This file is indexed.

/usr/share/gnudatalanguage/coyote/cgconlevels.pro is in gdl-coyote 2016.11.13-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
; docformat = 'rst'
;
; NAME:
;   cgConLevels
;
; PURPOSE:
;   This program is designed to create "nicely formatted" contour levels for use in
;   contour plots. The idea is to be able to produce evenly spaced contour intervals
;   with the contour levels rounded off to the preferred degree of accuracy. The program
;   will make a "guess" as to how to do this, but users can also take control of the
;   process if the results are not pleasing enough.
;
;******************************************************************************************;
;                                                                                          ;
;  Copyright (c) 2011, by Fanning Software Consulting, Inc. All rights reserved.           ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;
;
;+
; This program is designed to create "nicely formatted" contour levels for use in
; contour plots. The idea is to be able to produce evenly spaced contour intervals
; with the contour levels rounded off to the preferred degree of accuracy. The program
; will make a "guess" as to how to do this, but users can also take control of the
; process if the results are not pleasing enough.
; 
; There is no claim that this program always produces the best results. It is more
; of a tool that can produce decent result in many situations.
; 
; The program requires the `Coyote Library <http://www.idlcoyote.com/documents/programs.php>`
; to be installed on your machine.
;
; :Categories:
;    Graphics, Utilities
;    
; :Returns:
;     A vector of contour levels of the requested number. Each level is
;     rounded to a predefined or specified degree of accuracy.
;    
; :Params:
;     data: in, required 
;         The data for which contour levels are desired.
;          
; :Keywords:
;     factor: in, optional, type=float
;         The program makes a "guess" at how to best round the levels in the data
;         presented to it. This guess is not always what the user wants. This keyword
;         allows the user to "fine tune" the guess, so that it behaves better. See the
;         examples for details on how this keyword can be used. There is some danger,
;         when using the factor keyword that the results will be terrible. Don't dismay!
;         Just try something else.
;     maxvalue: in, optional
;         Normally, the levels are calculated using the minimum and maximum values 
;         of the input data. The maximum value used in the calculation can be replaced
;         with this value, if you wish. If both the `MinValue` and MaxValue keywords
;         are used, you do not need to pass the data parameter.
;     minmax: out, optional
;         The actual minimum and maximum values used to calculate the levels.
;     minvalue: in, optional
;         Normally, the levels are calculated using the minimum and maximum values 
;         of the input data. The minimum value used in the calculation can be replaced
;         with this value, if you wish.
;     nlevels: in, optional, type=integer, default=10
;         The number of contour levels desired.
;     silent: in, optional, type=boolean, default=0
;         Set this keyword if you want the program to remain "silent" in the face of 
;         errors. If this keyword is set, the user should rely on the `Success` keyword
;         to determine whether the program completed its work.
;     step: out, optional
;         The step size actually used in the program to calculate the levels.
;     success: out, optional, type=boolen
;         Upon return, will contain a 1 if the program executed succesfully and
;         a 0 otherwise.
;          
; :Examples:
;    Here is the normal way a contour plot might be created::
;
;        cgDisplay, WID=0
;        data = cgScaleVector(cgDemoData(2), 0.1, 4534.5)
;        cgLoadCT, 33, NColors=10, Bottom=1
;        cgContour, data, NLevels=10, /Fill, /Outline, $
;           Position=[0.1, 0.1, 0.9, 0.75], C_Colors=Indgen(10)+1
;        cgColorbar, NColors=9, Bottom=1, /Discrete, /Fit, $
;           Range=[Min(data), Max(data)], OOB_High=10, OOB_Low='white'
;           
;    Here is how the same plot might be created with cgConLevels
;    to produce contour levels at 500 step intervals::
;    
;        cgDisplay, WID=1
;        data = cgScaleVector(cgDemoData(2), 0.1, 4534.5)
;        cgLoadCT, 33, NColors=10, Bottom=1
;        levels = cgConLevels(data, Factor=100, MINVALUE=0)
;        cgContour, data, Levels=levels, /Fill, /Outline, $
;           Position=[0.1, 0.1, 0.9, 0.75], C_Colors=Indgen(10)+1
;        cgColorbar, NColors=9, Bottom=1, /Discrete, /Fit, $
;           Range=[Min(levels), Max(levels)], OOB_High=10, OOB_Low='white'
;           
;    In this example, the data is scaled so that it is a bit more perverse.
;    The levels have been chosen so they round in the third decimal place::
;    
;        cgDisplay, WID=2
;        data = cgScaleVector(cgDemoData(2), 0.153, 0.986)
;        cgLoadCT, 33, NColors=10, Bottom=1
;        levels = cgConLevels(data)
;        cgContour, data, Levels=levels, /Fill, /Outline, $
;           Position=[0.1, 0.1, 0.9, 0.75], C_Colors=Indgen(10)+1
;        cgColorbar, NColors=9, Bottom=1, /Discrete, /Fit, $
;           Range=[Min(levels), Max(levels)], OOB_High=10, OOB_Low='white'
;    
;    It might be better to have the data rounded in the second data place, to
;    the nearest 0.05 value. This can be done with the `Factor` keyword::
;     
;        cgDisplay, WID=3
;        data = cgScaleVector(cgDemoData(2), 0.153, 0.986)
;        cgLoadCT, 33, NColors=10, Bottom=1
;        levels = cgConLevels(data, Factor=0.05)
;        cgContour, data, Levels=levels, /Fill, /Outline, $
;           Position=[0.1, 0.1, 0.9, 0.75], C_Colors=Indgen(10)+1
;        cgColorbar, NColors=9, Bottom=1, /Discrete, /Fit, $
;           Range=[Min(levels), Max(levels)], OOB_High=10, OOB_Low='white'
;           
; :Author:
;       FANNING SOFTWARE CONSULTING::
;           David W. Fanning 
;           1645 Sheely Drive
;           Fort Collins, CO 80526 USA
;           Phone: 970-221-0438
;           E-mail: david@idlcoyote.com
;           Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; :History:
;     Change History::
;        Written, 8 December 2011. David W. Fanning
;
; :Copyright:
;     Copyright (c) 2011, Fanning Software Consulting, Inc.
;-
FUNCTION cgConLevels, data, $
    FACTOR=factor, $
    MAXVALUE=maxvalue, $
    MINMAX=minmax, $
    MINVALUE=minvalue, $
    NLEVELS=nlevels, $
    SILENT=silent, $
    STEP=step, $
    SUCCESS=success

    Compile_Opt idl2
    
    ; Error handling
    Catch, theError
    IF theError NE 0 THEN BEGIN
        Catch, /CANCEL
        IF ~Keyword_Set(silent) THEN void = cgErrorMsg()
        success = 0
        RETURN, -1
    ENDIF

    ; Assume success.
    success = 1
    
    ; Data is required, unless both MINVALUE and MAXVALUE are used.
    IF N_Elements(data) EQ 0 THEN BEGIN
        IF ~( (N_Elements(maxvalue)NE 0) && (N_Elements(minvalue) NE 0) ) THEN $ 
           Message, 'Data must be passed to calculate contour levels.'
    ENDIF
    
    ; Set default number of levels to 10.
    SetDefaultValue, nlevels, 10
    
    ; Find the step.
    IF N_Elements(data) NE 0 THEN mindata = Min(data, /NAN, MAX=maxdata)
    IF N_Elements(minvalue) NE 0 THEN mindata = minvalue
    IF N_Elements(maxvalue) NE 0 THEN maxdata = maxvalue 
    step  = (maxdata - mindata) / nlevels

    ; We are going to work with abolute values. Save the signs for the end.
    minSign = (mindata LT 0) ? -1 : 1
    maxSign = (maxdata LT 0) ? -1 : 1
    minabs = Abs(mindata)
    maxabs = Abs(maxdata)
    
    ; If you have a factor supplied by the user, then use it. Otherwise, try to figure
    ; out which factor you might use.
    IF N_Elements(factor) EQ 0 THEN BEGIN
        CASE 1 OF
            step GE 10000: BEGIN
               minabs = (minsign GT 0) ? Floor(minabs / 1000) * 1000. : Ceil(minabs / 1000) * 1000.
               maxabs = (maxsign GT 0) ? Ceil(maxabs / 1000) * 1000.  : Floor(maxabs / 1000) * 1000.
               mindata = (minsign GT 0) ? minabs : minabs * (-1)
               maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
               step  = (maxdata - mindata) / nlevels
               step = Round(step / 1000) * 1000
               END
            (step GE 1000) && (step LT 10000): BEGIN
               minabs = (minsign GT 0) ? Floor(minabs / 100) * 100. : Ceil(minabs / 100) * 100.
               maxabs = (maxsign GT 0) ? Ceil(maxabs / 100) * 100. : Floor(maxabs / 100) * 100.
               mindata = (minsign GT 0) ? minabs : minabs * (-1)
               maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
               step  = (maxdata - mindata) / nlevels
               step = Round(step / 100) * 100.
               END
            (step GE 100) && (step LT 1000): BEGIN
               minabs = (minsign GT 0) ? Floor(minabs / 10) * 10. : Ceil(minabs / 10) * 10.
               maxabs = (maxsign GT 0) ? Ceil(maxabs / 10) * 10. : Floor(maxabs / 10) * 10.
               mindata = (minsign GT 0) ? minabs : minabs * (-1)
               maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
               step  = (maxdata - mindata) / nlevels
               step = Round(step / 10) * 10.
               END
            (step GE 10) && (step LT 100): BEGIN
               minabs = (minsign GT 0) ? Floor(minabs) : Ceil(minabs)
               maxabs = (maxsign GT 0) ? Ceil(maxabs)  : Floor(maxabs)
               mindata = (minsign GT 0) ? minabs : minabs * (-1)
               maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
               step  = (maxdata - mindata) / nlevels
               step = Float(Round(step))
               END
            (step GE 1) && (step LT 10): BEGIN
               minabs = (minsign GT 0) ? Floor(minabs * 10) / 10. : Ceil(minabs * 10) / 10.
               maxabs = (maxsign GT 0) ? Ceil(maxabs * 10) / 10.  : Floor(maxabs * 10) / 10.
               mindata = (minsign GT 0) ? minabs : minabs * (-1)
               maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
               step  = (maxdata - mindata) / nlevels
               step = Round(step * 10) / 10.
               END
            (step GE 0.1) && (step LT 1): BEGIN
               minabs = (minsign GT 0) ? Floor(minabs * 100) / 100. : Ceil(minabs * 100) / 100.
               maxabs = (maxsign GT 0) ? Ceil(maxabs * 100) / 100.  : Floor(maxabs * 100) / 100.
               mindata = (minsign GT 0) ? minabs : minabs * (-1)
               maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
               step  = (maxdata - mindata) / nlevels
               step = Round(step * 100) / 100.
               END
            (step GE 0.01) && (step LT 0.1): BEGIN
               minabs = (minsign GT 0) ? Floor(minabs * 1000) / 1000. : Ceil(minabs * 1000) / 1000.
               maxabs = (maxsign GT 0) ? Ceil(maxabs * 1000) / 1000.  : Floor(maxabs * 1000) / 1000.
               mindata = (minsign GT 0) ? minabs : minabs * (-1)
               maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
               step  = (maxdata - mindata) / nlevels
               step = Round(step * 1000) / 1000.
               END
            (step GE 0.001) && (step LT 0.01): BEGIN
               minabs = (minsign GT 0) ? Floor(minabs * 10000) / 10000. : Ceil(minabs * 10000) / 100000.
               maxabs = (maxsign GT 0) ? Ceil(maxabs * 10000) / 10000.  : Floor(maxabs * 10000) / 100000.
               mindata = (minsign GT 0) ? minabs : minabs * (-1)
               maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
               step  = (maxdata - mindata) / nlevels
               step = Round(step * 10000) / 10000.
               END
             ELSE:    
        ENDCASE
    ENDIF ELSE BEGIN
        minabs = (minsign GT 0) ? Floor(minabs / factor) * Float(factor)  : Ceil(minabs / factor) * Float(factor)
        maxabs = (maxsign GT 0) ? Ceil(maxabs / factor)  * Float(factor) : Floor(maxabs / factor) * Float(factor)
        mindata = (minsign GT 0) ? minabs : minabs * (-1)
        maxdata = (maxsign GT 0) ? maxabs : maxabs * (-1)
        step  = (maxdata - mindata) / nlevels
        step = Round(step / factor) * Float(factor)
    ENDELSE
    
    ; Calculate the levels so they can be returned.
    levels = Indgen(nlevels) * step + mindata

    ; Set up the output variable, minmax, with the actual min and max values used for the levels.
    minmax = [mindata, maxdata]
    
    RETURN, levels
END