This file is indexed.

/usr/share/gnudatalanguage/astrolib/wcsxy2sph.pro is in gdl-astrolib 2018.02.16+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
;+
; NAME:
;      WCSXY2SPH
;
; PURPOSE:
;      Convert x and y (map) coordinates to spherical coordinates
; EXPLANATION:
;      To convert x and y (map) coordinates to spherical (longitude and
;      latitude or sky) coordinates.    This procedure is the inverse of
;      WCSSPH2XY.
;
;     This is a lower level procedure -- given a FITS header, the user will
;     usually use XYAD which will then call WCSXY2SPH with the appropriate
;     parameters.
; CATEGORY:
;      Mapping and Auxilliary FITS Routine
;
; CALLING SEQUENCE:
;
;      wcsxy2sph, x, y, longitude, latitude, [map_type], [ CTYPE = ,$
;             FACE = , PV1 =, PV2 = ,CRVAL =, CRXY =, LONGPOLE=, LATPOLE=]
;
; INPUT PARAMETERS:
;
;       x - x coordinate of data, scalar or vector, in degrees, NOTE: x
;               increases to the left, not the right
;       y - y coordinate of data, same number of elements as x, in degrees
;       map_type - optional positional parameter, scalar corresponding to a
;               particular map projection.  This is not a FITS standard, it is
;               simply put in to allow function similar to that of less general
;               map projection procedures (eg AITOFF).  The following list gives
;               the map projection types and their respective numbers.
;
;  FITS  Number  Name                       Comments
;  code   code
;  ----  ------  -----------------------    -----------------------------------
;   DEF     0    Default = Plate Carree
;   AZP     1    Zenithal perspective       pv2_1 required
;   TAN     2    Gnomic                     AZP w/ pv2_1 = 0
;   SIN     3    Orthographic               pv2_1, pv2_2 optional
;   STG     4    Stereographic              AZP w/ pv2_1 = 1
;   ARC     5    Zenithal Equidistant
;   ZPN     6    Zenithal polynomial        PV2_0, PV2_1....PV2_20 possible
;   ZEA     7    Zenithal equal area
;   AIR     8    Airy                       pv2_1 required
;   CYP     9    Cylindrical perspective    pv2_1 and pv2_2 required
;   CAR    10    Plate Carree
;   MER    11    Mercator
;   CEA    12    Cylindrical equal area     pv2_1 required
;   COP    13    Conical perspective        pv2_1 and pv2_2 required
;   COD    14    Conical equidistant        pv2_1 and pv2_2 required
;   COE    15    Conical equal area         pv2_1 and pv2_2 required
;   COO    16    Conical orthomorphic       pv2_1 and pv2_2 required
;   BON    17    Bonne's equal area         pv2_1 required
;   PCO    18    Polyconic
;   SFL    19    Sanson-Flamsteed (GLS is allowed as a synonym for SFL)
;   PAR    20    Parabolic
;   AIT    21    Hammer-Aitoff
;   MOL    22    Mollweide
;   CSC    23    Cobe Quadrilateralized     inverse converges poorly
;                Spherical Cube
;   QCS    24    Quadrilateralized
;                Spherical Cube
;   TSC    25    Tangential Spherical Cube
;   SZP    26    Slant Zenithal perspective  PV2_1,PV2_2, PV2_3 optional
;   HPX    27    HEALPix projection          pv2_1 and pv2_2 optional
;   HCT    28    HealCart (Cartesian approximation of Healpix)
;   XPH    29    HEALPix butterfly projection (centred on a pole)
;
; OPTIONAL KEYWORD PARAMETERS:
;
;       CTYPE - One, two, or three element vector containing 8 character
;               strings corresponding to the CTYPE1, CTYPE2, and CTYPE3
;               FITS keywords:
;
;               CTYPE[0] - first four characters specify standard system
;               ('RA--','GLON' or 'ELON' for right ascension, galactic
;               longitude or ecliptic longitude respectively), second four
;               letters specify the type of map projection (eg '-AIT' for
;               Aitoff projection)
;               CTYPE[1] - first four characters specify standard system
;               ('DEC-','GLAT' or 'ELAT' for declination, galactic latitude
;               or ecliptic latitude respectively; these must match
;               the appropriate system of ctype1), second four letters of
;               ctype2 must match second four letters of ctype1.
;               CTYPE[2] - if present must be the 8 character string,'CUBEFACE',
;               only used for spherical cube projections to identify an axis
;               as containing the face on which each x and y pair of
;               coordinates lie.
;       FACE - a input variable used for spherical cube projections to
;               designate the face of the cube on which the x and y
;               coordinates lie.   Must contain the same number of elements
;               as X and Y.
;       CRVAL - 2 element vector containing standard system coordinates (the
;               longitude and latitude) of the reference point
;       CRXY - 2 element vector giving the x and y coordinates of the
;               reference point, if this is not set the offset of the x
;               coordinate is assumed to be 0. 
;               See Calabretta & Griesen Sec 2.5.
;       PV2  - Vector of projection parameter associated with latitude axis
;             PV2 will have up to 21 elements for the ZPN projection, up to 3
;             for the SIN projection and no more than 2 for any other
;             projection.   The first element corresponds to PV2_1, the
;             second to PV2_2, etc.

;    Parameters simply passed to WCS_ROTATE:
;  
;     CRVAL - 2 element vector containing standard system coordinates (the
;               longitude and latitude) of the reference point
;     PV1   - Vector of projection parameters associated with longitude
;     LONGPOLE -  native longitude of standard system's North Pole
;     LATPOLE  -  "target" native latitude of the standard system's North Pole
;
; OUTPUT PARAMETERS:
;
;       longitude - longitude of data, same number of elements as x, in degrees
;       latitude - latitude of data, same number of elements as x, in degrees
;
;       Longitude and latitude will be set to NaN, wherever elements of X,Y
;       have no corresponding longitude, latitude values.
; NOTES:
;       The conventions followed here are described in more detail in the paper
;      "Representations of Celestial Coordinates in FITS" by Calabretta &
;       Greisen (2002, A&A, 395, 1077, also see
;       http://fits.gsfc.nasa.gov/fits_wcs.html).   The general scheme
;       outlined in that article is to convert x and y coordinates into a
;       "native" longitude and latitude and then rotate the system into one of
;       three generally recognized systems (celestial, galactic or ecliptic).
;
;       This procedure necessitates two basic sections.  The first converts
;       x and y coordinates to "native" coordinates while the second converts
;       "native" to "standard" coordinates.  The first section contains the
;       guts of the code in which all of the map projection is done.  The
;       second step is performed by WCS_ROTATE and only involves rotation of
;       coordinate systems.  WCSXY2SPH can be called in a form similar to
;       AITOFF, EQPOLE, or QDCB by calling wcsxy2sph with a fifth parameter
;       specifying the map projection by number and by not using any of the
;       keywords related to the map projection type (eg ctype1 and ctyp2).
;
; PROCEDURE:
;       The first task of the procedure is to do general error-checking to
;       make sure the procedure was called correctly and none of the
;       parameters or keywords conflict.  This is particularly important
;       because the procedure can be called in two ways (either using
;       FITS-type keywords or using a number corresponding a map projection
;       type).  All variables are converted into double precision values.
;
;       The second task of the procedure is to take x and y coordinates and
;       convert them into "native" latitude and longitude coordinates.
;       Map-specific error-checking is done at this time.  All of the
;       equations were obtained from "Representations of Celestial
;       Coordinates in FITS" and cases needing special attention are handled
;       appropriately (see the comments with individual map projections for
;       more information on special cases).     WCS_ROTATE is then called to
;       convert the "native" coordinates to "standard" coordinates by rotating
;       the coordinate system.  This rotation is governed by the keywords
;       CRVAL, and LONGPOLE.  The transformation is a straightforward
;       application of euler angles.  Finally, longitude values are converted
;       into the range from 0 to 360 degrees.
;
; COMMON BLOCKS:
;       none
; PROCEDURES CALLED:
;       WCS_ROTATE
;
; ORIGINAL AUTHOR:
;
;       Rick Balsano  LANL    8/31/93   V1.1
;
; MODIFICATIONS/REVISION LEVEL:
;
; 1.2    9/12/93   W. Landsman Vectorized CRXY, CRVAL, CTYPE
; 1.3    29/12/93  I. Freedman Eliminated LU decomposition
; 1.4    22/09/94  W. Landsman If scalar input, then scalar output
; 1.5    02/03/05  W. Landsman Change variable name BETA for V4.0 compatibility
; 1.6    06/07/05  W. Landsman Change loop index from integer to long
; 1.7    02/18/99  W. Landsman Fixed implementation of ARC algorithm
; 1.8    June 2003 W. Landsman Update conic projections, add LATPOLE keyword
; 1.81   Sep 2003 W. Landsman Avoid divide by zero
; 1.82   Sep 2003 W. Landsman CTYPE keywords need not be 8 characters
; 1.83   Sep 2003 W. Landsman Preserve input array sizes
; 1.9    Jan 2004 W. Landsman don't modify scalars, fix PARabolic code
; 2.0    Feb 2004 W. Landsman Fix AIR and AZP projections
; 2.1    Feb 2004 W. Landsman Fix tangent projection for matrix input
; 3.0    May 2004  W. Landsman Support extended SIN (=NCP), slant zenithal
;                  (SZP), and zenithal polynomial (ZPN) projections, use
;                   PV2 keyword vector instead of PROJP1, PROJP2
; 3.1    May 2004 W. Landsman/J. Ballet Handle NaN values, flag invalid output
;                   for AITOFF projection
; 3.1.1  Dec 2005 W. Landsman/W. Thompson Fixed problem with Airy projection
;                   centered on 90 degree latitude
; 3.1.2  May 2006 W. Landsman/Y.Sato Fix problem selecting the correct root
;                    for the ZPN projection
; 3.2    Aug 2007  W. Landsman Correct treatment of PVi_j parameters
; 3.3    Oct 2007  Sergey Koposov Support HEALPIX projection
; 3.4    May 2012  Benjamin Alan Weaver, Add nonstandard HEALCART 
;                        projection, Allow map_index to be > 25
; 3.4.1  May 2013  W. Landsman Allow GLS as a synonym for SFL 
; 3.5    Jul 2013  J. P. Leahy: Add nonstandard XPH projection and 
;                        improved HEALPix support; changed sign of CRXY
;                        for consistency with WCSSPH2XY; introduced PV1
; 3.5.1  Dec 2013  W. Landsman Return scalar for scalar input for ZPN proj.
;-
PRO wcsxy2sph, x, y, longitude, latitude, map_type, ctype = ctype, $
              face=face, pv2 = pv2, pv1 = pv1, $
              crval=crval, crxy = crxy, longpole = longpole, Latpole = latpole

 compile_opt idl2, hidden
 
; Define angle constants
 pi = !DPI
 radeg = 180d0/!dpi
 pi2 = pi/2.0d
 ;
 ; Please keep the following list up to date in extast as well as here
 ; and in wcssph2xy:
 ;
 map_types=['DEF','AZP','TAN','SIN','STG','ARC','ZPN','ZEA','AIR','CYP',$
            'CAR','MER','CEA','COP','COD','COE','COO','BON','PCO','SFL',$
            'PAR','AIT','MOL','CSC','QSC','TSC','SZP','HPX','HCT','XPH']

; check to see that enough parameters (at least 4) were sent
 if ( N_params() lt 4 ) then begin
    print,'Syntax - WCSXY2SPH, x, y, longitude, latitude,[ map_type,  '
    print,'             CTYPE= , FACE=, PV2= , CRVAL= , CRXY= , '
    print,'             LATPOLE = , LONGPOLE = ]'
    return
 endif else if (n_params() eq 5) then begin
    if keyword_set(ctype) then message,$
  'Use either the MAP_TYPE positional parameter or set the projection type' + $
    'with CTYPE, but not both.'

; set projection_type string using map_type parameter (a number)
  ntypes = n_elements(map_types)
  if (N_ELEMENTS(map_type) eq 1 && map_type ge 0 && $
      map_type lt ntypes) then begin
         projection_type = map_types[map_type]
  endif else message,'MAP_TYPE must be a scalar >= 0 and < '+$
            strtrim(string(ntypes),2)+'; it was set to '+$
            strtrim(string(map_type),2)

endif else if (n_params() eq 4) then wcs_check_ctype, ctype, projection_type 
    ; checks CTYPE format and extract projection type

; GENERAL ERROR CHECKING

; find the number of elements in each of the data arrays
 n_x = n_elements(x)
 n_y = n_elements(y)
 sz_x = size(x)
 sz_y = size(y)
; check to see that the data arrays have the same size
 if (n_x ne n_y) then $
        message,'The arrays X and Y must have the same number of elements.'

; this sets the default map projection type for the cases when map_type or
; projection_type is set to 'DEF' or if projection_type is not set at this
; point.  As suggested in 'Representations of Celestial Coordinates in FITS'
; the default type is set to CAR (Plate Carree) the simplest of all projections.
if (n_elements(projection_type) eq 0) || (projection_type eq 'DEF') then $
   projection_type='CAR'

; Check to make sure all the correct parameters and keywords are set for
; spherical projections.
 if ((N_elements(ctype) EQ 3) || keyword_set(face) ||  $
    (projection_type eq 'CSC') || $
    (projection_type eq 'QSC') || (projection_type eq 'TSC')) then begin

  noface =  ~keyword_set(face)

endif

; check to see if the x and y offsets are set properly.  If not, break out
; of program.  If so, apply offsets.  If the x and y offsets are not set,
; then assume they are zero.

 if ( (keyword_set(crxy)) && N_elements(crxy) NE 2) then $
     message,'Offset keyword CRXY must contain 2 elements'

 if keyword_set(crxy) && ~array_equal(crxy,[0d0,0d0]) then begin
        xx = double(x + crxy[0] )
        yy = double(y + crxy[1] )
 endif else begin
        xx = double(x)
        yy = double(y)
 endelse

 if  ( N_elements(crval) eq 1 ) then $
        message,'CRVAL keyword must be a 2 element vector'

; BRANCH BY MAP PROJECTION TYPE
case strupcase(projection_type) of
  'AZP':begin
  PV2_1 = N_elements(PV2) GE 1 ? PV2[0] : 0.0  ; PV2_1 =mu (spherical radii)
  PV2_2 = N_elements(PV2) GE 2 ? PV2[1] : 0.0  ; PV2_2 = gamma (degrees)

    if (pv2_1 lt 0) then message,$
      'AZP map projection requires the keyword pv2_1 >= 0'
    gamma = pv2_2/radeg
    mu = pv2_1
    r = sqrt(xx^2 + yy^2*cos(gamma)^2)
    rho = r/(radeg*(mu+1) + yy*sin(gamma) )
    omega = asin( rho*mu/ sqrt( rho^2 + 1.d0) )
    xsi = atan(1.d0, rho)
    phi = atan(xx, -yy*cos(gamma) )
    theta1 = xsi - omega
    theta2 = xsi + omega + !dpi
    theta = theta1*0.0
    if abs(mu) LT 1 then begin
          g = where(abs(theta1) LT pi2, Ng)
          if Ng GT 0 then theta[g] = theta1[g]
          g = where(abs(theta2) LT pi2, Ng)
          if Ng GT 0 then theta[g] = theta2[g]
    endif else begin
          diff1 = abs(pi2 - theta1)
          diff2 = abs(pi2 - theta2)
          g = where((diff1 le diff2), Ng)
          if Ng GT 0 then theta[g] = theta1[g]
          g = where( (diff2 LT diff1) , Ng)
          if Ng GT 0 then theta[g] = theta2[g]
    endelse

  end
  'SZP': begin

       mu = N_elements(PV2) GT 0 ? PV2[0] : 0
       phi_c = N_elements(PV2) GT 1 ? PV2[1] : 0
       theta_c = N_elements(PV2) GT 2 ? PV2[2] : 90.0

       phi_c = phi_c/radeg & theta_c = theta_c/radeg
       xp = -mu*cos(theta_c)*sin(phi_c)
       yp =  mu*cos(theta_c)*cos(phi_c)
       zp =  mu*sin(theta_c) + 1.

       xx = xx/radeg  &  yy = yy/radeg
       xb = (xx - xp)/zp & yb = (yy - yp)/zp
       a = xb^2 + yb^2 + 1
       b = xb*(xx - xb) + yb*(yy - yb)
       c = (xx - xb)^2 + (yy - yb)^2 - 1.
       rad = sqrt(b^2 - a*c)
       rad1 = (-b + rad)/a
       rad2 = (-b - rad)/a
       arad1 = abs(rad1)
       arad2 = abs(rad2)
       rad = rad*0.
       g = where((arad1 LE pi2) and (arad2 GT pi2), Ng )
       if Ng GT 0 then rad[g] = rad1[g]
       g = where((arad2 LE pi2) and (arad1 GT pi2), Ng )
       if Ng GT 0 then rad[g] = rad2[g]
       g = where((arad2 LE pi2) and (arad1 LE pi2), Ng )
       if Ng GT 0 then rad[g] = rad2[g] > rad1[g]
       theta = asin(rad)
       phi = atan( xx - xb*(1-sin(theta)), -(yy - yb*(1-sin(theta))) )
        end

  'TAN':begin
    sz_x = size(xx,/dimen)
    if sz_x[0] EQ 0 then theta = pi2 else $
        theta = make_array(value=pi2,dimen = sz_x)     ;Default is 90 degrees
    r = sqrt(xx^2 + yy^2)
    g = where(r GT 0, Ng)
    if Ng GT 0 then theta[g] = atan(radeg/r[g])
    phi = atan(xx,-yy)
  end

  'SIN':begin

    PV2_1 = N_elements(PV2) GE 1 ? PV2[0] : 0.0
    PV2_2 = N_elements(PV2) GE 2 ? PV2[1] : 0.0

    if (pv2_1 EQ 0) && (pv2_2 EQ 0) then begin
       theta = acos(sqrt(xx^2 + yy^2)/radeg)
       phi = atan(xx,-yy)
    endif else begin
       x = xx/radeg & y = yy/radeg
       a = pv2_1^2 + pv2_2^2 + 1
       b = pv2_1*(x - pv2_1) + pv2_2*(y - pv2_2)
       c = (x - pv2_1)^2 + (y - pv2_2)^2 - 1.
       rad = sqrt(b^2 - a*c)
       rad1 = (-b + rad)/a
       rad2 = (-b - rad)/a
       arad1 = abs(rad1)
       arad2 = abs(rad2)
       rad = rad*0.
       g = where((arad1 LE pi2) and (arad2 GT pi2), Ng )
       if Ng GT 0 then rad[g] = rad1[g]
       g = where((arad2 LE pi2) and (arad1 GT pi2), Ng )
       if Ng GT 0 then rad[g] = rad2[g]
       g = where((arad2 LE pi2) and (arad1 LE pi2), Ng )
       if Ng GT 0 then rad[g] = rad2[g] > rad1[g]
       theta = asin(rad)
       phi = atan( x - pv2_1*(1-sin(theta)), -(y - pv2_2*(1-sin(theta))) )
   endelse
  end

  'STG':begin
    theta = pi2 - 2*atan(sqrt(xx^2 + yy^2)/(2.d0*radeg))
    phi = atan(xx, -yy)
  end

  'ARC':begin
    theta = pi2 - sqrt(xx^2 + yy^2)/radeg
    phi = atan(xx, -yy)
  end

  'ZPN':  begin
   rtheta = sqrt(xx^2 + yy^2)/radeg
   phi = atan(xx, -yy)
   g = where(pv2 NE 0, Ng)
   if Ng GT 0 then np = max(g) else np =0
   pv2 = pv2[0:np]
   n = N_elements(xx)
   theta = dblarr(n)
   for i=0, n-1 do begin
      pv = pv2
      pv[0] = pv[0] - rtheta[i]
      gamma = fz_roots(pv)
; Want only the real roots
   good = where( imaginary(gamma) EQ 0, Ng)
   if Ng EQ 0 then message,'ERROR in ZPN computation: no real roots found'
   gamma = double( gamma[good])

; If multiple real roots are found, then we seek the value closest to the
; approximate linear solution

   if Ng GT 1 then begin
        gamma1 = -pv[0]/pv[1]
        dgmin = min(abs(gamma - gamma1), dgmin_index)
        gamma = gamma[dgmin_index]
      good = where( (gamma GE -pi2) and (gamma LE pi2), Ng)
      if Ng EQ 0 then gamma = gamma[0] else gamma = gamma[good[0]]
   endif
   theta[i] = pi2 - gamma
   if size(yy,/N_dimen) EQ 0 then theta = theta[0]    ;Make scalar again
   endfor
  end


  'ZEA':begin
    theta = pi2 - 2.d0*asin(sqrt(xx^2 + yy^2)/(2.d0*radeg))
    phi = atan(xx,-yy)
  end

  'AIR':begin

    if N_elements(PV2) LT 1 then begin
      message,/informational,$
          'pv2_1 not set, using default of pv2_1 = 90 for AIR map projection'
      pv2_1 = 9.d1
    endif else pv2_1 = pv2[0]

; Numerically solve the equation for xi, by iterating the equation for xi.
; The default initial value for xi is 30 degrees, but for some values of
; x and y, this causes an imaginary angle to result for the next iteration of
; xi.  Unfortunately, this causes the value of xi to converge to an incorrect
; value, so the initial xi is adjusted to avoid this problem.
    theta_b = pv2_1/radeg
    xi = theta_b
    zeta_b = (pi2-theta_b)/2.d0
    if (cos(zeta_b) NE 1) then $
      a = alog(cos(zeta_b))/(tan(zeta_b))^2 $
    else a = -0.5d0
    rtheta = sqrt(xx^2 + yy^2)/(2.0d*radeg)

    repeat begin
      bad=where( abs(exp((-rtheta - a*tan(xi))*tan(xi))) gt 1)
      if (bad[0] ne -1) then xi[bad] = xi[bad]/2.d0
    endrep until (bad[0] eq -1)

    tolerance = 1.d-12
    repeat begin

      xi_old = xi
      xi = acos(exp( (-rtheta - a*tan(xi) )*tan(xi)))

    endrep until (max(abs(xi_old - xi)) lt tolerance)

;    print,rtheta,alog(cos(xi))/tan(xi) + a*tan(xi)
    theta = pi2 - 2.d0*xi
    phi = atan(xx,-yy)
  end

  'CYP':begin
    if n_elements(pv2 eq 0) then begin
      message,/informational,$
            'PV2_1 not set, using default of pv2_1 = 0 for CYP map projection'
      pv2_1 = 0.d0
    endif else pv2_1 = pv2[0]
    if N_elements(pv2) LT 2 then begin
      message,/informational,$
            'PV2_2 not set, using default of pv2_2 = 1 for CYP map projection'
      pv2_2 = 1.d0
    endif else pv2_2 = pv2[1]
    if (pv2_1 eq -pv2_2) then message,$
      'PV2_1 = -PV2_2 is not allowed for CYP map projection.'

    eta = yy/((pv2_1 + pv2_2)*radeg)
    theta = atan(eta,1) + asin(eta*pv2_1/sqrt(eta^2 + 1.d0))
    phi = xx/(pv2_2*radeg)
  end

  'CAR':begin
    phi = xx/radeg
    theta = yy/radeg
  end

  'MER':begin
    phi = xx/radeg
    theta = 2*atan(exp(yy/radeg)) - pi2
  end

  'CEA':begin
    if N_elements(PV2) LT 1 then message,$
      'CEA map projection requires that PV2_1 keyword be set.'
    pv2_1 = pv2[0]
    if ((pv2_1 le 0) || (pv2_1 gt 1)) then message,$
      'CEA map projection requires 0 < PV2_1 <= 1'
    phi = xx/radeg
    theta = asin(yy*pv2_1/radeg)
  end

  'COP':begin
    if N_elements(PV2) LT 1 then message,$
      'COP map projection requires that PV2_1 keyword be set.'
    pv2_1 =  pv2[0]
    if N_elements(PV2) LT 2 then begin
      message,/informational,$
      'PV2_2 not set, using default of PV2_2 = 0 for COP map projection'
      pv2_2=0
    endif else pv2_2 = pv2[1]
    if ((pv2_1 lt -90) || (pv2_2 gt 90) || (pv2_1 gt 90)) then message,$
 'pv2_1 and pv2_2 must satisfy -90<=PV2_1<=90, PV2_2<=90 for COP projection'
    if (pv2_1 eq -pv2_2) then message,$
 'COP projection with PV2_1=-PV2_2 is better done as a cylindrical projection'

    theta_a = pv2_1/radeg
    alpha = pv2_2/radeg
    y_0 = radeg*cos(alpha)/tan(theta_a)
    R_theta = sqrt(xx^2+(y_0-yy)^2)
    if pv2_1 LT 0 then R_theta = -R_theta
    theta = theta_a + atan(1.d0/tan(theta_a) - R_theta/$
          (radeg*cos(alpha)))
     phi = atan( xx/R_theta,(y_0-yy)/R_theta )/sin(theta_a)
  end

  'COD':begin
    if N_elements(pv2) LT 1 then message,$
      'COD map projection requires that PV2_1 keyword be set.'
    pv2_1 = pv2[0]
    if N_elements(pv2) LT 2 then begin
      message,/informational,$
     'PV2_2 not set, using default of PV2_2 = 0 for COD map projection'
      pv2_2 = 0
    endif else pv2_2 = pv2[1]
    if ((pv2_1 lt -90) || (pv2_2 gt 90) || (pv2_1 gt 90)) then message,$
 'pv2_1 and pv2_2 must satisfy -90<=pv2_1<=90,pv2_2<=90 for COD projection'

; use general set of equations for pv2_1 not = pv2_2
    theta_a = pv2_1/radeg

    if (pv2_2 NE 0) then begin
      alpha = pv2_2/radeg
      C = sin(theta_a)*sin(alpha)/alpha
      Y_0 = radeg*alpha/tan(alpha)/tan(theta_a)
      R_theta = sqrt(xx^2+(y_0-yy)^2)
      if pv2_1 LT 0 then R_theta = -R_theta
       theta = theta_a + alpha/(tan(alpha)*tan(theta_a))-  R_theta/radeg
; use special set of equations for pv2_1 = pv2_2
    endif else begin
      C = sin(theta_a)
      y_0 = radeg/tan(theta_a)
     R_theta = sqrt(xx^2+(y_0-yy)^2)
     if pv2_1 LT 0 then R_theta = -R_theta
      theta = theta_a + 1.0d/tan(theta_a) - R_theta/radeg
   endelse
    phi = atan( xx/R_theta,(y_0-yy)/R_theta )/C
   end

  'COE':begin
    if N_elements(pv2) LT 1 then message,$
      'COE map projection requires that pv2_1 keyword be set.'
    pv2_1 = pv2[0]
    if N_elements(pv2) LT 2 then begin
      message,/informational,$
      'pv2_2 not set, using default of pv2_2 = 0 for COE map projection'
      pv2_2 = 0
    endif else pv2_2 = pv2[1]
    if ((pv2_1 lt -90) || (pv2_2 gt 90) || (pv2_1 gt 90)) then message,$
 'pv2_1 and pv2_2 must satisfy -90<=pv2_1<=90,pv2_2<=90 for COE projection'
    theta_a = pv2_1/radeg
    eta = pv2_2/radeg
    theta1 = (theta_a - eta)
     theta2 = (theta_a + eta)
    s_1 = sin( theta1)
    s_2 = sin( theta2)
    stheta_a = sin(theta_a)
    gamma = s_1 + s_2
    C = gamma/2
    y_0 = radeg*2.d0*sqrt(1.d0 + s_1*s_2 - gamma*stheta_a)/gamma
    R_theta = (xx^2+(y_0-yy)^2)
    if pv2_1 LT 0 then R_theta = -R_theta
    phi = 2*atan(xx/R_theta,(y_0 - yy)/R_theta)/gamma
    theta = asin((1.d0 + s_1*s_2-(xx^2+(y_0-yy)^2)*(gamma/(2.d0*radeg))^2)/gamma)

  end

  'COO':begin
    if N_elements(pv2) LT 1 then message,$
      'COO map projection requires that pv2_1 keyword be set.'
    pv2_1 = pv2[0]
    if N_elements(pv2) LT 2 then begin
      message,/informational,$
      'pv2_2 not set, using default of pv2_2 = 0 for COO map projection'
      pv2_2 = 0
    endif else  pv2_2 = pv2[1]
    if ((pv2_1 lt -90) || (pv2_2 gt 90) || (pv2_1 gt 90)) then message,$
 'pv2_1 and pv2_2 must satisfy -90<=pv2_1<=90,pv2_2<=90 for COO projection'
    theta_1 = (pv2_1 - pv2_2)/radeg
    theta_2 = (pv2_1 + pv2_2)/radeg
    theta_a = pv2_1/radeg


; calculate value of c in simpler fashion if pv2_1 = pv2_2
    if (theta_1 eq theta_2) then c = sin(theta_1) else $
    c = alog(cos(theta_2)/cos(theta_1))/alog(tan((pi2-theta_2)/2.d0)/$
    tan((pi2-theta_1)/2.d0))

    alpha = radeg*cos(theta_1)/(c*(tan((pi2-theta_1)/2.d0))^c)
    Y_0 = alpha*(tan((pi2-theta_a)/2.d0)^c)
    R_theta = sqrt(xx^2+(y_0-yy)^2)
    if pv2_1 LT 0 then R_theta = -R_theta
     phi = atan( xx/R_theta,(y_0-yy)/R_theta )/C
    theta = pi2 - 2*atan((R_theta/alpha)^(1.d0/c))
  end

  'BON':begin
    if (N_elements(pv2) LT 1) then message,$
      'BON map projection requires that PV2_1 keyword be set.'
    pv2_1 = pv2[0]
    if ((pv2_1 lt -90) || (pv2_1 gt 90)) then message,$
      'pv2_1 must satisfy -90 <= pv2_1 <= 90 for BON map projection'
    if (pv2_1 eq 0) then message,$
      'pv2_1 = 0 for BON map projection is better done with SFL map projection'
    theta_1 = pv2_1/radeg
    y_0 = 1.d0/tan(theta_1) + theta_1
    s = theta_1/abs(theta_1)
    theta = y_0 - s*sqrt(xx^2 + (y_0*radeg - yy)^2)/radeg
    phi = s*(y_0 - theta)*atan(s*xx/(y_0*radeg - theta),$
                               (y_0*radeg - yy)/(y_0*radeg - theta))/cos(theta)
  end

  'PCO':begin
; Determine where y = 0 and assign theta to 0 for these points.  The reason
; for doing this separately is that the initial condition for theta in the
; numerical solution is sign(y)*45 which only works for y not = 0.
    bad = where(yy eq 0)
    good = where(yy ne 0)
    theta = double(xx - xx)
    if (bad[0] ne -1) then theta[bad] = 0.d0

; Find theta numerically.
    tolerance = 1.d-11
    tolerance_2 = 1.d-11
    if (good[0] ne -1) then begin
      theta_p = double(xx - xx)
      theta_p[good] = pi2*yy[good]/abs(yy[good])
      theta_n = double(xx - xx)
      f_p = double(xx - xx)
      f_p[good] = xx[good]^2 - 2.d0*radeg*(yy[good] - radeg*theta_p[good])/$
                  tan(theta_p[good]) + (yy[good] - radeg*theta_p[good])^2
      f_n = double(xx - xx) - 999.d0
      lambda = double(xx - xx)
      f = double(xx - xx)
      repeat begin
        case_1 = where((yy ne 0.d0) and (f_n lt (-1.d2)))
        case_2 = where((yy ne 0.d0) and (f_n ge (-1.d2)))
        if (case_1[0] ne -1) then lambda[case_1] = 0.5d0
        if (case_2[0] ne -1) then $
          lambda[case_2] = f_p[case_2]/(f_p[case_2] - f_n[case_2])
        lambda[good] = 1.d-1 > (9.d-1 < lambda[good])
        theta[good] = (1.d0 - lambda[good])*theta_p[good] + $
                      lambda[good]*theta_n[good]
        f[good] = xx[good]^2 - 2.d0*radeg*(yy[good] - radeg*theta[good])/$
                  tan(theta[good]) + (yy[good] - radeg*theta[good])^2
        neg = where((yy ne 0.d0) and (f lt 0.d0))
        pos = where((yy ne 0.d0) and (f gt 0.d0))
        if (neg[0] ne -1) then begin
          f_n[neg] = f[neg]
          theta_n[neg] = theta[neg]
        end
        if (pos[0] ne -1) then begin
          f_p[pos] = f[pos]
          theta_p[pos] = theta[pos]
        end
      endrep until ((max(abs(theta_p - theta_n)) lt tolerance) || $
                    (max(abs(f)) lt tolerance_2))
    endif

; Determine phi differently depending on whether theta = 0 or not.
    bad = where(theta eq 0.d0)
    good = where(theta ne 0.d0)
    phi = double(x - x)
    if (bad[0] ne -1) then phi[bad] = xx[bad]/radeg
    phi[good] = atan(xx[good]/radeg*tan(theta[good]),$
       1.d0 - (yy[good]/radeg - theta[good])*tan(theta[good]))/sin(theta[good])
  end

  'SFL':begin
    phi = xx/(radeg*cos(yy/radeg))
    theta = yy/radeg
  end

  'GLS':begin
    phi = xx/(radeg*cos(yy/radeg))
    theta = yy/radeg
  end


  'PAR':begin

    theta = 3.d0*asin(yy/pi/radeg)
    phi = xx/(1.d0 - 4.d0*(yy/pi/radeg)^2)/radeg
  end

  'AIT':begin
  z2 = 1.d0 - (xx/(4.d0*radeg))^2 - (yy/(2.d0*radeg))^2
  bad = where(z2 lt 0.5d0,nbad)
  z = sqrt(z2)
  phi = 2.d0*atan(z*xx/(2.d0*radeg),2.d0*z^2 - 1.d0)
  theta = asin(yy*z/radeg)
  if nbad gt 0 then begin
       phi[bad] = !values.d_nan
      theta[bad] = !values.d_nan
   endif

  end

  'MOL':begin
    phi = pi*xx/(radeg*2.d0*sqrt(2.d0 - (yy/radeg)^2))
    arg = 2.d0*asin(yy/(sqrt(2.d0)*radeg))/pi + $
                 yy*sqrt(2.d0 - (yy/radeg)^2)/1.8d2

   theta = asin(2.d0*asin(yy/(sqrt(2.d0)*radeg))/pi + $
                 yy*sqrt(2.d0 - (yy/radeg)^2)/1.8d2)

  end

  'CSC':begin
    xx = xx/4.5d1
    yy = yy/4.5d1

;
;   If the faces are not defined, assume that the faces need to be defined
;   and the whole sky is displayed as a "sideways T".
;
        if noface eq 1 then begin

                face=intarr(n_elements(xx))

                face1 = where((xx le 1.0) and (yy le 1.0) and (yy ge -1.0),nf1)
                if nf1 gt 0 then begin
                        face[face1]=1
                endif

                face4 = where((xx gt 5.0),nf4)
                if nf4 gt 0 then begin
                        face[face4]=4
                        xx[face4]=xx[face4]-6.0d0
                endif

                face3 = where((xx le 5.0) and (xx gt 3.0),nf3)
                if nf3 gt 0 then begin
                        face[face3]=3
                        xx[face3]=xx[face3]-4.0d0
                endif

                face2 = where((xx le 3.0) and (xx gt 1.0),nf2)
                if nf2 gt 0 then begin
                        face[face2]=2
                        xx[face2]=xx[face2]-2.0d0
                endif

                face0 = where((xx le 1.0) and (yy gt 1.0),nf0)
                if nf0 gt 0 then begin
                        face[face0]=0
                        yy[face0]=yy[face0] - 2.0
                endif

                face5 = where((xx le 1.0) and (yy lt -1.0),nf5)
                if nf5 gt 0 then begin
                        face[face5]=5
                        yy[face5]=yy[face5] + 2.0
                endif

        endif

; Define array of numerical constants used in determining alpha and beta1.
    p = dblarr(7,7)
    p[0,0] = -0.27292696d0
    p[1,0] = -0.07629969d0
    p[0,1] = -0.02819452d0
    p[2,0] = -0.22797056d0
    p[1,1] = -0.01471565d0
    p[0,2] = 0.27058160d0
    p[3,0] = 0.54852384d0
    p[2,1] = 0.48051509d0
    p[1,2] = -0.56800938d0
    p[0,3] = -0.60441560d0
    p[4,0] = -0.62930065d0
    p[3,1] = -1.74114454d0
    p[2,2] = 0.30803317d0
    p[1,3] = 1.50880086d0
    p[0,4] = 0.93412077d0
    p[5,0] = 0.25795794d0
    p[4,1] = 1.71547508d0
    p[3,2] = 0.98938102d0
    p[2,3] = -0.93678576d0
    p[1,4] = -1.41601920d0
    p[0,5] = -0.63915306d0
    p[6,0] = 0.02584375d0
    p[5,1] = -0.53022337d0
    p[4,2] = -0.83180469d0
    p[3,3] = 0.08693841d0
    p[2,4] = 0.33887446d0
    p[1,5] = 0.52032238d0
    p[0,6] = 0.14381585d0

; Calculate alpha and beta1 using numerical constants
    sum = double(x - x)
    for j = 0,6 do for i = 0,6 - j do sum = sum + p[i,j]*xx^(2*i)*yy^(2*j)
    alpha = xx + xx*(1 - xx^2)*sum

    sum = double(x - x)
    for j = 0,6 do for i = 0,6 - j do sum = sum + p[i,j]*yy^(2*i)*xx^(2*j)
    beta1 = yy + yy*(1 - yy^2)*sum

; Calculate theta and phi from alpha and beta1; the method depends on which
; face the point lies on
    phi = double(x - x)
    theta = double(x - x)
    for i = 0l, n_x - 1 do begin
      case face[i] of
        0:begin
          if (beta1[i] eq 0.d0) then begin
            if (alpha[i] eq 0.d0) then begin
              theta[i] = pi2
; uh-oh lost information if this happens
              phi[i] = 0.d0
            endif else begin
              phi[i] = alpha[i]/abs(alpha[i])*pi2
              theta[i] = atan(abs(1.d0/alpha[i]))
            endelse
          endif else begin
            phi[i] = atan(alpha[i],-beta1[i])
            theta[i] = atan(-cos(phi[i])/beta1[i])
          endelse
; ensure that the latitudes are positive
          theta[i] = abs(theta[i])
        end
        1:begin
          phi[i] = atan(alpha[i])
          theta[i] = atan(beta1[i]*cos(phi[i]))
        end
        2:begin
          if (alpha[i] eq 0.d0) then phi[i] = pi2 else $
            phi[i] = atan(-1.d0/alpha[i])
          if (phi[i] lt 0.d0) then phi[i] = phi[i] + pi
          theta[i] = atan(beta1[i]*sin(phi[i]))
        end
        3:begin
          phi[i] = atan(alpha[i])
          if (phi[i] gt 0.d0) then phi[i] = phi[i] - pi else $
          if (phi[i] lt 0.d0) then phi[i] = phi[i] + pi
          theta[i] = atan(-beta1[i]*cos(phi[i]))
        end
        4:begin
          if (alpha[i] eq 0.d0) then phi[i] = -pi2 else $
            phi[i] = atan(-1.d0/alpha[i])
          if (phi[i] gt 0.d0) then phi[i] = phi[i] - pi
          theta[i] = atan(-beta1[i]*sin(phi[i]))
        end
        5:begin
          if (beta1[i] eq 0.d0) then begin
            if (alpha[i] eq 0.d0) then begin
              theta[i] = -pi2
; uh-oh lost information if this happens
              phi[i] = 0.d0
            endif else begin
              phi[i] = -alpha[i]/abs(alpha[i])*pi2
              theta[i] = -atan(abs(1.d0/alpha[i]))
            endelse
          endif else begin
            phi[i] = atan(alpha[i],beta1[i])
            theta[i] = atan(-cos(phi[i])/beta1[i])
          endelse
; ensure that the latitudes are negative
          theta[i] = -abs(theta[i])
        end

      endcase
    endfor
  end

  'QSC':begin

    xx=xx/45.0d0
    yy=yy/45.0d0
;
;   If the faces are not defined, assume that the faces need to be defined
;   and the whole sky is displayed as a "sideways T".
;
        if noface eq 1 then begin

                face=intarr(n_elements(xx))

                face1 = where((xx le 1.0) and (yy le 1.0) and (yy ge -1.0),nf1)
                if nf1 gt 0 then begin
                        face[face1]=1
                endif

                face4 = where((xx gt 5.0),nf4)
                if nf4 gt 0 then begin
                        face[face4]=4
                        xx[face4]=xx[face4]-6.0d0
                endif

                face3 = where((xx le 5.0) and (xx gt 3.0),nf3)
                if nf3 gt 0 then begin
                        face[face3]=3
                        xx[face3]=xx[face3]-4.0d0
                endif

                face2 = where((xx le 3.0) and (xx gt 1.0),nf2)
                if nf2 gt 0 then begin
                        face[face2]=2
                        xx[face2]=xx[face2]-2.0d0
                endif

                face0 = where((xx le 1.0) and (yy gt 1.0),nf0)
                if nf0 gt 0 then begin
                        face[face0]=0
                        yy[face0]=yy[face0] - 2.0
                endif

                face5 = where((xx le 1.0) and (yy lt -1.0),nf5)
                if nf5 gt 0 then begin
                        face[face5]=5
                        yy[face5]=yy[face5] + 2.0
                endif

        endif


; First determine the quadrant in which each points lies.  Calculate the
; ratio (alpha/beta1) for each point depending on the quadrant.  Finally,
; use this information and the face on which the point lies to calculate
; phi and theta.
    theta = double(x - x)
    phi = double(x - x)
    rho = double(x - x)
    ratio = double(x - x)
    larger = double(x - x)
    smaller = double(x - x)

    temp = where(abs(yy) ge abs(xx), Ntemp)
    if Ntemp GT 0 then larger[temp] = yy[temp]
    temp = where(abs(xx) gt abs(yy), Ntemp )
    if Ntemp GT 0 then larger[temp] = xx[temp]
    temp = where(abs(yy) lt abs(xx), Ntemp )
    if Ntemp GT 0 then smaller[temp] = yy[temp]
    temp = where(abs(xx) le abs(yy), Ntemp)
    if Ntemp GT 0 then smaller[temp] = xx[temp]

    temp = where(larger ne 0.d0, Ntemp)
    if Ntemp GT 0 then ratio[temp] = sin(pi/1.2d1*smaller[temp]/larger[temp])/$
                      (cos(pi/1.2d1*smaller[temp]/larger[temp]) - sqrt(0.5d0))

    temp = where(larger eq 0.d0, Ntemp)
    if Ntemp GT 0 then ratio[temp] = 1.d0
    rho = 1.d0 - (larger)^2*(1.d0 - 1.d0/sqrt(2.d0 + ratio^2))

    temp = where((abs(xx) gt abs(yy)) and (ratio ne 0.d0), Ntemp)
    if Ntemp GT 0 then ratio[temp] = 1.d0/ratio[temp]

    temp = where((abs(xx) gt abs(yy)) and (ratio eq 0.d0), Ntemp)
; use a kludge to produce the correct value for 1/0 without generating an error
    if Ntemp GT 0 then ratio[temp] = tan(pi2)

    for i = 0l, n_x-1 do begin
      case face[i] of
        0:begin
          if (xx[i] ne 0.d0) then phi[i] = atan(-ratio[i]) else $
          if (yy[i] le 0.d0) then phi[i] = 0.d0 else $
          if (yy[i] gt 0.d0) then phi[i] = pi

          if (yy[i] ne 0.d0) then theta[i] = asin(rho[i]) else $
          if (xx[i] le 0.d0) then theta[i] = -pi2 else $
          if (xx[i] gt 0.d0) then theta[i] = pi2

          if (yy[i] gt 0.d0) then begin
            if (xx[i] lt 0.d0) then phi[i] = phi[i] - pi $
            else if (xx[i] gt 0.d0) then phi[i] = phi[i] + pi
          endif
        end
        1:begin
          if (xx[i] ne 0.d0) then begin
            if (yy[i] ne 0.d0) then $
             phi[i] = xx[i]/abs(xx[i])*acos(sqrt(rho[i]^2*(1.d0 + ratio[i]^2)/$
                             (ratio[i]^2 + rho[i]^2))) $
            else phi[i] = xx[i]/abs(xx[i])*acos(rho[i])
          endif else phi[i] = 0.d0
          if (yy[i] ne 0.d0) then theta[i] = yy[i]/abs(yy[i])*acos(rho[i]/$
                                            cos(phi[i])) else theta[i] = 0.d0
        end
        2:begin
          if (yy[i] ne 0.d0) then begin
            if (xx[i] gt 0.d0) then $
               phi[i] = pi - asin(sqrt(rho[i]^2*(1.d0 + ratio[i]^2)/$
                             (ratio[i]^2 + rho[i]^2))) $
            else if (xx[i] lt 0.d0) then $
               phi[i] = asin(sqrt(rho[i]^2*(1.d0 + ratio[i]^2)/$
                             (ratio[i]^2 + rho[i]^2))) $
            else phi[i] = pi2
            theta[i] = yy[i]/abs(yy[i])*acos(rho[i]/abs(sin(phi[i])))
          endif else begin
            theta[i] = 0.d0
            if (xx[i] gt 0.d0) then phi[i] = pi - asin(rho[i]) $
            else if (xx[i] lt 0.d0) then phi[i] = asin(rho[i]) $
            else phi[i] = pi2
          endelse
        end
        3:begin
          if (yy[i] ne 0.d0) then begin
            if (xx[i] gt 0.d0) then $
              phi[i] = acos(sqrt(rho[i]^2*(1.d0 + ratio[i]^2)/$
                            (ratio[i]^2 + rho[i]^2))) - pi $
            else if (xx[i] lt 0.d0) then $
              phi[i] = -acos(sqrt(rho[i]^2*(1.d0 + ratio[i]^2)/$
                       (ratio[i]^2 + rho[i]^2))) + pi $
            else phi[i] = pi
            theta[i] = yy[i]/abs(yy[i])*acos(-rho[i]/cos(phi[i]))
          endif else begin
            theta[i] = 0.d0
            if (xx[i] gt 0.d0) then phi[i] = acos(rho[i]) - pi $
            else if (xx[i] lt 0.d0) then phi[i] = -acos(rho[i]) + pi $
            else phi[i] = pi
          endelse
        end
        4:begin
          if (yy[i] ne 0.d0) then begin
            if (xx[i] gt 0.d0) then $
               phi[i] = -asin(sqrt(rho[i]^2*(1.d0 + ratio[i]^2)/$
                             (ratio[i]^2 + rho[i]^2))) $
            else if (xx[i] lt 0.d0) then $
               phi[i] = asin(sqrt(rho[i]^2*(1.d0 + ratio[i]^2)/$
                             (ratio[i]^2 + rho[i]^2))) - pi $
            else phi[i] = -pi2
            theta[i] = yy[i]/abs(yy[i])*acos(-rho[i]/sin(phi[i]))
          endif else begin
            theta[i] = 0.d0
            if (xx[i] gt 0.d0) then phi[i] = -asin(rho[i]) $
            else if (xx[i] lt 0.d0) then phi[i] = asin(rho[i]) - pi $
            else phi[i] = -pi2
          endelse
        end
        5:begin
          if (xx[i] ne 0.d0) then phi[i] = atan(ratio[i]) $
          else if (yy[i] le 0.d0) then phi[i] = pi $
          else if (yy[i] gt 0.d0) then phi[i] = 0.d0

          if (yy[i] ne 0.d0) then theta[i] = asin(-rho[i]) $
          else if (xx[i] le 0.d0) then theta[i] = -pi2 $
          else if (xx[i] gt 0.d0) then theta[i] = pi2

          if (yy[i] lt 0.d0) then begin
            if (xx[i] lt 0.d0) then phi[i] = phi[i] - pi $
            else if (xx[i] gt 0.d0) then phi[i] = phi[i] + pi
          endif
        end
      endcase
    endfor
  end

  'TSC':begin

    xx=xx/45.0d0
    yy=yy/45.0d0
;
;   If the faces are not defined, assume that the faces need to be defined
;   and the whole sky is displayed as a "sideways T".
;
        if noface eq 1 then begin

                face=intarr(n_elements(xx))

                face1 = where((xx le 1.0) and (yy le 1.0) and (yy ge -1.0),nf1)
                if nf1 gt 0 then begin
                        face[face1]=1
                endif

                face4 = where((xx gt 5.0),nf4)
                if nf4 gt 0 then begin
                        face[face4]=4
                        xx[face4]=xx[face4]-6.0d0
                endif

                face3 = where((xx le 5.0) and (xx gt 3.0),nf3)
                if nf3 gt 0 then begin
                        face[face3]=3
                        xx[face3]=xx[face3]-4.0d0
                endif

                face2 = where((xx le 3.0) and (xx gt 1.0),nf2)
                if nf2 gt 0 then begin
                        face[face2]=2
                        xx[face2]=xx[face2]-2.0d0
                endif

                face0 = where((xx le 1.0) and (yy gt 1.0),nf0)
                if nf0 gt 0 then begin
                        face[face0]=0
                        yy[face0]=yy[face0] - 2.0
                endif

                face5 = where((xx le 1.0) and (yy lt -1.0),nf5)
                if nf5 gt 0 then begin
                        face[face5]=5
                        yy[face5]=yy[face5] + 2.0
                endif

        endif

    rho = sin(atan(1.0d0/sqrt(xx^2 + yy^2)))
    phi = double(x - x)
    theta = double(x - x)
    for i = 0l, n_x - 1 do begin
      case face[i] of
        0:begin
          phi[i] = atan(xx[i],-yy[i])
          theta[i] = asin(rho[i])
        end
        1:begin
          if (xx[i] ne 0.d0) then begin
            if (xx[i] ge 0.d0) then $
             phi[i] = atan(sqrt((1.d0/rho[i]^2- 1.d0)/(1 + (yy[i]/xx[i])^2))) $
            else phi[i] =atan(-sqrt((1.d0/rho[i]^2 - 1.d0)/$
                               (1 + (yy[i]/xx[i])^2)))
            theta[i] = atan(yy[i]/xx[i]*sin(phi[i]))
          endif else begin
            phi[i] = 0.d0
            if (yy[i] ge 0.d0) then theta[i] = acos(rho[i]) $
            else theta[i] = -acos(rho[i])
          endelse
        end
        2:begin
; The point theta = 0, phi = Pi/2 lies in this region, allowing
; rho = Cos[theta]*Sin[phi] to be 1, causing an infinite quantity in the
; equation for phi
          if (rho[i] eq 1.d0) then begin
            phi[i] = pi2
            theta[i] = 0.d0
          endif else if (xx[i] gt 1.d-14) then begin
           phi[i] = atan(-sqrt((1.d0 + (yy[i]/xx[i])^2)/$
                                (1.d0/rho[i]^2 - 1.d0)))+pi
            theta[i] = atan(-yy[i]/xx[i]*cos(phi[i]))
          endif else if (xx[i] lt -1.d-14) then begin
            phi[i]=atan(sqrt((1.d0+(yy[i]/xx[i])^2)/(1.d0/rho[i]^2 - 1.d0)))
            theta[i] = atan(-yy[i]/xx[i]*cos(phi[i]))
          endif else begin
             phi[i] = pi2
            if (yy[i] ge 0) then theta[i] = acos(rho[i]/sin(phi[i])) $
            else theta[i] = -acos(rho[i]/sin(phi[i]))
          endelse
        end
        3:begin
          if (abs(xx[i]) ge 1.d-5) then begin
            if (xx[i] gt 0.d0) then $
           phi[i] = atan(sqrt((1.d0/rho[i]^2 - 1.d0)/$
                          (1 + (yy[i]/xx[i])^2)))-pi $
        else phi[i] = atan(-sqrt((1.d0/rho[i]^2 - 1.d0)/$
                            (1 + (yy[i]/xx[i])^2)))+pi
            theta[i] = atan(-yy[i]/xx[i]*sin(phi[i]))
          endif else begin
            if (xx[i] ge 0.d0) then phi[i] = -pi $
            else phi[i] = pi
            if (yy[i] ge 0) then theta[i] = acos(rho[i]) $
            else theta[i] = -acos(rho[i])
          endelse
        end
        4:begin
          if (rho[i] eq 1.d0) then begin
            phi[i] = -pi2
            theta[i] = atan(yy[i]/xx[i])
          endif else if (xx[i] gt 1.d-14) then begin
           phi[i]=atan(-sqrt((1.d0 + (yy[i]/xx[i])^2)/(1.d0/rho[i]^2 - 1.d0)))
            theta[i] = atan(yy[i]/xx[i]*cos(phi[i]))
          endif else if (xx[i] lt -1.d-14) then begin
            phi[i]=atan(sqrt((1.d0+(yy[i]/xx[i])^2)/(1.d0/rho[i]^2 - 1.d0)))-pi
            theta[i] = atan(yy[i]/xx[i]*cos(phi[i]))
          endif else begin
             phi[i] = 1.5d0*!pi
            if (yy[i] ge 0) then theta[i] = acos(rho[i]) $
            else theta[i] = -acos(rho[i])
          endelse
        end
        5:begin
          phi[i] = atan(xx[i],yy[i])
          theta[i] = asin(-rho[i])
        end

      endcase
    endfor
  end

  'HPX':begin ; HEALPix projection
              ; See Calabretta & Roukema 2007, MNRAS, 381, 865

    pv2_1 = N_ELEMENTS(pv2) GE 1 ? pv2[0] : 4.d
    pv2_2 = N_ELEMENTS(pv2) GE 2 ? pv2[1] : 3.d
    hpx_k = pv2_2                  ; The main generalised HEALPIX parameters
    hpx_h = pv2_1                  ;
    ik = ROUND(hpx_k)
    ih = ROUND(hpx_h)
    IF (ik le 0 || ih le 0) THEN MESSAGE, $
      'Illegal PV2 array:' + STRCOMPRESS(STRJOIN(pv2,/single))+ $
      '; should be positive integers'

    phi   = xx ; Create theta & phi arrays in same shape as xx & yy.
    theta = yy ;

                            ; Is pixel is in an unoccupied facet ?
    invfd = ih / 360d0      ; inverse facet diagonal
    wdiag = ik / 2          ; Semi-width of occupied diagonal in facets

    IF ik THEN BEGIN               ; Odd K (including standard HEALPix):
      xoff = ih + wdiag + 1 ? 0.5d0 : 0d0
      ix   = ROUND( (xx + yy)*invfd + xoff ) ; Facet indices
      diag = ROUND( (yy - xx)*invfd - xoff ) + wdiag + TEMPORARY(ix)
    ENDIF ELSE BEGIN               ; Even K
                                   ; Row offset for (0,0) depends on
                                   ; whether h is odd or even:
      yoff = ih + (ik-1)/2 ? -0.25d0 : 0.25d0
      ioff = ih ? 2*((ik-2)/4) + 1 : 2*(ik/4)
      ix   = ROUND( (xx + yy)*invfd + yoff )
      diag = ROUND( (yy - xx)*invfd + yoff ) + ioff  + TEMPORARY(ix)
    ENDELSE
    hpx_good = WHERE(diag LT ik AND diag GE 0, COMPLEMENT = hpx_bad)
    if hpx_bad[0] ne -1 then begin ; Set coords of off-sky pixels to NaN:
      phi[hpx_bad]   = !VALUES.D_NAN
      theta[hpx_bad] = !VALUES.D_NAN
    endif
 
    ylim = 90*(ik-1)/hpx_h

    eqfaces = -1
    polfaces = -1
    IF hpx_good[0] NE -1 THEN BEGIN
        equas = where(abs(yy[hpx_good]) le ylim, complement=poles)
        IF equas[0] NE -1 THEN eqfaces  = hpx_good[TEMPORARY(equas)]
        IF poles[0] NE -1 THEN polfaces = hpx_good[TEMPORARY(poles)]
    ENDIF
    hpx_good = 0
 
                                ; equatorial region
    if eqfaces[0] ne -1 then begin
        phi[eqfaces]=xx[eqfaces]/radeg
        theta[eqfaces]=asin(yy[eqfaces]*(hpx_h/(ik*90)))
; Allow wrapped values of x, so following commented out:
;       hpx_bad = where(xx[eqfaces] lt -180.D or xx[eqfaces] gt 180.D)
;       if hpx_bad[0] ne -1 then begin
;           phi[eqfaces[hpx_bad]]=!VALUES.D_NAN
;           theta[eqfaces[hpx_bad]]=!VALUES.D_NAN
;       endif
    endif

                                ; polar regions
    if polfaces[0] ne -1 then begin
      hpx_sig = (ik+1)/2.D - abs(yy[polfaces])*(hpx_h/180d)
      hpx_omega = FIX((hpx_k mod 2 eq 1) or yy[polfaces] gt 0)
      hpx_xc = -180 + (2 * floor( (xx[polfaces]+180d0)*hpx_h/360d0 + $
                                (1-hpx_omega)/2d0 ) $
                       + hpx_omega) * 180d0/hpx_h

      poles = where(hpx_sig EQ 0.D) ; Avoid divide by zero at poles
      IF poles[0] NE -1 THEN hpx_sig[poles] = 1.D
      phi[polfaces] = ( hpx_xc + (xx[polfaces]-hpx_xc)/hpx_sig ) / radeg
      theta[polfaces] = ((yy[polfaces] gt 0)*2-1)*asin(1-hpx_sig^2/hpx_k)
      IF poles[0] NE -1 THEN BEGIN
          phi[polfaces[poles]] = hpx_xc[poles] / radeg
          theta[polfaces[poles]] = $
               ((yy[polfaces[poles]] gt 0)*2-1) * !dpi/2d0
      ENDIF
    endif
  end

  'HCT':begin
    phi = xx/radeg
    theta = dblarr(n_elements(yy))
    ylim = 90*(3-1)/4
    w_np = where(yy ge ylim, n_np)
    w_eq = where((yy lt ylim) and (yy gt -ylim), n_eq)
    w_sp = where(yy le -ylim, n_sp)

    if n_np gt 0 then theta[w_np] =  asin(1-(2-yy[w_np]/ylim)^2/3.d)
    if n_eq gt 0 then theta[w_eq] =  asin((yy[w_eq]/ylim)*2./3.d)
    if n_sp gt 0 then theta[w_sp] = -asin(1-(2+yy[w_sp]/ylim)^2/3.d)
  end

  'XPH':begin ; Butterfly re-arrangement of HPX, see Calabretta & Lowe (2013)
;                                
; xx, yy reference point is the pole which is in the centre of the
; grid. Diagonal length in IWC is 360deg/sqrt(2)
;
; identify on-sky & off-sky pixels:
     scale = 1d0/sqrt(2d0)
     halfwidth = 180d0*scale
     quarter   =  90d0*scale    
     dg1 = (xx + yy)
     dg2 = (xx - yy)
     good = WHERE( xx ge -halfwidth AND xx le halfwidth AND $
                   yy ge -halfwidth AND yy le halfwidth AND $
                   ((dg1 ge -quarter  AND dg1 le quarter)  OR $
                    (dg2 ge -quarter  AND dg2 le quarter)), ngood, $
                   COMPLEMENT = bad, NCOMPLEMENT = nbad)     

     scalar = sz_x[0] EQ 0
     dims = scalar ? 1 : sz_x[1:sz_x[0]]
     phi = DBLARR(dims,/NOZERO) & theta = DBLARR(dims,/NOZERO)
     
     IF nbad GT 0 THEN BEGIN
        phi[bad] = !values.D_NAN
        theta[bad] = !values.D_NAN
        bad = 0
     ENDIF
     IF ngood GT 0 THEN BEGIN
        dg1 = dg1[good]*scale
        dg2 = dg2[good]*scale
        
        xi  = DBLARR(ngood,/NOZERO)
        eta = DBLARR(ngood,/NOZERO)
        phig = DBLARR(ngood)
                              ; transform xy coords from XPH to HPX
        xq = xx[good] ge 0d0  ; true on LHS of projection
        yq = yy[good] ge 0d0  ; true in top half of projection
               
        quad = WHERE(~xq AND yq)  ; upper right
        IF quad[0] ne -1 THEN BEGIN
           xi[quad]   = -dg1[quad]
           eta[quad]  =  dg2[quad]
           phig[quad] = -180d0 
        ENDIF
        quad = WHERE(~xq AND ~yq) ; lower right
        IF quad[0] ne -1 THEN BEGIN
           xi[quad]   =  dg2[quad]
           eta[quad]  =  dg1[quad]
           phig[quad] =  -90d0
        ENDIF
        quad = WHERE(xq AND ~yq)  ; lower left
        IF quad[0] ne -1 THEN BEGIN
           xi[quad]   =  dg1[quad]
           eta[quad]  = -dg2[quad]
           phig[quad] =  0d0
        ENDIF
        quad = WHERE(xq AND yq)  ; upper left
        IF quad[0] ne -1 THEN BEGIN
           xi[quad]   = -dg2[quad]
           eta[quad]  = -dg1[quad]
           phig[quad] =  90d0
        ENDIF
        xq = 0 & yq = 0 & dg1 = 0 & dg2 = 0 & quad = 0
        eta += 90d0
        thetag = DBLARR(ngood,/NOZERO)
        
        poles = WHERE(ABS(eta) gt 45d0, COMPLEMENT=equas)
        IF equas[0] NE -1 THEN BEGIN
          phig[equas]  += xi[equas]
          thetag[equas] = ASIN(eta[equas]*(2d0/135d0))
        ENDIF
        equas = 0
        IF poles[0] NE -1 THEN BEGIN
          hpx_sigma     = (90d0 - ABS(eta[poles]))/45d0
          test = WHERE(hpx_sigma lt 1d-4,ntest)
          phig[poles]  += xi[poles]/hpx_sigma
          sgn           = 2*(eta[poles] gt 0d0) - 1
          thetag[poles] = TEMPORARY(sgn)*ASIN(1d0-hpx_sigma^2/3d0)
          IF ntest GT 0 THEN $
              thetag[poles[test]] = pi2 - SQRT(2d0/3d0)*hpx_sigma[test]
        ENDIF
        phig += 45d0
        poles = 0 & hpx_sigma = 0
        phi[good] = TEMPORARY(phig)/radeg
        theta[good] = TEMPORARY(thetag)
        good = 0
     ENDIF
     IF scalar THEN BEGIN
        phi = phi[0]
        theta = theta[0]
     ENDIF  
  end

  else:message,strupcase(projection_type) + $
               ' is not a valid projection type.  Reset CTYPE'

endcase

; Convert from "native" coordinate system to "standard" coordinate system
; if the CRVAL keyword is set.  Otherwise, assume the map projection is
; complete

 phi = phi*radeg
 theta = theta*radeg

 if ( N_elements(crval) GE 2 ) then begin

  if N_elements(map_type) EQ 0 then $
           map_type = where(projection_type EQ map_types)
   map_type = map_type[0]
   conic = (map_type GE 13) && (map_type LE 16)
   zenithal =  ((map_type GE 1) && (map_type LE 8)) || $
                (map_type EQ 26) || (map_type EQ 29)
   if conic then theta0 = pv2_1 else if zenithal then theta0 = 90 $
            else theta0 = 0

   wcs_rotate, longitude, latitude, phi, theta, crval, longpole=longpole, $
           theta0 = theta0, latpole = latpole, pv1=pv1, /REVERSE
 endif else begin    ;no rotation from standard to native coordinates

  latitude = theta
  longitude = phi

endelse

; CONVERT LONGITUDE FROM -180 TO 180 TO 0 TO 360

good = WHERE(FINITE(longitude), ngood)
IF ngood GT 0 THEN BEGIN
   lgood = longitude[good]
   temp = where(lgood lt 0.d0, Nneg)
   if (Nneg GT 0) then lgood[temp] = lgood[temp] + 3.6d2
   temp = where(lgood ge 3.6d2, Nneg)
   if (Nneg GT 0) then lgood[temp] = lgood[temp] - 3.6d2
   longitude[good] = lgood
ENDIF

 return
 end