap:     map[string]interface{}
type EvaluationResult struct {
	Type  EvalType
	Value interface{}
}

// InvalidResult is a structure representing the result of a HIL interpolation
// which has invalid syntax, missing variables, or some other type of error.
// The error is described out of band in the accompanying error return value.
var InvalidResult = EvaluationResult{Type: TypeInvalid, Value: nil}

func Eval(root ast.Node, config *EvalConfig) (EvaluationResult, error) {
	output, outputType, err := internalEval(root, config)
	if err != nil {
		return InvalidResult, err
	}

	switch outputType {
	case ast.TypeList:
		val, err := VariableToInterface(ast.Variable{
			Type:  ast.TypeList,
			Value: output,
		})
		return EvaluationResult{
			Type:  TypeList,
			Value: val,
		}, err
	case ast.TypeMap:
		val, err := VariableToInterface(ast.Variable{
			Type:  ast.TypeMap,
			Value: output,
		})
		return EvaluationResult{
			Type: TypeMap,
			Value: val,
		}, err
	case ast.TypeString:
		return EvaluationResult{
			Type:  TypeString,
			Value: output,
		}, nil
	default:
		return InvalidResult, fmt.Errorf("unknown type %s as interpolation output", outputType)
	}
}

// Eval evaluates the given AST tree and returns its output value, the type
// of the output, and any error that occurred.
func internalEval(root ast.Node, config *EvalConfig) (interface{}, ast.Type, error) {
	// Copy the scope so we can add our builtins
	if config == nil {
		config = new(EvalConfig)
	}
	scope := registerBuiltins(config.GlobalScope)
	implicitMap := map[ast.Type]map[ast.Type]string{
		ast.TypeFloat: {
			ast.TypeInt:    "__builtin_FloatToInt",
			ast.TypeString: "__builtin_FloatToString",
		},
		ast.TypeInt: {
			ast.TypeFloat:  "__builtin_IntToFloat",
			ast.TypeString: "__builtin_IntToString",
		},
		ast.TypeString: {
			ast.TypeInt:   "__builtin_StringToInt",
			ast.TypeFloat: "__builtin_StringToFloat",
		},
	}

	// Build our own semantic checks that we always run
	tv := &TypeCheck{Scope: scope, Implicit: implicitMap}
	ic := &IdentifierCheck{Scope: scope}

	// Build up the semantic checks for execution
	checks := make(
		[]SemanticChecker,
		len(config.SemanticChecks),
		len(config.SemanticChecks)+2)
	copy(checks, config.SemanticChecks)
	checks = append(checks, ic.Visit)
	checks = append(checks, tv.Visit)

	// Run the semantic checks
	for _, check := range checks {
		if err := check(root); err != nil {
			return nil, ast.TypeInvalid, err
		}
	}

	// Execute
	v := &evalVisitor{Scope: scope}
	return v.Visit(root)
}

// EvalNode is the interface that must be implemented by any ast.Node
// to support evaluation. This will be called in visitor pattern order.
// The result of each call to Eval is automatically pushed onto the
// stack as a LiteralNode. Pop elements off the stack to get child
// values.
type EvalNode interface {
	Eval(ast.Scope, *ast.Stack) (interface{}, ast.Type, error)
}

type evalVisitor struct {
	Scope ast.Scope
	Stack ast.Stack

	err  error
	lock sync.Mutex
}

func (v *evalVisitor) Visit(root ast.Node) (interface{}, ast.Type, error) {
	// Run the actual visitor pattern
	root.Accept(v.visit)

	// Get our result and clear out everything else
	var result *ast.LiteralNode
	if v.Stack.Len() > 0 {
		result = v.Stack.Pop().(*ast.LiteralNode)
	} else {
		result = new(ast.LiteralNode)
	}
	resultErr := v.err

	// Clear everything else so we aren't just dangling
	v.Stack.Reset()
	v.err = nil

	t, err := result.Type(v.Scope)
	if err != nil {
		return nil, ast.TypeInvalid, err
	}

	return result.Value, t, resultErr
}

func (v *evalVisitor) visit(raw ast.Node) ast.Node {
	if v.err != nil {
		return raw
	}

	en, err := evalNode(raw)
	if err != nil {
		v.err = err
		return raw
	}

	out, outType, err := en.Eval(v.Scope, &v.Stack)
	if err != nil {
		v.err = err
		return raw
	}

	v.Stack.Push(&ast.LiteralNode{
		Value: out,
		Typex: outType,
	})
	return raw
}

// evalNode is a private function that returns an EvalNode for built-in
// types as well as any other EvalNode implementations.
func evalNode(raw ast.Node) (EvalNode, error) {
	switch n := raw.(type) {
	case *ast.Index:
		return &evalIndex{n}, nil
	case *ast.Call:
		return &evalCall{n}, nil
	case *ast.Output:
		return &evalOutput{n}, nil
	case *ast.LiteralNode:
		return &evalLiteralNode{n}, nil
	case *ast.VariableAccess:
		return &evalVariableAccess{n}, nil
	default:
		en, ok := n.(EvalNode)
		if !ok {
			return nil, fmt.Errorf("node doesn't support evaluation: %#v", raw)
		}

		return en, nil
	}
}

type evalCall struct{ *ast.Call }

func (v *evalCall) Eval(s ast.Scope, stack *ast.Stack) (interface{}, ast.Type, error) {
	// Look up the function in the map
	function, ok := s.LookupFunc(v.Func)
	if !ok {
		return nil, ast.TypeInvalid, fmt.Errorf(
			"unknown function called: %s", v.Func)
	}

	// The arguments are on the stack in reverse order, so pop them off.
	args := make([]interface{}, len(v.Args))
	for i, _ := range v.Args {
		node := stack.Pop().(*ast.LiteralNode)
		args[len(v.Args)-1-i] = node.Value
	}

	// Call the function
	result, err := function.Callback(args)
	if err != nil {
		return nil, ast.TypeInvalid, fmt.Errorf("%s: %s", v.Func, err)
	}

	return result, function.ReturnType, nil
}

type evalIndex struct{ *ast.Index }

func (v *evalIndex) Eval(scope ast.Scope, stack *ast.Stack) (interface{}, ast.Type, error) {
	evalVarAccess, err := evalNode(v.Target)
	if err != nil {
		return nil, ast.TypeInvalid, err
	}
	target, targetType, err := evalVarAccess.Eval(scope, stack)

	evalKey, err := evalNode(v.Key)
	if err != nil {
		return nil, ast.TypeInvalid, err
	}

	key, keyType, err := evalKey.Eval(scope, stack)
	if err != nil {
		return nil, ast.TypeInvalid, err
	}

	variableName := v.Index.Target.(*ast.VariableAccess).Name

	switch targetType {
	case ast.TypeList:
		if keyType != ast.TypeInt {
			return nil, ast.TypeInvalid, fmt.Errorf("key for indexing list %q must be an int, is %s", variableName, keyType)
		}

		return v.evalListIndex(variableName, target, key)
	case ast.TypeMap:
		if keyType != ast.TypeString {
			return nil, ast.TypeInvalid, fmt.Errorf("key for indexing map %q must be a string, is %s", variableName, keyType)
		}

		return v.evalMapIndex(variableName, target, key)
	default:
		return nil, ast.TypeInvalid, fmt.Errorf("target %q for indexing must be ast.TypeList or ast.TypeMap, is %s", variableName, targetType)
	}
}

func (v *evalIndex) evalListIndex(variableName string, target interface{}, key interface{}) (interface{}, ast.Type, error) {
	// We assume type checking was already done and we can assume that target
	// is a list and key is an int
	list, ok := target.([]ast.Variable)
	if !ok {
		return nil, ast.TypeInvalid, fmt.Errorf("cannot cast target to []Variable")
	}

	keyInt, ok := key.(int)
	if !ok {
		return nil, ast.TypeInvalid, fmt.Errorf("cannot cast key to int")
	}

	if len(list) == 0 {
		return nil, ast.TypeInvalid, fmt.Errorf("list is empty")
	}

	if keyInt < 0 || len(list) < keyInt+1 {
		return nil, ast.TypeInvalid, fmt.Errorf("index %d out of range for list %s (max %d)", keyInt, variableName, len(list))
	}

	returnVal := list[keyInt].Value
	returnType := list[keyInt].Type

	return returnVal, returnType, nil
}

func (v *evalIndex) evalMapIndex(variableName string, target interface{}, key interface{}) (interface{}, ast.Type, error) {
	// We assume type checking was already done and we can assume that target
	// is a map and key is a string
	vmap, ok := target.(map[string]ast.Variable)
	if !ok {
		return nil, ast.TypeInvalid, fmt.Errorf("cannot cast target to map[string]Variable")
	}

	keyString, ok := key.(string)
	if !ok {
		return nil, ast.TypeInvalid, fmt.Errorf("cannot cast key to string")
	}

	if len(vmap) == 0 {
		return nil, ast.TypeInvalid, fmt.Errorf("map is empty")
	}

	value, ok := vmap[keyString]
	if !ok {
		return nil, ast.TypeInvalid, fmt.Errorf("key %q does not exist in map %s", keyString, variableName)
	}

	return value.Value, value.Type, nil
}

type evalOutput struct{ *ast.Output }

func (v *evalOutput) Eval(s ast.Scope, stack *ast.Stack) (interface{}, ast.Type, error) {
	// The expressions should all be on the stack in reverse
	// order. So pop them off, reverse their order, and concatenate.
	nodes := make([]*ast.LiteralNode, 0, len(v.Exprs))
	for range v.Exprs {
		nodes = append(nodes, stack.Pop().(*ast.LiteralNode))
	}

	// Special case the single list and map
	if len(nodes) == 1 && nodes[0].Typex == ast.TypeList {
		return nodes[0].Value, ast.TypeList, nil
	}
	if len(nodes) == 1 && nodes[0].Typex == ast.TypeMap {
		return nodes[0].Value, ast.TypeMap, nil
	}

	// Otherwise concatenate the strings
	var buf bytes.Buffer
	for i := len(nodes) - 1; i >= 0; i-- {
		buf.WriteString(nodes[i].Value.(string))
	}

	return buf.String(), ast.TypeString, nil
}

type evalLiteralNode struct{ *ast.LiteralNode }

func (v *evalLiteralNode) Eval(ast.Scope, *ast.Stack) (interface{}, ast.Type, error) {
	return v.Value, v.Typex, nil
}

type evalVariableAccess struct{ *ast.VariableAccess }

func (v *evalVariableAccess) Eval(scope ast.Scope, _ *ast.Stack) (interface{}, ast.Type, error) {
	// Look up the variable in the map
	variable, ok := scope.LookupVar(v.Name)
	if !ok {
		return nil, ast.TypeInvalid, fmt.Errorf(
			"unknown variable accessed: %s", v.Name)
	}

	return variable.Value, variable.Type, nil
}