/usr/share/gnudatalanguage/coyote/cgotsu_threshold.pro is in gdl-coyote 2016.11.13-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | ; docformat = 'rst'
;
; NAME:
; cgOTSU_THRESHOLD
;
; PURPOSE:
; The purpose of this function is to find an optimal threshold for separating
; a bimodal distribution of pixels in an image histogram. The Otsu Threshold method
; is explained here: http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html.
;
;******************************************************************************************;
; ;
; Copyright (c) 2012, by Fanning Software Consulting, Inc. All rights reserved. ;
; ;
; Redistribution and use in source and binary forms, with or without ;
; modification, are permitted provided that the following conditions are met: ;
; ;
; * Redistributions of source code must retain the above copyright ;
; notice, this list of conditions and the following disclaimer. ;
; * Redistributions in binary form must reproduce the above copyright ;
; notice, this list of conditions and the following disclaimer in the ;
; documentation and/or other materials provided with the distribution. ;
; * Neither the name of Fanning Software Consulting, Inc. nor the names of its ;
; contributors may be used to endorse or promote products derived from this ;
; software without specific prior written permission. ;
; ;
; THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY ;
; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ;
; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT ;
; SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, ;
; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED ;
; TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ;
; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ;
; ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ;
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;
;******************************************************************************************;
;
;+
; The purpose of this function is to find an optimal threshold for separating
; a bimodal distribution of pixels in an image histogram. The algorithm used is the
; "faster approach" algorithm explained
; `on this web page <http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html>`.
;
; .. image:: cgotsu_threshold.png
;
; :Categories:
; Utility
;
; :Returns:
; The optimal threshold that separates two populations of pixels is returned.
;
; :Params:
; data: in, required,
; The data from which the histogram is created.
;
; :Keywords:
; binsize: in, optional
; The binsize of the histogram. By default, Scott's Choice of bin size for histograms is used::
;
; binsize = (3.5 * StdDev(data)) / N_Elements(data)^(0.3333)
;
; unless the data is byte type. Then a BINSIZE of 1 is used by default
;
; If BINSIZE in not defined, and NBINS is defined, the BINSIZE is calcuated as::
;
; binsize = (Max(dataToHistogram) - Min(dataToHistogram)) / (NBINS -1)
;
; While it is pointed out in the HISTOGRAM documentation, it is extremely
; important that the BINSIZE be of the same data type as the data you are going to
; calculate the histogram of. If it is not VERY strange things can happen. I've
; tried to protect you from most of the bad things, but I don't have a high confidence
; level that I have done it for every situation. If you see something that "just don't
; look right", I would check first to see if your data types match. That might solve
; all your problems.
; example: in, optional, type=boolean, default=0
; Set this keyword if you wish to use the example data from the
; `reference documentation <http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html>`.
; histdata: out, optional
; The output value of the internal HISTOGRAM command.
; l64: in, optional, type=boolean, default=0
; If set, the return value of HISTOGRAM are 64-bit integers, rather than
; the default 32-bit integers. Set by default for data types greater than or
; equal to 12.
; locations: out, optional
; Starting locations of each bin. (See the HISTOGRAM documentation for details.)
; max: in, optional
; The maximum value to use in calculating input histogram. Equivalent to the MAX keyword
; in the HISTOGRAM documentation.
; min: in, optional
; The minimum value to use in calculating input histogram. Equivalent to the MIN keyword
; in the HISTOGRAM documentation.
; missing: in, optional
; The value that should be represented as "missing" and not used in the histogram.
; Be aware that if the input data is not of type "float" or "double" that the input
; data will be converted to floating point prior to calculating the histogram.
; nan: in, optional, type=boolean, default=0
; If set, ignore NAN values in calculating and plotting histogram.
; nbins: in, optional, type=integer
; The number of output bins in the histogram. Meaning is slightly different from
; meaning in the HISTOGRAM command. Used only to calculate BINSIZE when BINSIZE is
; not specified. In this case, binsize = rangeofData/(nbins-1).
; omax: out, optional
; The maximum output value used to construct the histogram. (See HISTOGRAM documentation.)
; omin: out, optional
; The minimum output value used to construct the histogram. (See HISTOGRAM documentation.)
; plotit: in, optional, type=boolean, default=0
; If this keyword is set, a histogram of the data is plotted along with a plot of the
; between class variance to show the selected threshold.
; reverse_indices: out, optional
; The list of reverse indices returned from the HISTOGRAM command. (See HISTOGRAM documentation.)
;
; :Examples:
; Set the `Example` keyword to use the data from the reference page.
;
; :Author:
; FANNING SOFTWARE CONSULTING::
; David W. Fanning
; 1645 Sheely Drive
; Fort Collins, CO 80526 USA
; Phone: 970-221-0438
; E-mail: david@idlcoyote.com
; Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; :History:
; Change History::
; Written by: David W. Fanning, 13 November 2012, from a program named OTSU_THRESHOLD by Carl Salvaggio and
; modified by Gianguido Cianci.
; The OTSU_THRESHOLD algorithm used previously made many assumptions about the data. The algorithm used here
; has been completely rewritten to comply with the values in the reference page and to avoid making
; assumptions about the data used to create the histogram. 21 November 2012. DWF.
; Modified to set L64 keyword if data type GE 14 (suggested by user). 22 November 2012. DWF.
; Modified the threshold value to use DIndGen instead of IndGen, which was causing incorrect
; results with integer data. 24 November 2012. DWF.
;
; :Copyright:
; Copyright (c) 2012, Fanning Software Consulting, Inc.
;-
FUNCTION cgOTSU_THRESHOLD, $ ; The program name.
data, $ ; The data to threshold.
BINSIZE=binsize, $ ; The histogram bin size.
EXAMPLE=example, $ ; Set this keyword to see the reference page example.
HISTDATA=histdata, $ ; The output of the HISTOGRAM command.
L64=l64, $ ; Input for HISTOGRAM.
LOCATIONS=locations, $ ; The histogram bin locations.
MAX=max, $ ; The maximum value to HISTOGRAM.
MIN=min, $ ; The minimum value to HISTOGRAM.
MISSING=missing, $ ; The value that indicates "missing" data to be excluded from the histgram.
NAN=nan, $ ; Check for NAN.
NBINS=nbins, $ ; The number of bins to display.
OMAX=omax, $ ; The maximum value of the histogram on output.
OMIN=omin, $ ; The minimum value of the histogram on output.
PLOTIT=plotit, $ ; Set this keyword to see the results of the thresholding algorithm.
REVERSE_INDICES=ri ; The reverse indices of the histogram.
Compile_Opt idl2
; Error handling.
Catch, theError
IF theError NE 0 THEN BEGIN
Catch, /Cancel
ok = cgErrorMsg()
IF N_Elements(nancount) EQ 0 THEN BEGIN
IF N_Elements(_data) NE 0 THEN data = Temporary(_data)
ENDIF ELSE BEGIN
IF nancount EQ 0 THEN BEGIN
IF N_Elements(_data) NE 0 THEN data = Temporary(_data)
ENDIF
ENDELSE
RETURN, -9999
ENDIF
; Need data or the EXAMPLE keyword to continue.
IF N_Elements(data) EQ 0 && ~Keyword_Set(example) THEN BEGIN
Message, 'Data values to threshold are required.'
ENDIF
; Are we doing an example? Use the data from the reference page at
; http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html.
IF Keyword_Set(example) THEN BEGIN
data = [Replicate(0,8), Replicate(1,7), Replicate(2,2), Replicate(3,6), Replicate(4,9), Replicate(5,4)]
binsize = 1
ENDIF
; Get the data type. Important to match data type with binsize type. Otherwise
; strange things occur in the Histogram command.
dataType = Size(data, /TYPE)
; If this is byte data, then use a BINSIZE of 1, unless instructed otherwise.
IF dataType EQ 1 THEN BEGIN
IF (N_Elements(binsize) EQ 0) && (N_Elements(nbins) EQ 0) THEN binsize = 1B
ENDIF
; If the data type is 14 or above, set the L64 keyword. Necessary to give enough
; precision in the Otsu calculations.
IF dataType GE 14 THEN L64 = 1
; Check the data for NANs and alert the user if the NAN keyword is not set.
IF dataType EQ 4 OR datatype EQ 5 THEN BEGIN
goodIndices = Where(Finite(data), count, NCOMPLEMENT=nancount, COMPLEMENT=nanIndices)
IF nancount GT 0 THEN BEGIN
IF ~Keyword_Set(nan) THEN BEGIN
Message, 'NANs found in the data. NAN keyword is set to 1.', /INFORMATIONAL
nan = 1
ENDIF
ENDIF
ENDIF
; The only sensible way to proceed is to make a copy of the data. Otherwise, I'll have
; a devil of a time putting it back together again at the end. There is a bug in
; HISTOGRAM when using BYTE data, so convert that here
IF N_Elements(_data) EQ 0 THEN BEGIN
IF Size(data, /TNAME) EQ 'BYTE' THEN BEGIN
_data = Fix(data)
ENDIF ELSE BEGIN
_data = data
ENDELSE
ENDIF
; If you have any "missing" data, then the data needs to be converted to float
; and the missing data set to F_NAN.
IF N_Elements(missing) NE 0 THEN BEGIN
missingIndices = Where(_data EQ missing, missingCount)
IF missingCount GT 0 THEN BEGIN
CASE datatype OF
4: _data[missingIndices] = !Values.F_NAN
5: _data[missingIndices] = !Values.D_NAN
ELSE: BEGIN
_data = Float(_data)
dataType = 4
_data[missingIndices] = !Values.F_NAN
END
ENDCASE
nan = 1
ENDIF ELSE BEGIN
IF missingCount EQ N_Elements(_data) THEN $
Message, 'All values are "missing"!'
ENDELSE
ENDIF
; Check for histogram keywords.
IF N_Elements(binsize) EQ 0 THEN BEGIN
range = Max(_data, /NAN) - Min(_data, /NAN)
IF N_Elements(nbins) EQ 0 THEN BEGIN ; Scott's Choice
binsize = (3.5D * StdDev(_data, /NAN))/N_Elements(_data)^(1./3.0D)
IF (dataType LE 3) OR (dataType GE 12) THEN binsize = Round(binsize) > 1
binsize = Convert_To_Type(binsize, dataType)
ENDIF ELSE BEGIN
binsize = range / (nbins -1)
IF dataType LE 3 THEN binsize = Round(binsize) > 1
binsize = Convert_To_Type(binsize, dataType)
ENDELSE
ENDIF ELSE BEGIN
IF Size(binsize, /TYPE) NE dataType THEN BEGIN
IF dataType LE 3 THEN binsize = Round(binsize) > 1
binsize = Convert_To_Type(binsize, dataType)
ENDIF
ENDELSE
IF N_Elements(min) EQ 0 THEN min = Min(_data, NAN=nan)
IF N_Elements(max) EQ 0 THEN max = Max(_data, NAN=nan)
; Calculate the histogram.
histdata = Histogram(_data, $
BINSIZE=binsize, $
MAX=max, $
MIN=min, $
NAN=nan, $
LOCATIONS=locations, $
OMAX=omax, $
OMIN=omin, $
REVERSE_INDICES=ri)
; Lot's of bad things can happen next. Let's pretend we don't know about them.
except = !Except
!Except = 0
; The threshold values to evaluate.
thresholds = DIndGen(N_Elements(histdata)) * binsize + oMin
; Create a cumulative distribution to calculate the weighting factors.
; Subscripting of the background weights and addition of a 0 value
; is necessary to conform with the outputs in the reference documenation.
; I presume it is because the first threshold should be on the near side
; of the first bin, rather than on the far side.
cdf = Total(histdata, /DOUBLE, /CUMULATIVE)
reverseCDF = Total(Reverse(histdata), /DOUBLE, /CUMULATIVE)
Wb = [0,cdf[0:N_Elements(cdf)-2]] / Total(histdata)
Wf = Reverse(reverseCDF / Total(histdata))
; Find the means.
mu_b = Total(histdata * thresholds, /DOUBLE, /CUMULATIVE) / cdf
mu_b = [0, mu_b[0:N_Elements(mu_b)-2]]
mu_f = Reverse(Total(Reverse(histdata) * Reverse(thresholds), /DOUBLE, /CUMULATIVE) / reverseCDF)
; Calculate the Between-Class variance.
betweenClassVariance = Wb * Wf * (mu_b - mu_f)^2
; The threshold is found by locating the maximum value and
; obtaining the index into the array.
maximumVariance = Max(betweenClassVariance, thresholdIndex)
threshold = thresholdIndex*binsize + oMin
; Useful printouts if we are doing the example.
IF Keyword_Set(example) THEN BEGIN
Print, 'Wb: ', Wb
Print, 'Wf: ', Wf
Print, 'Mu_b: ', mu_b
Print, 'Mu_f: ', mu_f
Print, 'Variance: ', betweenClassVariance
Print, 'Threshold: ', threshold
cgDisplay, Title='Example OTSU Threshold Method', /Free
!P.Multi = [0,1,2]
cgHistoplot, _data, Binsize=binsize, /Fill
cgPlots, [threshold, threshold], !Y.CRange, Color='blue', Thick=2
cgPlot, betweenClassVariance, Title='Between Class Variance'
cgPlots, [threshold, threshold], !Y.CRange, Color='blue', Thick=2
cgText, 0.23, 2.60, 'Threshold: ' + String(threshold, Format='(I0)'), Color='blue', Font=0
!P.Multi = 0
ENDIF
; Need a plot?
IF Keyword_Set(plotit) THEN BEGIN
cgDisplay, Title='OTSU Threshold Results', /Free
!P.Multi = [0,1,2]
cgHistoplot, _data, $
BINSIZE=binsize, $
L64=l64, $
LOCATIONS=locations, $
MAXINPUT=max, $
MININPUT=min, $
NAN=nan, $
/Fill
cgPlots, [threshold, threshold], !Y.CRange, Color='blue', Thick=2
cgPlot, locations, betweenClassVariance, Title='Between Class Variance Threshold: ' + $
String(threshold,Format='(F0.2)'), XStyle=1
cgPlots, [threshold, threshold], !Y.CRange, Color='blue', Thick=2
!P.Multi = 0
ENDIF
; Clean up.
!Except = except
; Return result.
RETURN, threshold
END
|