This file is indexed.

/usr/share/gocode/src/github.com/AudriusButkevicius/kcp-go/fec.go is in golang-github-audriusbutkevicius-kcp-go-dev 20160629+git20171025.8ae5f52-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
package kcp

import (
	"encoding/binary"
	"sync/atomic"

	"github.com/templexxx/reedsolomon"
)

const (
	fecHeaderSize      = 6
	fecHeaderSizePlus2 = fecHeaderSize + 2 // plus 2B data size
	typeData           = 0xf1
	typeFEC            = 0xf2
)

type (
	// fecPacket is a decoded FEC packet
	fecPacket struct {
		seqid uint32
		flag  uint16
		data  []byte
	}

	// fecDecoder for decoding incoming packets
	fecDecoder struct {
		rxlimit      int // queue size limit
		dataShards   int
		parityShards int
		shardSize    int
		rx           []fecPacket // ordered receive queue

		// caches
		decodeCache [][]byte
		flagCache   []bool

		// RS decoder
		codec reedsolomon.Encoder
	}
)

func newFECDecoder(rxlimit, dataShards, parityShards int) *fecDecoder {
	if dataShards <= 0 || parityShards <= 0 {
		return nil
	}
	if rxlimit < dataShards+parityShards {
		return nil
	}

	fec := new(fecDecoder)
	fec.rxlimit = rxlimit
	fec.dataShards = dataShards
	fec.parityShards = parityShards
	fec.shardSize = dataShards + parityShards
	enc, err := reedsolomon.New(dataShards, parityShards)
	if err != nil {
		return nil
	}
	fec.codec = enc
	fec.decodeCache = make([][]byte, fec.shardSize)
	fec.flagCache = make([]bool, fec.shardSize)
	return fec
}

// decodeBytes a fec packet
func (dec *fecDecoder) decodeBytes(data []byte) fecPacket {
	var pkt fecPacket
	pkt.seqid = binary.LittleEndian.Uint32(data)
	pkt.flag = binary.LittleEndian.Uint16(data[4:])
	// allocate memory & copy
	buf := xmitBuf.Get().([]byte)[:len(data)-6]
	copy(buf, data[6:])
	pkt.data = buf
	return pkt
}

// decode a fec packet
func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
	// insertion
	n := len(dec.rx) - 1
	insertIdx := 0
	for i := n; i >= 0; i-- {
		if pkt.seqid == dec.rx[i].seqid { // de-duplicate
			xmitBuf.Put(pkt.data)
			return nil
		} else if _itimediff(pkt.seqid, dec.rx[i].seqid) > 0 { // insertion
			insertIdx = i + 1
			break
		}
	}

	// insert into ordered rx queue
	if insertIdx == n+1 {
		dec.rx = append(dec.rx, pkt)
	} else {
		dec.rx = append(dec.rx, fecPacket{})
		copy(dec.rx[insertIdx+1:], dec.rx[insertIdx:]) // shift right
		dec.rx[insertIdx] = pkt
	}

	// shard range for current packet
	shardBegin := pkt.seqid - pkt.seqid%uint32(dec.shardSize)
	shardEnd := shardBegin + uint32(dec.shardSize) - 1

	// max search range in ordered queue for current shard
	searchBegin := insertIdx - int(pkt.seqid%uint32(dec.shardSize))
	if searchBegin < 0 {
		searchBegin = 0
	}
	searchEnd := searchBegin + dec.shardSize - 1
	if searchEnd >= len(dec.rx) {
		searchEnd = len(dec.rx) - 1
	}

	// re-construct datashards
	if searchEnd-searchBegin+1 >= dec.dataShards {
		var numshard, numDataShard, first, maxlen int

		// zero cache
		shards := dec.decodeCache
		shardsflag := dec.flagCache
		for k := range dec.decodeCache {
			shards[k] = nil
			shardsflag[k] = false
		}

		// shard assembly
		for i := searchBegin; i <= searchEnd; i++ {
			seqid := dec.rx[i].seqid
			if _itimediff(seqid, shardEnd) > 0 {
				break
			} else if _itimediff(seqid, shardBegin) >= 0 {
				shards[seqid%uint32(dec.shardSize)] = dec.rx[i].data
				shardsflag[seqid%uint32(dec.shardSize)] = true
				numshard++
				if dec.rx[i].flag == typeData {
					numDataShard++
				}
				if numshard == 1 {
					first = i
				}
				if len(dec.rx[i].data) > maxlen {
					maxlen = len(dec.rx[i].data)
				}
			}
		}

		if numDataShard == dec.dataShards {
			// case 1:  no lost data shards
			dec.rx = dec.freeRange(first, numshard, dec.rx)
		} else if numshard >= dec.dataShards {
			// case 2: data shard lost, but  recoverable from parity shard
			for k := range shards {
				if shards[k] != nil {
					dlen := len(shards[k])
					shards[k] = shards[k][:maxlen]
					xorBytes(shards[k][dlen:], shards[k][dlen:], shards[k][dlen:])
				}
			}
			if err := dec.codec.ReconstructData(shards); err == nil {
				for k := range shards[:dec.dataShards] {
					if !shardsflag[k] {
						recovered = append(recovered, shards[k])
					}
				}
			}
			dec.rx = dec.freeRange(first, numshard, dec.rx)
		}
	}

	// keep rxlimit
	if len(dec.rx) > dec.rxlimit {
		if dec.rx[0].flag == typeData { // record unrecoverable data
			atomic.AddUint64(&DefaultSnmp.FECShortShards, 1)
		}
		dec.rx = dec.freeRange(0, 1, dec.rx)
	}
	return
}

// free a range of fecPacket, and zero for GC recycling
func (dec *fecDecoder) freeRange(first, n int, q []fecPacket) []fecPacket {
	for i := first; i < first+n; i++ { // free
		xmitBuf.Put(q[i].data)
	}
	copy(q[first:], q[first+n:])
	for i := 0; i < n; i++ { // dereference data
		q[len(q)-1-i].data = nil
	}
	return q[:len(q)-n]
}

type (
	// fecEncoder for encoding outgoing packets
	fecEncoder struct {
		dataShards   int
		parityShards int
		shardSize    int
		paws         uint32 // Protect Against Wrapped Sequence numbers
		next         uint32 // next seqid

		shardCount int // count the number of datashards collected
		maxSize    int // record maximum data length in datashard

		headerOffset  int // FEC header offset
		payloadOffset int // FEC payload offset

		// caches
		shardCache  [][]byte
		encodeCache [][]byte

		// RS encoder
		codec reedsolomon.Encoder
	}
)

func newFECEncoder(dataShards, parityShards, offset int) *fecEncoder {
	if dataShards <= 0 || parityShards <= 0 {
		return nil
	}
	fec := new(fecEncoder)
	fec.dataShards = dataShards
	fec.parityShards = parityShards
	fec.shardSize = dataShards + parityShards
	fec.paws = (0xffffffff/uint32(fec.shardSize) - 1) * uint32(fec.shardSize)
	fec.headerOffset = offset
	fec.payloadOffset = fec.headerOffset + fecHeaderSize

	enc, err := reedsolomon.New(dataShards, parityShards)
	if err != nil {
		return nil
	}
	fec.codec = enc

	// caches
	fec.encodeCache = make([][]byte, fec.shardSize)
	fec.shardCache = make([][]byte, fec.shardSize)
	for k := range fec.shardCache {
		fec.shardCache[k] = make([]byte, mtuLimit)
	}
	return fec
}

// encode the packet, output parity shards if we have enough datashards
// the content of returned parityshards will change in next encode
func (enc *fecEncoder) encode(b []byte) (ps [][]byte) {
	enc.markData(b[enc.headerOffset:])
	binary.LittleEndian.PutUint16(b[enc.payloadOffset:], uint16(len(b[enc.payloadOffset:])))

	// copy data to fec datashards
	sz := len(b)
	enc.shardCache[enc.shardCount] = enc.shardCache[enc.shardCount][:sz]
	copy(enc.shardCache[enc.shardCount], b)
	enc.shardCount++

	// record max datashard length
	if sz > enc.maxSize {
		enc.maxSize = sz
	}

	//  calculate Reed-Solomon Erasure Code
	if enc.shardCount == enc.dataShards {
		// bzero each datashard's tail
		for i := 0; i < enc.dataShards; i++ {
			shard := enc.shardCache[i]
			slen := len(shard)
			xorBytes(shard[slen:enc.maxSize], shard[slen:enc.maxSize], shard[slen:enc.maxSize])
		}

		// construct equal-sized slice with stripped header
		cache := enc.encodeCache
		for k := range cache {
			cache[k] = enc.shardCache[k][enc.payloadOffset:enc.maxSize]
		}

		// rs encode
		if err := enc.codec.Encode(cache); err == nil {
			ps = enc.shardCache[enc.dataShards:]
			for k := range ps {
				enc.markFEC(ps[k][enc.headerOffset:])
				ps[k] = ps[k][:enc.maxSize]
			}
		}

		// reset counters to zero
		enc.shardCount = 0
		enc.maxSize = 0
	}

	return
}

func (enc *fecEncoder) markData(data []byte) {
	binary.LittleEndian.PutUint32(data, enc.next)
	binary.LittleEndian.PutUint16(data[4:], typeData)
	enc.next++
}

func (enc *fecEncoder) markFEC(data []byte) {
	binary.LittleEndian.PutUint32(data, enc.next)
	binary.LittleEndian.PutUint16(data[4:], typeFEC)
	enc.next = (enc.next + 1) % enc.paws
}