This file is indexed.

/usr/share/gocode/src/github.com/couchbase/moss/iterator.go is in golang-github-couchbase-moss-dev 0.0~git20170914.0.07c86e8-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
//  Copyright (c) 2016 Couchbase, Inc.
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the
//  License. You may obtain a copy of the License at
//    http://www.apache.org/licenses/LICENSE-2.0
//  Unless required by applicable law or agreed to in writing,
//  software distributed under the License is distributed on an "AS
//  IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
//  express or implied. See the License for the specific language
//  governing permissions and limitations under the License.

package moss

import (
	"bytes"
	"container/heap"
	"io"
)

// DefaultNaiveSeekToMaxTries is the max number of attempts a forward
// iterator.SeekTo() will loop using simple Next()'s before giving up
// and starting a binary search for a given, forward seekToKey.
var DefaultNaiveSeekToMaxTries = 100

// An iterator tracks a min-heap "scan-line" of cursors through a
// segmentStack.  Iterator implements the sort.Interface and
// heap.Interface on its cursors.
type iterator struct {
	ss *segmentStack

	cursors []*cursor // The len(cursors) <= len(ss.a) (+1 when lowerLevelIter).

	startKeyInclusive []byte
	endKeyExclusive   []byte

	prefixLen int

	lowerLevelIter Iterator // May be nil.

	closer io.Closer

	iteratorOptions IteratorOptions
}

// A cursor rerpresents a logical entry position inside a segment in a
// segmentStack.  An ssIndex < 0 and pos < 0 mean that the op/k/v came
// from the lowerLevelIter.
type cursor struct {
	ssIndex int // Index into Iterator.ss.a.
	sc      SegmentCursor

	op uint64
	k  []byte
	v  []byte
}

// StartIterator returns a new iterator on the given segmentStack.
//
// On success, the returned Iterator will be positioned so that
// Iterator.Current() will either provide the first entry in the
// iteration range or ErrIteratorDone.
//
// A startKeyInclusive of nil means the logical "bottom-most" possible
// key and an endKeyExclusive of nil means the logical "top-most"
// possible key.
//
// StartIterator can optionally include deletion operations in the
// enumeration via the IteratorOptions.IncludeDeletions flag.
//
// StartIterator can skip lower segments, via the
// IteratorOptions.MinSegmentLevel parameter.  For example, to ignore
// the lowest, 0th segment, use MinSegmentLevel of 1.
func (ss *segmentStack) StartIterator(
	startKeyInclusive, endKeyExclusive []byte,
	iteratorOptions IteratorOptions) (Iterator, error) {
	iter, err :=
		ss.startIterator(startKeyInclusive, endKeyExclusive, iteratorOptions)
	if err != nil {
		return nil, err
	}

	return iter.optimize()
}

// startIterator() returns a new iterator on the given segmentStack.
//
// On success, the returned Iterator will be positioned so that
// Iterator.Current() will either provide the first entry in the
// iteration range or ErrIteratorDone.
//
// A startKeyInclusive of nil means the logical "bottom-most" possible
// key and an endKeyExclusive of nil means the logical "top-most"
// possible key.
//
// startIterator() can optionally include deletion operations in the
// enumeration via the IteratorOptions.IncludeDeletions flag.
//
// startIterator() can skip lower segments, via the
// IteratorOptions.MinSegmentLevel parameter.  For example, to ignore
// the lowest, 0th segment, use MinSegmentLevel of 1.
func (ss *segmentStack) startIterator(
	startKeyInclusive, endKeyExclusive []byte,
	iteratorOptions IteratorOptions) (*iterator, error) {
	if iteratorOptions.MaxSegmentHeight <= 0 {
		iteratorOptions.MaxSegmentHeight = len(ss.a)
	}

	prefixLen := 0
	if len(startKeyInclusive) > 0 &&
		len(endKeyExclusive) > 0 {
		prefixLen = sharedPrefixLen(startKeyInclusive, endKeyExclusive)
	}

	iter := &iterator{
		ss:      ss,
		cursors: make([]*cursor, 0, len(ss.a)+1),

		startKeyInclusive: startKeyInclusive,
		endKeyExclusive:   endKeyExclusive,

		prefixLen: prefixLen,

		iteratorOptions: iteratorOptions,
	}

	// ----------------------------------------------
	// Add cursors for our allowed segments.

	minSegmentLevel := iteratorOptions.MinSegmentLevel
	maxSegmentLevel := iteratorOptions.MaxSegmentHeight - 1

	ss.ensureSorted(minSegmentLevel, maxSegmentLevel)

	for ssIndex := minSegmentLevel; ssIndex <= maxSegmentLevel; ssIndex++ {
		b := ss.a[ssIndex]

		sc, err := b.Cursor(startKeyInclusive, endKeyExclusive)
		if err != nil {
			return nil, err
		}
		op, k, v := sc.Current()
		if op == 0 && k == nil && v == nil {
			continue
		}

		iter.cursors = append(iter.cursors, &cursor{
			ssIndex: ssIndex,
			sc:      sc,
			op:      op,
			k:       k,
			v:       v,
		})
	}

	// ----------------------------------------------
	// Add cursor for the lower level, if wanted.

	if !iteratorOptions.SkipLowerLevel &&
		ss.lowerLevelSnapshot != nil {
		llss := ss.lowerLevelSnapshot.addRef()
		if llss != nil {
			lowerLevelIter, err := llss.StartIterator(
				startKeyInclusive, endKeyExclusive, IteratorOptions{})

			llss.decRef()

			if err != nil {
				return nil, err
			}

			if lowerLevelIter != nil {
				k, v, err := lowerLevelIter.Current()
				if err != nil && err != ErrIteratorDone {
					return nil, err
				}
				if err == ErrIteratorDone {
					lowerLevelIter.Close()
				}
				if err == nil {
					iter.cursors = append(iter.cursors, &cursor{
						ssIndex: -1,
						op:      OperationSet,
						k:       k,
						v:       v,
					})

					iter.lowerLevelIter = lowerLevelIter
				}
			}
		}
	}

	// ----------------------------------------------
	// Heap-ify the cursors.

	heap.Init(iter)

	if !iteratorOptions.IncludeDeletions {
		entryEx, _, _, _ := iter.CurrentEx()
		if entryEx.Operation == OperationDel {
			iter.Next()
		}
	}

	return iter, nil
}

// Close must be invoked to release resources.
func (iter *iterator) Close() error {
	if iter.lowerLevelIter != nil {
		iter.lowerLevelIter.Close()
		iter.lowerLevelIter = nil
	}

	if iter.closer != nil {
		iter.closer.Close()
		iter.closer = nil
	}

	return nil
}

func (iter *iterator) InitCloser(closer io.Closer) error {
	if iter.closer != nil {
		return ErrAlreadyInitialized
	}
	iter.closer = closer
	return nil
}

// Next returns ErrIteratorDone if the iterator is done.
func (iter *iterator) Next() error {
	if len(iter.cursors) <= 0 {
		return ErrIteratorDone
	}

	lastK := iter.cursors[0].k

	for len(iter.cursors) > 0 {
		next := iter.cursors[0]

		if next.ssIndex < 0 && next.sc == nil {
			err := iter.lowerLevelIter.Next()
			if err == nil {
				next.k, next.v, err = iter.lowerLevelIter.Current()
				if err == nil && len(iter.cursors) > 1 {
					heap.Fix(iter, 0)
				}
			}

			if err != nil {
				iter.lowerLevelIter.Close()
				iter.lowerLevelIter = nil

				heap.Pop(iter)
			}
		} else {
			err := next.sc.Next()
			if err != nil {
				if err != ErrIteratorDone {
					return err
				}
				heap.Pop(iter)
			} else {
				next.op, next.k, next.v = next.sc.Current()
				if next.op == 0 {
					heap.Pop(iter)
				} else if len(iter.cursors) > 1 {
					heap.Fix(iter, 0)
				}
			}
		}

		if len(iter.cursors) <= 0 {
			return ErrIteratorDone
		}

		if !iteratorBytesEqual(iter.cursors[0].k, lastK) {
			if !iter.iteratorOptions.IncludeDeletions &&
				iter.cursors[0].op == OperationDel {
				lastK = iter.cursors[0].k
				continue
			}

			return nil
		}
	}

	return ErrIteratorDone
}

func iteratorBytesEqual(a, b []byte) bool {
	i := len(a)
	if i != len(b) {
		return false
	}
	for i > 0 { // Optimization to compare right-hand-side of keys first.
		i--
		if a[i] != b[i] {
			return false
		}
	}
	return true
}

func (iter *iterator) SeekTo(seekToKey []byte) error {
	key, _, err := iter.Current()
	if err != nil && err != ErrIteratorDone {
		return err
	}

	if key != nil {
		cmp := bytes.Compare(seekToKey, key)
		if cmp == 0 {
			return nil
		}

		if cmp > 0 {
			// Try a loop of naive Next()'s for several attempts.
			err = naiveSeekTo(iter, seekToKey, DefaultNaiveSeekToMaxTries)
			if err != ErrMaxTries {
				return err
			}
		}
	}

	// The seekToKey is before our current position, or we gave up on
	// the naiveSeekTo(), so start a brand new iterator to replace our
	// current iterator, bounded by the startKeyInclusive.
	//
	if bytes.Compare(seekToKey, iter.startKeyInclusive) < 0 {
		seekToKey = iter.startKeyInclusive
	}

	iterNew, err := iter.ss.startIterator(seekToKey,
		iter.endKeyExclusive, iter.iteratorOptions)
	if err != nil {
		return err
	}

	iterOld := *iter // Clone current iterator before overwriting it.
	iterOld.closer = nil

	iter.cursors = iterNew.cursors
	iter.lowerLevelIter = iterNew.lowerLevelIter

	iterOld.Close()

	_, _, err = iter.Current()

	return err
}

func naiveSeekTo(iter Iterator, seekToKey []byte, maxTries int) error {
	for i := 0; maxTries <= 0 || i < maxTries; i++ {
		key, _, err := iter.Current()
		if err != nil {
			return err
		}

		if bytes.Compare(seekToKey, key) <= 0 {
			return nil
		}

		err = iter.Next()
		if err != nil {
			return err
		}
	}

	return ErrMaxTries
}

// Current returns ErrIteratorDone if the iterator is done.
// Otherwise, Current() returns the current key and val, which should
// be treated as immutable or read-only.  The key and val bytes will
// remain available until the next call to Next() or Close().
func (iter *iterator) Current() ([]byte, []byte, error) {
	entryEx, key, val, err := iter.CurrentEx()
	if err != nil {
		return nil, nil, err
	}

	op := entryEx.Operation
	if op == OperationDel {
		return nil, nil, nil
	}

	if op == OperationMerge {
		var valMerged []byte
		valMerged, err = iter.ss.getMerged(key, val, iter.cursors[0].ssIndex-1,
			iter.iteratorOptions.base, ReadOptions{})
		if err != nil {
			return nil, nil, err
		}

		return key, valMerged, nil
	}

	return key, val, err
}

// CurrentEx is a more advanced form of Current() that returns more
// metadata.  It is used when IteratorOptions.IncludeDeletions is
// true.  It returns ErrIteratorDone if the iterator is done.
// Otherwise, the current operation, key, val are returned.
func (iter *iterator) CurrentEx() (
	entryEx EntryEx, key, val []byte, err error) {
	if len(iter.cursors) <= 0 {
		return EntryEx{}, nil, nil, ErrIteratorDone
	}

	cursor := iter.cursors[0]

	return EntryEx{Operation: cursor.op}, cursor.k, cursor.v, nil
}

func (iter *iterator) Len() int {
	return len(iter.cursors)
}

func (iter *iterator) Less(i, j int) bool {
	a := iter.cursors[i].k[iter.prefixLen:]
	b := iter.cursors[j].k[iter.prefixLen:]
	c := bytes.Compare(a, b)
	if c < 0 {
		return true
	}
	if c > 0 {
		return false
	}

	return iter.cursors[i].ssIndex > iter.cursors[j].ssIndex
}

func (iter *iterator) Swap(i, j int) {
	iter.cursors[i], iter.cursors[j] = iter.cursors[j], iter.cursors[i]
}

func (iter *iterator) Push(x interface{}) {
	// Push and Pop use pointer receivers because they modify the slice's length,
	// not just its contents.
	iter.cursors = append(iter.cursors, x.(*cursor))
}

func (iter *iterator) Pop() interface{} {
	n := len(iter.cursors)
	x := iter.cursors[n-1]
	iter.cursors = iter.cursors[0 : n-1]
	return x
}

// --------------------------------------------

// The optimize method tries to optimize an iterator.  For example,
// when there's only a single segment, then the heap can be avoided by
// using a simpler, faster iteratorSingle implementation.
func (iter *iterator) optimize() (Iterator, error) {
	if len(iter.cursors) != 1 {
		return iter, nil
	}

	cur := iter.cursors[0]

	if cur.ssIndex == -1 && cur.sc == nil {
		// Optimization to return lowerLevelIter directly.
		return iter.lowerLevelIter, nil
	}

	seg, ok := iter.ss.a[cur.ssIndex].(*segment)
	if !ok || seg == nil {
		return iter, nil
	}

	return &iteratorSingle{
		s:       seg,
		sc:      cur.sc,
		op:      cur.op,
		k:       cur.k,
		v:       cur.v,
		closer:  iter.closer,
		options: iter.ss.options,

		iteratorOptions: iter.iteratorOptions,
	}, nil
}

// --------------------------------------------

// sharedPrefixLen returns the length of the prefix shared by a and b,
// which can might be 0 length.
func sharedPrefixLen(a, b []byte) int {
	i := 0
	for i < len(a) && i < len(b) {
		if a[i] != b[i] {
			return i
		}
		i++
	}
	return i
}