This file is indexed.

/usr/share/gnudatalanguage/astrolib/xyz.pro is in gdl-astrolib 2018.02.16+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
pro xyz,date,x,y,z,xvel,yvel,zvel,equinox=equinox

;+
; NAME:
;       XYZ
; PURPOSE:
;       Calculate geocentric X,Y, and Z  and velocity coordinates of the Sun
; EXPLANATION:
;       Calculates geocentric X,Y, and Z vectors and velocity coordinates 
;       (dx, dy and dz) of the Sun.   (The positive X axis is directed towards 
;       the equinox, the y-axis, towards the point on the equator at right 
;       ascension 6h, and the z axis toward the north pole of the equator).
;       Typical position accuracy is <1e-4 AU (15000 km).
;
; CALLING SEQUENCE:
;       XYZ, date, x, y, z, [ xvel, yvel, zvel, EQUINOX = ]
;
; INPUT:
;       date: reduced julian date (=JD - 2400000), scalar or vector
;
; OUTPUT:
;       x,y,z: scalars or vectors giving heliocentric rectangular coordinates
;                 (in A.U) for each date supplied.    Note that sqrt(x^2 + y^2
;                 + z^2) gives the Earth-Sun distance for the given date.
;       xvel, yvel, zvel: velocity vectors corresponding to X, Y and Z.
;
; OPTIONAL KEYWORD INPUT:
;       EQUINOX: equinox of output. Default is 1950.
;
; EXAMPLE:
;       What were the rectangular coordinates and velocities of the Sun on 
;       Jan 22, 1999 0h UT (= JD 2451200.5) in J2000 coords? NOTE:
;       Astronomical Almanac (AA) is in TDT, so add 64 seconds to 
;       UT to convert.
;
;       IDL> xyz,51200.5+64.d/86400.d,x,y,z,xv,yv,zv,equinox = 2000
;
;       Compare to Astronomical Almanac (1999 page C20)
;                   X  (AU)        Y  (AU)     Z (AU)
;       XYZ:      0.51456871   -0.76963263  -0.33376880
;       AA:       0.51453130   -0.7697110   -0.3337152
;       abs(err): 0.00003739    0.00007839   0.00005360
;       abs(err)
;           (km):   5609          11759         8040 
;
;       NOTE: Velocities in AA are for Earth/Moon barycenter
;             (a very minor offset) see AA 1999 page E3
;                  X VEL (AU/DAY) YVEL (AU/DAY)   Z VEL (AU/DAY)
;       XYZ:      -0.014947268   -0.0083148382    -0.0036068577
;       AA:       -0.01494574    -0.00831185      -0.00360365
;       abs(err):  0.000001583    0.0000029886     0.0000032077
;       abs(err)
;        (km/sec): 0.00265        0.00519          0.00557
;
; PROCEDURE CALLS:
;       PRECESS_XYZ
; REVISION HISTORY
;       Original algorithm from Almanac for Computers, Doggett et al. USNO 1978
;       Adapted from the book Astronomical Photometry by A. Henden
;       Written  W. Landsman   STX       June 1989
;       Correct error in X coefficient   W. Landsman HSTX  January 1995
;       Added velocities, more terms to positions and EQUINOX keyword,
;          some minor adjustments to calculations 
;          P. Plait/ACC March 24, 1999
;-

   On_error,2
  
   if (n_params() eq 0) then begin
      print,'Syntax - XYZ, date, x, y, z, [ xvel, yvel, zvel, EQUINOX= ]'
      print,'     (date is REDUCED Julian date (JD - 2400000.0) )'
      return
   endif

   picon = !DPI/180.0d
   t = (date - 15020.0d0)/36525.0d0         ;Relative Julian century from 1900

; NOTE: longitude arguments below are given in *equinox* of date.
;   Precess these to equinox 1950 to give everything an even footing.
;   Compute argument of precession from equinox of date back to 1950
   pp = (1.396041d + 0.000308d*(t + 0.5d))*(t-0.499998d)

; Compute mean solar longitude, precessed back to 1950
   el = 279.696678D + 36000.76892D*t + 0.000303d*t*t - pp

; Compute Mean longitude of the Moon
   c = 270.434164d + 480960.d*t + 307.883142d*t - 0.001133d*t*t - pp

; Compute longitude of Moon's ascending node
   n = 259.183275d - 1800.d*t - 134.142008d*t + 0.002078d*t*t - pp

; Compute mean solar anomaly
   g = 358.475833d + 35999.04975d*t - 0.00015d*t*t

; Compute the mean jupiter anomaly
   j = 225.444651d + 2880.0d*t + 154.906654d*t*t

; Compute mean anomaly of Venus
   v = 212.603219d + 58320.d*t + 197.803875d*t + 0.001286d*t*t

; Compute mean anomaly of Mars
   m = 319.529425d + 19080.d*t + 59.8585d*t + 0.000181d*t*t

; Convert degrees to radians for trig functions
   el = el*picon
   g  = g*picon
   j =  j*picon
   c  = c*picon
   v  = v*picon
   n  = n*picon
   m  = m*picon

; Calculate X,Y,Z using trigonometric series
   X =   0.999860d*cos(el)                          $
       - 0.025127d*cos(g - el)                      $
       + 0.008374d*cos(g + el)                      $
       + 0.000105d*cos(g + g + el)                  $
       + 0.000063d*t*cos(g - el)                    $
       + 0.000035d*cos(g + g - el)                  $
       - 0.000026d*sin(g - el - j)                  $
       - 0.000021d*t*cos(g + el)                    $
       + 0.000018d*sin(2.d*g + el - 2.d*v)          $
       + 0.000017d*cos(c)                           $
       - 0.000014d*cos(c - 2.d*el)                  $
       + 0.000012d*cos(4.d*g + el - 8.d*m + 3.d*j)  $
       - 0.000012d*cos(4.d*g - el - 8.d*m + 3.d*j)  $
       - 0.000012d*cos(g + el - v)                  $
       + 0.000011d*cos(2.d*g + el - 2.d*v)          $
       + 0.000011d*cos(2.d*g - el - 2.d*j)         
  

   Y =   0.917308d*sin(el)                             $
       + 0.023053d*sin(g - el)                         $
       + 0.007683d*sin(g + el)                         $
       + 0.000097d*sin(g + g + el)                     $
       - 0.000057d*t*sin(g - el)                       $
       - 0.000032d*sin(g + g - el)                     $
       - 0.000024d*cos(g - el - j)                     $
       - 0.000019d*t*sin(g + el)                       $
       - 0.000017d*cos(2.d0*g + el - 2.d0*v)           $
       + 0.000016d*sin(c)                              $
       + 0.000013d*sin(c - 2.d0*el )                   $
       + 0.000011d*sin(4.d0*g + el - 8.d0*m + 3.d0*j)  $
       + 0.000011d*sin(4.d0*g - el - 8.d0*m + 3.d0*j)  $
       - 0.000011d*sin(g + el - v)                     $
       + 0.000010d*sin(2.d0*g + el - 2.d0*v )          $
       - 0.000010d*sin(2.d0*g - el - 2.d0*j )         


   Z =   0.397825d*sin(el)        $
       + 0.009998d*sin(g-el)      $
       + 0.003332d*sin(g+el)      $
       + 0.000042d*sin(g+g+el)    $
       - 0.000025d*t*sin(g-el)    $
       - 0.000014d*sin(g+g-el)    $
       - 0.000010d*cos(g-el-j)    

;Precess_to new equator?
   if keyword_set(equinox) then precess_xyz, x, y, z, 1950, equinox

   if N_params() LE 3 then return
   
   XVEL = -0.017200d * sin(el)           $
          -0.000288d * sin(g + el)       $
          -0.000005d * sin(2.d0*g + el)  $
          -0.000004d * sin(c)            $
          +0.000003d * sin(c - 2.d0*el)  $
          +0.000001d *t * sin(g+el)      $
          -0.000001d * sin(2.d0*g-el)           
 
   YVEL =  0.015780 * cos(el)            $
          +0.000264 * cos(g + el)        $
          +0.000005 * cos(2.d0*g + el)   $
          +0.000004 * cos(c)             $
          +0.000003 * cos(c - 2.d0*el)   $
          -0.000001 * t * cos(g + el)    

   ZVEL = 0.006843 * cos(el)             $
         +0.000115 * cos(g  + el)        $
         +0.000002 * cos(2.d0*g + el)    $
         +0.000002 * cos(c)              $
         +0.000001 * cos(c - 2.d0*el)    

;Precess to new equator?

   if keyword_set(equinox) then precess_xyz, xvel, yvel, zvel, 1950, equinox

   return
   end