This file is indexed.

/usr/share/gnudatalanguage/astrolib/wcssph2xy.pro is in gdl-astrolib 2018.02.16+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
;+
; NAME:
;     WCSSPH2XY
; PURPOSE:
;     Convert spherical coordinates to x and y (map) angular coordinates
; EXPLANATION:
;     Convert spherical (longitude and latitude -- sky) coordinates to x
;     and y intermediate world coordinates (still nominally in degrees) in
;     the projection plane of the map.  This procedure is the inverse of
;     WCSXY2SPH.    See WCS_DEMO for example of use.
;
;     This is a lower level procedure -- given a FITS header, the user will
;     usually use ADXY which will then call WCSSPH2XY with the appropriate
;     parameters.
; CATEGORY:
;     Mapping and Auxiliary FITS Routine
;
; CALLING SEQUENCE:
;      wcssph2xy, longitude, latitude, x, y, [ map_type , CTYPE = ,
;               FACE =, PV1= PV2= , CRVAL = , CRXY = , LONGPOLE = ,
;               LATPOLE = , PHI0 = , NORTH_OFFSET =, SOUTH_OFFSET =, BADINDEX =]
;
; INPUT PARAMETERS:
;     longitude - longitude of data, scalar or vector, in degrees
;     latitude  - latitude of data, same number of elements as longitude,
;                 in degrees
;     map_type  - optional positional parameter, numeric scalar (0-29)
;               corresponding to a particular map projection.  This is not a
;               FITS standard, it is simply put in to allow function similar
;               to that of less general map projection procedures (eg AITOFF).
;               The following list gives the map projection types and their
;               respective numbers.
;
;  FITS  Number  Name                       Comments
;  code   code
;  ----  ------  -----------------------    -----------------------------------
;   DEF     0    Default = Plate Carree
;   AZP     1    Zenithal perspective       PV2_1 required
;   TAN     2    Gnomic                     AZP w/ mu = 0
;   SIN     3    Orthographic               PV2_1,PV2_2 optional
;   STG     4    Stereographic              AZP w/ mu = 1
;   ARC     5    Zenithal Equidistant
;   ZPN     6    Zenithal polynomial        PV2_0, PV2_1....PV2_20 possible
;   ZEA     7    Zenithal equal area
;   AIR     8    Airy                       PV2_1 required
;   CYP     9    Cylindrical perspective    PV2_1 and PV2_2 required
;   CAR    10    Plate Carree
;   MER    11    Mercator
;   CEA    12    Cylindrical equal area     PV2_1 required
;   COP    13    Conical perspective        PV2_1 and PV2_2 required
;   COD    14    Conical equidistant        PV2_1 and PV2_2 required
;   COE    15    Conical equal area         PV2_1 and PV2_2 required
;   COO    16    Conical orthomorphic       PV2_1 and PV2_2 required
;   BON    17    Bonne's equal area         PV2_1 required
;   PCO    18    Polyconic
;   SFL    19    Sanson-Flamsteed  (GLS is allowed as a synonym for SFL)
;   PAR    20    Parabolic
;   AIT    21    Hammer-Aitoff
;   MOL    22    Mollweide
;   CSC    23    Cobe Quadrilateralized     convergence of inverse is poor
;                Spherical Cube
;   QSC    24    Quadrilateralized
;                Spherical Cube
;   TSC    25    Tangential Spherical Cube
;   SZP    26    Slant Zenithal Projection   PV2_1,PV2_2, PV2_3 optional
;   HPX    27    HealPix
;   HCT    28    HealCart (Cartesian approximation of Healpix)
;   XPH    29    HEALPix butterfly projection
;
; OPTIONAL INPUT KEYWORD PARAMETERS:
;
;     CTYPE - One, two, or three element vector containing 8 character
;              strings corresponding to the CTYPE1, CTYPE2, and CTYPE3
;              FITS keywords:
;
;               CTYPE[0] - first four characters specify standard system
;               ('RA--','GLON' or 'ELON' for right ascension, Galactic
;               longitude or ecliptic longitude respectively), second four
;               letters specify the type of map projection (eg '-AIT' for
;               Aitoff projection)
;               CTYPE[1] - first four characters specify standard system
;               ('DEC-','GLAT' or 'ELAT' for declination, galactic latitude
;               or ecliptic latitude respectively; these must match
;               the appropriate system of ctype1), second four letters of
;               ctype2 must match second four letters of ctype1.
;               CTYPE[2] - if present must be the 8 character string,'CUBEFACE',
;                only used for spherical cube projections to identify an axis
;               as containing the face on which each x and y pair of
;               coordinates lie.
;     PV2  -  Vector of projection parameter associated with latitude axis
;             PV2 will have up to 21 elements for the ZPN projection, up to 3
;             for the SIN projection and no more than 2 for any other
;             projection.   The first element corresponds to PV2_1, the
;             second to PV2_2, etc.
;     CRXY -    2 element vector giving the x and y coordinates of the
;               reference point. if this is not set the offset is [0,0].
;               Used to implement (x0,y0) in Sect 2.5 of Griesen & Calabretta 2002
;               Do not confuse with CRPIX.
;
;    Parameters simply passed to WCS_ROTATE:
;  
;     CRVAL - 2 element vector containing standard system coordinates (the
;               longitude and latitude) of the reference point
;     PV1   - Vector of projection parameters associated with longitude
;     LONGPOLE -  native longitude of standard system's North Pole
;     LATPOLE  -  "target" native latitude of the standard system's North Pole
;
;    Parameters intended to enhance invertability:
;
;     NORTH_OFFSET - offset (radians) added to input points near north pole.
;     SOUTH_OFFSET - offset (radians) added to input points near south pole.
;
; OUTPUT PARAMETERS:
;
;       x - x coordinate of data, same number of elements as longitude, in
;               degrees; if CRXY is set, then x will be returned offset by
;               crxy[0].  NOTE: x in all map projections increases to the
;               left, not the right.
;       y - y coordinate of data, same number of elements as longitude, in
;               degrees; if CRXY is set, y will be returned offset by crxy[1]
;
; OPTIONAL OUTPUT KEYWORD PARAMETERS:
;       FACE - a output variable used for spherical cube projections to
;               designate the face of the cube on which the x and y
;               coordinates lie.   Will contain the same number of elements as
;               X and Y.    Must contain at least 1 arbitrary element on input
;               If FACE is NOT defined on input, it is assumed that the
;               spherical cube projection is laid out over the whole sky
;               in the "sideways T" configuration.
;     BADINDEX - vector, list of transformed points too close to poles.
;
; NOTES:
;       The conventions followed here are described in more detail in
;       "Representations of Celestial Coordinates in FITS" by Calabretta
;       and  Greisen (2002, A&A, 395, 1077; also see
;       http://fits.gsfc.nasa.gov/fits_wcs.html).  The general
;       scheme outlined in that article is to first use WCS_ROTATE to convert
;       coordinates in one of three standard systems (celestial, galactic,
;       or ecliptic) into a "native system" of latitude and longitude.  The
;       latitude and longitude are then converted into x and y coordinates
;       which depend on the map projection which is performed.   The rotation
;       from standard to native coordinates can be skipped if one so desires.
;       This procedure necessitates two basic sections.  The first converts
;       "standard" coordinates to "native" coordinates while the second converts
;       "native" coordinates to x and y coordinates.  The first section is
;       simply a call to WCS_ROTATE, while the second contains the guts of
;       the code in which all of the map projection is done.  This procedure
;       can be called in a form similar to AITOFF, EQPOLE, or QDCB by calling
;       wcssph2xy with a fifth parameter specifying the map projection by
;       number and by not using any of the keywords related to the map
;       projection type (e.g. CTYPE).
;
; PROCEDURE:
;
;       The first task of the procedure is to do general error-checking to
;       make sure the procedure was called correctly and none of the
;       parameters or keywords conflict.  This is particularly important
;       because the procedure can be called in two ways (either using
;       FITS-type keywords or using a number corresponding to a map projection
;       type).  All variables are converted into double precision values and
;       angular measurements are converted from degrees into radians.
;       If necessary, longitude values are converted into the range -pi to pi.
;       Any latitude points close to the  of the poles are mapped to a specific
;       latitude of  from the pole so that the map transformations become
;       completely invertible.  The magnitude of this correction is given by
;       the keywords NORTH_OFFSET and SOUTH_OFFSET and a list of affected
;       points is optionally returned in the "badindex" output parameter.
;       The next task of the procedure is to convert the "standard"
;       coordinates to "native" coordinates by rotating the coordinate system.
;       This rotation is performed by the procedure WCS_ROTATE and is governed
;       by the keywords CRVAL and LONGPOLE.   The final task of the WCSSPH2XY
;       is to take "native" latitude and longitude coordinates and convert
;       them into x and y coordinates.  Any map specific error-checking is
;       done at this time.  All of the equations were obtained from
;       "Representations of Celestial Coordinates in FITS" and cases needing
;       special attention are handled appropriately (see the comments with
;       individual map projections for more information on special cases).
;
;       Note that a further transformation (using the CD matrix) is required
;       to convert the (x,y) coordinates to pixel coordinates.
; COMMON BLOCKS:
;
;       none
;
; PROCEDURES CALLED:
;       WCS_ROTATE
;
; ORIGINAL AUTHOR:
;
;       Rick Balsano   LANL   V1.1     8/31/93
;
; MODIFICATIONS/REVISION LEVEL:
;       2.3     9/15/93  W. Landsman (HSTX) Update quad cube coords, vectorize
;                        keywords
;       2.4     12/29/93 I. Freedman (HSTX) Eliminated LU decomposition
;       2.5     1/5/93   I. Freedman (HSTX) Offset keywords / bad point index
;       2.6     Dec 94   Compute pole for transformations where the reference
;                       pixel is at the native origin    W. Landsman (HSTX)
;       2.7     May 95  Change internal variable BETA for V4.0 compatibility
;       2.8     June 95 Change loop indices from integer to long
;       2.9     3/18/96 Change FACE usage for cube projections to match WCSLIB
;                       C/FORTRAN software library.
;       2.10    02/18/99 Fixed implementation of ARC algorithm
;       2.11    June 2003 Update conic projections, add LATPOLE keyword
;     	2.12  	Aug 2003, N.Rich - Fix pre-V5.5 bug from previous update
;       2.13    Sep 2003, W. Landsman CTYPE keywords need not be 8 characters
;       2.14    Jan 2004, W. Landsman don't modify scalars, fix PARabolic code
;       2.15    Feb 2004, W. Landsman Fix AZP and AIR algorithms
;       3.0    May 2004  W. Landsman Support extended SIN (=NCP), slant zenithal
;                  (SZP), and zenithal polynomial (ZPN) projections, use
;                   PV2 keyword vector instead of PROJP1, PROJP2
;       3.1     Jul 2005 W.Landsman/C. Markwardt Set unprojectable points in
;                   tangent projection to NaN
;       3.1.1   Jul 2005 Fixed 3.1 mod to work for scalars
;       3.2     Dec 2005 Fixed Airy projection for latitude centered at 90 deg
;       3.3     Aug 2007 R. Munoz, W.Landsman Correct treatment of PV1_2 and
;                        PV2_2 parameters
;       3.4    Oct 2007  Sergey Koposov Support HEALPIX projection
;       3.4.1  June 2009 Check for range of validity of ZPN polynomial W.L.
;       3.5    May 2012  Benjamin Alan Weaver, Add nonstandard HEALCART 
;                        projection, Allow map_index to be > 25
;       3.5.1  May 2013  W. Landsman Allow GLS as a synonym for SFL
;       3.6    Jul 2013  J. P. Leahy added XPH projection, apply polar offsets
;                        only for cylindrical & conic projections. 
;       3.6.1  Dec 2013  W. Landsman Polar offsets done in radians
;       3.6.2  Jan 2016  W. Landsman Lat and Long can have different size so long 
;                        as they have the same number of elements
;-

PRO wcssph2xy,longitude,latitude,x,y,map_type, ctype=ctype,$
              face = face, pv1 = pv1, pv2 = pv2, crval = crval, $
              crxy = crxy, longpole = longpole, latpole = latpole, $
              north_offset = north_offset, south_offset = south_offset, $
              badindex = badindex

compile_opt idl2, hidden


; DEFINE ANGLE CONSTANTS
 pi = !DPI
 pi2 = pi/2.d0
 radeg = 57.295779513082323d0
 map_types=['DEF','AZP','TAN','SIN','STG','ARC','ZPN','ZEA','AIR','CYP',$
            'CAR','MER','CEA','COP','COD','COE','COO','BON','PCO','SFL',$
            'PAR','AIT','MOL','CSC','QSC','TSC','SZP','HPX','HCT','XPH']

; check to see that enough parameters (at least 4) were sent
 if (N_params() lt 4) then begin
    print,'Syntax - WCSSPH2XY, longitude, latitude, x, y, [ map_type,'
    print,'           CTYPE= ,FACE=, PV1=, PV2=, CRVAL=, CRXY=, LATPOLE='
    print,'           LONGPOLE= ,NORTH_OFFSET=, SOUTH_OFFSET=, BADINDEX=]'
    return
 endif


; GENERAL ERROR CHECKING
; find the number of elements in each of the data arrays

 n_long = N_elements( longitude )
 n_lat  = N_elements( latitude )
 ; check to see that the data arrays have the same size
 if n_long NE n_lat then begin
     message,$
       'LONGITUDE and LATITUDE must have the same number of elements.'
 endif

 if (N_params() eq 5) then begin

  if keyword_set(ctype) then message,$
  'Use either the MAP_TYPE positional parameter or set the projection type' + $
  ' with CTYPE, but not both.'

; set projection_type string using map_type parameter (a number)
  ntypes = n_elements(map_types)
  if (N_ELEMENTS(map_type) eq 1 && map_type ge 0 && $
      map_type lt ntypes) then begin
         projection_type = map_types[map_type]
  endif else message,'MAP_TYPE must be a scalar >= 0 and < '+$
            strtrim(string(ntypes),2)+'; it was set to '+$
            strtrim(string(map_type),2)

endif else if (n_params() eq 4) then  wcs_check_ctype, ctype, projection_type 
    ; checks CTYPE format and extract projection type

; this sets the default map projection type for the cases when map_type or
; projection_type is set to 'DEF' or if projection_type is not set at this
; point.  As suggested in 'Representations of Celestial Coordinates in FITS'
; the default type is set to CAR (Plate Caree) the simplest of all projections.
 if ((n_elements(projection_type) eq 0) || $
     (projection_type eq 'DEF') ) then begin
           projection_type='CAR'
        message, /INFORMATIONAL, $
          'Projection type not supplied, set to default (Plate Caree)'
 endif

; Check to make sure all the correct parameters and keywords are set for
; spherical projections.
if (N_ELEMENTS(ctype) EQ 3 || keyword_set(face) || (projection_type eq 'CSC') || $
    (projection_type eq 'QSC') || (projection_type eq 'TSC')) then begin

  noface = n_elements(face) eq 0

endif

; check to see if the x and y offsets are set properly.  If not, break out
; of program.  If the x and y offsets are not set then assume they are zero.
if ((n_elements(crxy) ne 0) && (n_elements(crxy) ne 2)) then $
    message,'Offset keyword CRXY must contain 2 elements'

if ((n_elements(crval) ne 0) && (n_elements(crval) ne 2)) then $
    message,'CRVAL keyword must contain 2 elements'


; Convert all longitude values into the range -180 to 180 so that equations
; work properly.
  lng = double( longitude )   & lat = double( latitude )
  temp = where(lng ge 180d0, Ntemp)
  if Ntemp GT 0 then lng[temp] = lng[temp] - 360.0d0

; Convert from standard coordinate system to "native" coordinate system
; if the CRVAL keyword is set.  Otherwise, assume the latitude and longitude
; given are in "native" coordinates already (this is  essentially what is done
; in the procedure AITOFF).

 PV2_1 = N_elements(pv2) GT 0 ? pv2[0] : 0
 PV2_2 = N_elements(pv2) GT 1 ? pv2[1] : 0

 if N_elements(map_type) EQ 0 then begin
     wmt      = where(projection_type EQ map_types)
     map_type = wmt[0]
 endif

 conic = (map_type GE 13) && (map_type LE 16)
 zenithal = ((map_type GE 1) && (map_type LE 8)) || $
             (map_type EQ 26) || (map_type EQ 29)
 cylindrical = (map_type GE 9 && map_type LE 12) || $
             map_type EQ 27 || map_type EQ 28 
; Rotate from standard celestial coordinates into the native system.
        if conic then theta0 = PV2_1 else if zenithal then theta0 = 90 $
                 else theta0 = 0
 if N_elements(crval) GE 2 then begin
        wcs_rotate, lng, lat, phi, theta, crval, pv1 = pv1, $
                latpole = latpole, longpole=longpole, theta0 = theta0
	
        phi   /= radeg
        theta /= radeg
 endif else begin
     phi = lng/radeg
     theta = lat/radeg
 endelse

  IF cylindrical || conic  THEN BEGIN
; Make small offsets at poles to allow the transformations to be
; completely invertible. They are necessary in cylindrical & conic 
; projections since the pole is mapped to a line in the projection plane. 
; These introduce a small fractional error but only at the poles. 
;
     IF N_elements(north_offset) EQ 0 then north_offset = 1.d-7
     IF N_elements(south_offset) EQ 0 then south_offset = 1.d-7

     bad = where(abs(theta - pi2) lt north_offset, Nbad)
     IF (Nbad GT 0) THEN BEGIN
         MESSAGE,/INFORM,'Some input points are too close to the NORTH pole.'
         theta[bad] = pi2 - north_offset
         IF KEYWORD_SET(badindex) THEN badindex = bad
     ENDIF
     bad = where(abs(theta + pi2) lt south_offset, Nbad)
     IF (Nbad GT 0) THEN BEGIN
         MESSAGE,/INFORM,'Some input points are too close to the SOUTH pole.'
         lat[bad] = south_offset - pi2
         IF KEYWORD_SET(badindex) THEN BEGIN
             badindex = [badindex, bad]
             badindex = badindex[sort(badindex)]
         ENDIF
     ENDIF
 ENDIF
 
; BRANCH BY MAP PROJECTION TYPE
case strupcase(projection_type) of
  'AZP':begin
     if (PV2_1 lt 0) then message,$
      'AZP map projection requires the keyword PV2_1 >= 0'
    gamma = PV2_2/radeg
    mu = PV2_1

    r_theta = radeg*cos(theta)*(mu + 1.d0)/ $
             ( (mu + sin(theta)) + cos(theta)*cos(phi)*tan(gamma))
    x = r_theta*sin(phi)
    y = -r_theta*cos(phi)/cos(gamma)
  end
  'SZP': begin
     mu = N_elements(PV2) GT 0 ? PV2[0] : 0
     phi_c = N_elements(PV2) GT 1 ? PV2[1] : 0
     theta_c = N_elements(PV2) GT 1 ? PV2[2] : 90
     phi_c = phi_c/radeg & theta_c = theta_c/radeg
     xp = -mu*cos(theta_c)*sin(phi_c)
     yp =  mu*cos(theta_c)*cos(phi_c)
     zp =  mu*sin(theta_c) + 1.
     denom = zp - (1-sin(theta))
     x = radeg*( zp*cos(theta)*sin(phi) - xp*(1-sin(theta)) )/ denom
     y = -radeg*( zp*cos(theta)*cos(phi) + yp*(1-sin(theta)) )/ denom

     end
  'TAN':begin
    sz_theta = size(theta,/dimen)
    if sz_theta[0] EQ 0 then x = !Values.D_NAN else $
          x = make_array(value = !values.D_NAN, dimen=sz_theta)
    y = x
    g = where(theta GT 0, Ng)
    if Ng GT 0 then begin
        r_theta = radeg/tan(theta[g])
        x[g] = r_theta*sin(phi[g])
        y[g] = -r_theta*cos(phi[g])
    endif
  end

  'SIN':begin
    if N_elements(PV2_1) EQ 0 then PV2_1 = 0
    if N_elements(PV2_2) EQ 0 then PV2_2 = 0
    if (PV2_1 EQ 0) && (PV2_2 EQ 0) then begin
        r_theta = radeg*cos(theta)
        x = r_theta*sin(phi)
        y = -r_theta*cos(phi)
    endif else begin                   ;NCP projection
        x =  radeg*(cos(theta)*sin(phi) + PV2_1*(1-sin(theta)) )
        y = -radeg*(cos(theta)*cos(phi) - PV2_2*(1-sin(theta)) )
    endelse
  end

  'STG':begin
    r_theta = 2.d0*radeg*tan((pi2-theta)/2.d0)
    x = r_theta*sin(phi)
    y = -r_theta*cos(phi)
  end

  'ARC':begin
    r_theta = radeg*( pi2 - theta )
    x = r_theta*sin(phi)
    y = -r_theta*cos(phi)
  end

  'ZPN':begin
    z = pi2 - theta
    g = where(pv2 NE 0, Ng)
    np = Ng GT 0 ? max(g) : 0
    par = pv2[0:np]
    Nbad  = 0
;Check for range of validity for a nonlinear polynomial.    Set the derivative
; to zero and check for any real, positive roots.
    if np GT 2 then begin
          dpar = (indgen(np)+1) * par[1:*]     ;Polynomial derivative
	  zroots = fz_roots(dpar)               ;Find zeros
	  g = where(imaginary(zroots) EQ 0, Ng)      ;Any real roots?
          if Ng GT 0 then zroots = float(zroots[g])
	  g = where(zroots gt 0,Ng)
	  if Ng GT 0 then rlim = min(zroots[g])
	  bad = where(z GT rlim, Nbad)
    endif
    r_theta = radeg*poly(z, par)
    x = r_theta*sin(phi)
    y = -r_theta*cos(phi)
    if Nbad GT 0 then begin
        x[bad] = !VALUES.D_NAN
	y[bad] = !VALUES.D_NAN
	endif
    end


  'ZEA':begin
    r_theta = 2.d0*radeg*sin((pi2 - theta)/2.d0)
    x = r_theta*sin(phi)
    y = -r_theta*cos(phi)
  end

  'AIR':begin
    if ~keyword_set(PV2_1) then begin
      message,/informational,$
          'PV2_1 not set, using default of PV2_1 = 90 for AIR map projection'
      PV2_1 = 9.d1
    endif
    theta_b = PV2_1/radeg

    xi = (pi2 - theta)/2.d0

; When theta_b (aka PV2_1 in radians) is equal to pi/2 the normal equations
; for the AIR projection produce infinities.  To avoid the problem, values
; of theta_b equal to pi/2 cause a different set of equations to be used.
    if (theta_b eq pi2) then begin

; AIR produces the same radii for different latitudes, causing some overlap.  To
; avoid this problem, if latitudes which are far enough south to be a problem
; are included in the data, the routine will stop.

      if (min(theta) lt -36/radeg) then begin
        message,'AIR produces overlap of native latitudes south of ',/continue
        print,'-36 with the PV2_1 = 90'
        return
      endif

; points with xi too small are labelled as bad to prevent poor behavior of the
; equation for r_theta
      good = where(abs(xi) ge 1.d-10, Ngood)
      r_theta = lng*0
      if (Ngood GT 0) then $
        r_theta[good] = -2*radeg*(alog(cos(xi[good]))/tan(xi[good]) - $
	                 0.5*tan(xi[good]))

    endif else begin
      xi_b = (pi2 - theta_b)/2.d0
      a = alog(cos(xi_b))/tan(xi_b)/tan(xi_b)

; AIR produces the same radii for different latitudes, causing some overlap.  To
; avoid this problem, if latitudes which are far enough south to be a problem
; are included in the data, the routine will stop.

      xi_temp = (findgen(90) + 1)/radeg
      radius=-radeg*(alog(cos(xi_temp))/tan(xi_temp)+alog(cos(xi_b))/$
                                                      tan(xi_b)*tan(xi_temp))
      i = 0
      repeat i = i + 1 $
      until ((radius[i + 1] le radius[i]) || (i eq n_elements(radius) - 2))
      if (i lt (n_elements(radius)- 2)) then min_lat = 90 - 2*radeg*xi_temp[i] $
      else min_lat = -90
      if (min(theta) lt min_lat[0]/radeg) then begin
        message,'AIR produces overlap of native latitudes south of ',/continue
        print,format='(i3,a21,i3)',min_lat[0],' with the PV2_1 = ',PV2_1
        return
      endif

; points with xi too small are labelled as bad to prevent poor behavior of the
; equation for r_theta

      good = where(abs(xi) ge 1.d-10, Ngood)
      r_theta = lng*0
      if (Ngood GT 0) then r_theta[good] = -2*radeg*(alog(cos(xi[good]))/$
        tan(xi[good]) + a*tan(xi[good]))
    endelse
    x = r_theta*sin(phi)
    y = -r_theta*cos(phi)
  end

  'CYP':begin
    if (n_elements(PV2_1) eq 0) then begin
      message,/informational,$
           'PV2_1 not set, using default of PV2_1 = 0 for CYP map projection'
      PV2_1 = 0.d0
    endif
    if (n_elements(PV2_2) eq 0) then begin
      message,/informational,$
           'PV2_2 not set, using default of PV2_2 = 1 for CYP map projection'
      PV2_2 = 1.d0
    endif
    if (PV2_1 eq -PV2_2) then message,$
      'PV2_1 = -PV2_2 is not allowed for CYP map projection.'

    x = PV2_2*radeg*phi
    y = radeg*(PV2_1 + PV2_2)*sin(theta)/(PV2_1 + cos(theta))
  end

  'CAR':begin
    x = radeg*phi
    y = radeg*theta
  end

  'MER':begin
    x = radeg*phi
    y = radeg*alog(tan((pi2 + theta)/2.d0))
  end

  'CEA':begin
    if N_elements(PV2_1) EQ 0  then message,$
      'CEA map projection requires that PV2_1 keyword be set.'
    if ((PV2_1 le 0) || (PV2_1 gt 1)) then message,$
      'CEA map projection requires 0 < PV2_1 <= 1'
    x = radeg*phi
    y = radeg*sin(theta)/PV2_1
  end

  'COP':begin
    if ~keyword_set(PV2_1) then message,$
      'COP map projection requires that PV2_1 keyword be set.'
    if ~keyword_set(PV2_2) then begin
      message,/informational,$
      'PV2_2 not set, using default of PV2_2 = 0 for COP map projection'
      PV2_2= 0
    endif
    if ((PV2_1 lt -90) || (PV2_2 gt 90) || (PV2_1 gt 90)) then message,$
 'PV2_1 and PV2_2 must satisfy -90<=PV2_1<=90,0<=PV2_2<=90 for COP projection'
    if (PV2_1 eq -PV2_2) then message,$
 'COP projection with PV2_1=-PV2_2 is better done as a cylindrical projection'
    theta_a = PV2_1/radeg
    alpha = PV2_2/radeg
    bad = where((theta ge theta_a + pi2) or (theta le theta_a - pi2))
    if (bad[0] ne -1) then begin
      message,/continue,$
  'COP map projection diverges for native latitude = PV2_1 +- 90.'
      message,'Remove these points and try again.'
    endif

    r_theta = radeg*cos(alpha)*(1.d0/tan(theta_a)-tan(theta-theta_a))
    a_phi = phi*sin(theta_a)
    y_0 = radeg*cos(alpha)/tan(theta_a)
    x = r_theta*sin(a_phi)
    y = y_0 - r_theta*cos(a_phi)

  end

  'COD':begin
    if ~keyword_set(PV2_1) then message,$
      'COD map projection requires that PV2_1 keyword be set.'
    if ~keyword_set(PV2_2) then begin
      message,/informational,$
     'PV2_2 not set, using default of PV2_2 = 0 for COD map projection'
      PV2_2 = 0
    end
    if ((PV2_1 lt -90) || (PV2_2 gt 90) || (PV2_1 gt 90)) then message,$
 'PV2_1 and PV2_2 must satisfy -90<=PV2_1<=90,PV2_2<=90 for COD projection'
    if (PV2_1 eq -PV2_2) then message,$
    'COD gives divergent equations for PV2_1 = -PV2_2'
    theta_a = PV2_1/radeg

; when PV2_1 not = PV2_2 use regular equations
  if (PV2_2 NE 0) then begin
      alpha = PV2_2/radeg
      r_theta = theta_a - theta + alpha/(tan(alpha)*tan(theta_a))
      a_phi = sin(theta_a)*sin(alpha)*phi/alpha
      y_0 = radeg*alpha/(tan(alpha)*tan(theta_a))
; if the two parameters PV2_1 and PV2_2 are equal use the simpler set of
; equations
    endif else begin
      r_theta = theta_a - theta + 1.d0/tan(theta_a)
      a_phi = phi*sin(theta_a)
      y_0 = radeg/tan(theta_a)

    endelse
    x = radeg*r_theta*sin(a_phi)
    y = y_0 - radeg*r_theta*cos(a_phi)

  end

  'COE':begin
    if N_elements(PV2_1) EQ 0 then message,$
      'COE map projection requires that PV2_1 keyword be set.'
    if N_elements(PV2_2) EQ 0 then begin
      message,/informational,$
      'PV2_2 not set, using default of PV2_2 = 0 for COE map projection'
      PV2_2 = 0
    end
    if ((PV2_1 lt -90) || (PV2_2 gt 90) || (PV2_1 gt PV2_2)) then message,$
 'PV2_1 and PV2_2 must satisfy -90<=PV2_1<=PV2_2<=90 for COE map projection'
    if (PV2_1 eq -PV2_2) then message,$
    'COE gives divergent equations for PV2_1 = -PV2_2'

    theta_1 = (PV2_1 - PV2_2)/radeg
    theta_2 = (PV2_1 + PV2_2)/radeg
    s_1 = sin(theta_1)
    s_2 = sin(theta_2)
    stheta_a = sin(PV2_1/radeg)
    gamma = s_1 + s_2
    r_theta=radeg*2.d0*sqrt(1.d0+ s_1*s_2-gamma*sin(theta))/gamma

     a_phi = phi*gamma/2.d0
    y_0 = radeg*2.d0*sqrt(1.d0+ s_1*s_2-gamma*stheta_a)/gamma
    x = r_theta*sin(a_phi)
    y = y_0 - r_theta*cos(a_phi)
  end

  'COO':begin
    if ~keyword_set(PV2_1) then message,$
      'COO map projection requires that PV2_1 keyword be set.'
    if ~keyword_set(PV2_2) then begin
      message,/informational,$
      'PV2_2 not set, using default of PV2_2 = 0 for COO map projection'
      PV2_2 = 0
    end
    if ((PV2_1 lt -90) || (PV2_2 gt 90) || (PV2_1 gt 90)) then message,$
 'PV2_1 and PV2_2 must satisfy -90<=PV2_1<=90,PV2_2<=90 for COO projection'
    if (PV2_1 eq -PV2_2) then message,$
    'COO gives divergent equations for PV2_1 = -PV2_2'
    theta_1 = (PV2_1 - PV2_2)/radeg
    theta_2 = (PV2_1 + PV2_2)/radeg
    theta_a = PV2_1/radeg


; for cases where PV2_1 = 0, use a simpler formula to calculate c,
; otherwise use the regular formula
    if (PV2_2 eq 0) then c = sin(theta_1) else $
    c = alog(cos(theta_2)/cos(theta_1))/alog(tan((pi2-theta_2)/2.d0)/$
    tan((pi2-theta_1)/2.d0))

    alpha = radeg*cos(theta_1)/(c*(tan((pi2-theta_1)/2.d0))^c)
    r_theta = alpha*(tan((pi2-theta)/2.d0))^c
    y_0 = alpha*tan((pi2-theta_a)/2.)^c
    a_phi = c*phi
    x = r_theta*sin(a_phi)
    y = y_0 - r_theta*cos(a_phi)

  end

  'BON':begin
    if (N_elements(PV2) LT 1) then message,$
      'BON map projection requires that PV2_1 keyword be set.'
    pv2_1 = pv2[0]
    if ((PV2_1 lt -90) || (PV2_1 gt 90)) then message,$
      'PV2_1 must satisfy -90 <= PV2_1 <= 90 for BON map projection'
    if (PV2_1 eq 0) then message,$
      'PV2_1 = 0 for BON map projection is better done with SFL map projection'

    theta_1 = PV2_1/radeg
    s = theta_1/abs(theta_1)
    y_0 = 1.d0/tan(theta_1) + theta_1
    a = phi*cos(theta)/(y_0 - theta)
    x = radeg*(y_0 - theta)*sin(a)
    y = radeg*(y_0 - (y_0 - theta)*cos(a))
  end

  'PCO':begin
; The equations for x and y are poorly behaved for theta = 0.  Avoid this by
; explicitly assigning values for x and y when theta = 0.
    zero_ind = where(theta eq 0, Nzero)

; create x and y with same structure as longitude
    x = lng*0  & y = x
    if (Nzero GT 0) then begin
      x[zero_ind] = radeg*phi[zero_ind]
      y[zero_ind] = 0.d0
    endif
    good_ind = where(theta ne 0, Ngood)
    if Ngood GT 0 then begin
    x[good_ind] = radeg*sin(phi[good_ind]*sin(theta[good_ind]))/$
                  tan(theta[good_ind])
    y[good_ind] = radeg*(theta[good_ind]+$
        (1.d0 - cos(phi[good_ind]*sin(theta[good_ind])))/tan(theta[good_ind]))
    endif
  end

  'SFL':begin
    x = radeg*phi*cos(theta)
    y = radeg*theta
  end

  'GLS':begin        ;Alternative name for SFL projection
    x = radeg*phi*cos(theta)
    y = radeg*theta
  end

  'PAR':begin
    x = radeg*phi*(2.d0*cos(2.d0*theta/3.d0) - 1.d0)
    y = 180.0*sin(theta/3.d0)
  end

  'AIT':begin
    alpha = radeg*sqrt(2.d0/(1.d0 + cos(theta)*cos(0.5d0*phi)))
    x = 2.d0*alpha*cos(theta)*sin(0.5d0*phi)
    y = alpha*sin(theta)
  end

  'MOL':begin
; Use Newton's method to find a numerical solution to the equation:
;  alpha + 1/2*sin(2*alpha) - 1/2*pi*sin(theta) = 0
    tolerance = 1.0d-14
    alpha = lng*0
    repeat begin
    alpha_old = alpha
    alpha = alpha_old - (alpha_old + 0.5*sin(2.d0*alpha_old) - $
            0.5*pi*sin(theta))/(1.d0 + cos(2.d0*alpha_old))
    endrep until (max(abs(alpha - alpha_old)) lt tolerance)

    x = 2.d0^1.5*phi*radeg*cos(alpha)/pi
    y = sqrt(2.d0)*radeg*sin(alpha)
  end

  'CSC':begin
; calculate direction cosines
    l = cos(theta)*sin(phi)
    m = cos(theta)*cos(phi)
    n = sin(theta)

; determine the face on which the x and y coordinates will reside by setting
; rho equal to the maximum of n,m,l,-m,-l,-n which corresponds to faces 0
; through 5 respectively
    rho =  lng*0
    if size(lng,/N_dimen) EQ 0 then  face = 0 else face = lonarr(n_long)

; use an array to store a remapping of the direction cosines.  This way, faces
; 0 and 5 take points on their borders with faces 1-4.  The reason for this is
; that if the max function sees identical values in an array, it takes the
; index of the first occurrence of that value.
    remap = [0,5,2,1,4,3]

    for i = 0l, n_long-1 do begin
      dir_cos = float([n[i],-n[i],l[i],m[i],-l[i],-m[i]])
      rho[i] = max(dir_cos,temp)
      face[i] = remap[temp]
    endfor

; based on the face determined for each point, find the parameters alpha and
; beta1
    alpha = lng*0
    beta1 = alpha
    for i = 0l, n_long-1 do begin
      case face[i] of
        0:begin
          alpha[i] = l[i]/n[i]
          beta1[i] = -m[i]/n[i]
        end
        1:begin
          alpha[i] = l[i]/m[i]
          beta1[i] = n[i]/m[i]
        end
        2:begin
          alpha[i] = -m[i]/l[i]
          beta1[i] = n[i]/l[i]
        end
        3:begin
          alpha[i] = l[i]/m[i]
          beta1[i] = -n[i]/m[i]
        end
        4:begin
          alpha[i] = -m[i]/l[i]
          beta1[i] = -n[i]/l[i]
        end
        5:begin
          alpha[i] = -l[i]/n[i]
          beta1[i] = -m[i]/n[i]
        end
      endcase
    end

; define all of the numerical constants to use in determining x and y
    r_0 = 0.577350269
    gam_s = 1.37484847732
    em = 0.004869491981
    gam = -0.13161671474
    ome = -0.159596235474
    d_0 = 0.0759196200467
    d_1 = -0.0217762490699
    c_00 = 0.141189631152
    c_10 = 0.0809701286525
    c_01 = -0.281528535557
    c_20 = -0.178251207466
    c_11 = 0.15384112876
    c_02 = 0.106959469314
    fconst = 45.0d0

    x = fconst*(alpha*gam_s+alpha^3*(1-gam_s)+alpha*beta1^2*(1-alpha^2)*$
        (gam+(em-gam)*alpha^2+(1-beta1^2)*(c_00+c_10*alpha^2+c_01*beta1^2+$
        c_20*alpha^4+c_11*alpha^2*beta1^2+c_02*beta1^4))+alpha^3*(1-alpha^2)*$
        (ome-(1-alpha^2)*(d_0+d_1*alpha^2)))
    y = fconst*(beta1*gam_s+beta1^3*(1-gam_s)+beta1*alpha^2*(1-beta1^2)*$
        (gam+(em-gam)*beta1^2+(1-alpha^2)*(c_00+c_10*beta1^2+c_01*alpha^2+$
        c_20*beta1^4+c_11*beta1^2*alpha^2+c_02*alpha^4))+beta1^3*(1-beta1^2)*$
        (ome-(1-beta1^2)*(d_0+d_1*beta1^2)))


    if noface eq 1 then begin
        xf=fconst*[0.0d0,0.0d0,2.0d0,4.0d0,6.0d0,0.0d0]
        yf=fconst*[2.0d0,0.0d0,0.0d0,0.0d0,0.0d0,-2.0d0]
        x=x+xf[face]
        y=y+yf[face]
    endif
  end

  'QSC':begin
; calculate direction cosines
    l = cos(theta)*sin(phi)
    m = cos(theta)*cos(phi)
    n = sin(theta)

; determine the face on which the x and y coordinates will reside by setting
; rho equal to the maximum of n,m,l,-m,-l,-n which corresponds to faces 0
; through 5 respectively
    rho = lng*0
    if size(lng,/N_dimen) EQ 0 then face = 0 else face = lonarr(n_long)

; use an array to store a remapping of the direction cosines.  This way, faces
; 0 and 5 take points on their borders with faces 1-4.  The reason for this is
; that if the max function sees identical values in an array, it takes the
; index of the first occurrence of that value.
    remap = [0,5,2,1,4,3]

    for i = 0l, n_long-1 do begin
      dir_cos = float([n[i],-n[i],l[i],m[i],-l[i],-m[i]])
      rho[i] = max(dir_cos,temp)
      face[i] = remap[temp]
    endfor

; based on the face determined for each point, find the parameters alpha and
; beta1
    alpha = lng*0
    beta1 = alpha
    for i = 0l, n_long-1 do begin
      case face[i] of
        0:begin
          alpha[i] = l[i]/n[i]
          beta1[i] = -m[i]/n[i]
        end
        1:begin
          alpha[i] = l[i]/m[i]
          beta1[i] = n[i]/m[i]
        end
        2:begin
          alpha[i] = -m[i]/l[i]
          beta1[i] = n[i]/l[i]
        end
        3:begin
          alpha[i] = l[i]/m[i]
          beta1[i] = -n[i]/m[i]
        end
        4:begin
          alpha[i] = -m[i]/l[i]
          beta1[i] = -n[i]/l[i]
        end
        5:begin
          alpha[i] = -l[i]/n[i]
          beta1[i] = -m[i]/n[i]
        end
      endcase
    end

    x = lng*0
    y = x &  xi = y

    s = 2.d0*(((alpha gt abs(beta1)) or (beta1 ge abs(alpha))) - 0.5d0)

    case_1 = where(abs(alpha) gt abs(beta1))
    case_2 = where((abs(alpha) le abs(beta1)) and (beta1 ne 0.d0))
    case_3 = where((alpha eq 0.d0) and (beta1 eq 0.d0))
    if (case_1[0] ne -1) then xi[case_1] = beta1[case_1]/alpha[case_1]
    if (case_2[0] ne -1) then xi[case_2] = alpha[case_2]/beta1[case_2]
    if (case_3[0] ne -1) then xi[case_3] = 0.d0

    fconst=45.0d0
    u = fconst*s*sqrt((1.d0 - rho)/(1.d0 - 1.d0/sqrt(2.d0 + xi^2)))
    v = (u/1.5d1)*radeg*(atan(xi) - asin(xi/sqrt(2.d0*(1.d0 + xi^2))))
    if (case_1[0] ne -1) then begin
      x[case_1] = u[case_1]
      y[case_1] = v[case_1]
    endif
    if (case_2[0] ne -1) then begin
      x[case_2] = v[case_2]
      y[case_2] = u[case_2]
    endif
    if (case_3[0] ne -1) then begin
      x[case_3] = 0.d0
      y[case_3] = 0.d0
    endif

    if noface eq 1 then begin
        xf=fconst*[0.0d0,0.0d0,2.0d0,4.0d0,6.0d0,0.0d0]
        yf=fconst*[2.0d0,0.0d0,0.0d0,0.0d0,0.0d0,-2.0d0]
        x=(x+xf[face])
        y=(y+yf[face])
    endif
  end

  'TSC':begin
; calculate direction cosines
    l = cos(theta)*sin(phi)
    m = cos(theta)*cos(phi)
    n = sin(theta)

; determine the face on which the x and y coordinates will reside by setting
; rho equal to the maximum of n,m,l,-m,-l,-n which corresponds to faces 0
; through 5 respectively
    rho = lng*0
    if size(lng,/N_dimen) EQ 0 then face = 0 else face = lonarr(n_long)

; use an array to store a remapping of the direction cosines.  This way, faces
; 0 and 5 take points on their borders with faces 1-4.  The reason for this is
; that if the max function sees identical values in an array, it takes the
; index of the first occurrence of that value.
    remap = [0,5,2,1,4,3]

    for i = 0l, n_long-1 do begin
      dir_cos = float([n[i],-n[i],l[i],m[i],-l[i],-m[i]])
      rho[i] = max(dir_cos,temp)
      face[i] = remap[temp]
    endfor

; based on the face determined for each point, find the parameters eta and xi
    eta = lng*0
    xi = eta
    for i = 0l, n_long-1 do begin
      case face[i] of
        0:begin
          eta[i] = -m[i]
          xi[i] = l[i]
        end
        1:begin
          eta[i] = n[i]
          xi[i] = l[i]
        end
        2:begin
          eta[i] = n[i]
          xi[i] = -m[i]
        end
        3:begin
          eta[i] = n[i]
          xi[i] = -l[i]
        end
        4:begin
          eta[i] = n[i]
          xi[i] = m[i]
        end
        5:begin
          eta[i] = m[i]
          xi[i] = l[i]
        end
      endcase
    endfor
    fconst = 45.0d0
    r_theta = fconst/tan(asin(rho))
    a_phi = atan(xi,-eta)
    x = r_theta*sin(a_phi)
    y = -r_theta*cos(a_phi)
    if noface eq 1 then begin
        xf=fconst*[0.0d0,0.0d0,2.0d0,4.0d0,6.0d0,0.0d0]
        yf=fconst*[2.0d0,0.0d0,0.0d0,0.0d0,0.0d0,-2.0d0]
        x=(x+xf[face])
        y=(y+yf[face])
    endif
  end

  'HPX': begin
;
; See Calabretta & Roukema 2007, MNRAS, 381, 865
;
      pv2_1 = N_ELEMENTS(pv2) GE 1 ? pv2[0] : 4.d
      pv2_2 = N_ELEMENTS(pv2) GE 2 ? pv2[1] : 3.d
      hpx_k = pv2_2                  ; The main generalised HEALPIX parameters
      hpx_h = pv2_1                  ;
      ik = ROUND(hpx_k)
      ih = ROUND(hpx_h)

      thetalim = asin((hpx_k-1d0)/hpx_k)

      eqfaces = where( abs(theta) le thetalim, complement=polfaces)
      x = phi  ; make x & y arrays in same shape as phi/theta.  
      y = phi

; equatorial region  
      if eqfaces[0] ne -1 then begin
          x[eqfaces] = phi[eqfaces]*radeg
          y[eqfaces] = (90d * hpx_k / hpx_h) * sin( theta[eqfaces])
      endif

;polar regions
      if polfaces[0] ne -1 then begin
          hpx_sig = sqrt ( hpx_k * (1d0 - abs(sin(theta[polfaces]))))
          hpx_omega = ((hpx_k mod 2 eq 1) or theta[polfaces] gt 0)*1.D
          hpx_phic = -180d0 + (2*floor((phi[polfaces]*radeg+180d0)*hpx_h/360d0 + $
                                  (1-hpx_omega)/2.) + hpx_omega)*180d0/hpx_h
          x[polfaces] = hpx_phic + (phi[polfaces]*radeg-hpx_phic) * hpx_sig
          y[polfaces] = 180./hpx_h * ((theta[polfaces] gt 0)*2-1) * $
                                ((hpx_k+1)/2 - hpx_sig)
      endif
  end
  'HCT':begin
    x = phi*radeg
    y = DBLARR(N_ELEMENTS(theta))
    thetalim = ASIN(2.D/3.D)
    w_np = WHERE(theta GE thetalim, n_np)
    w_eq = WHERE((theta LT thetalim) AND (theta GT -thetalim), n_eq)
    w_sp = WHERE(theta LE -thetalim, n_sp)
    IF n_np GT 0 THEN y[w_np] = 45.D*(2.D - SQRT(3.D*(1.D - SIN(theta[w_np]))))
    IF n_eq GT 0 THEN y[w_eq] = 45.D*(3.D/2.D)*SIN(theta[w_eq])
    IF n_sp GT 0 THEN y[w_sp] = 45.D*(SQRT(3.D*(1.D + SIN(theta[w_sp])))-2.D)
  end

  'XPH':begin
;
; HEALPix butterfly projection: see Calabretta & Lowe (2013)
; 
    scale = 1d0/sqrt(2d0)
    thetalim = asin(2d0/3d0)
    out_of_range = WHERE(phi EQ !dpi, nout)
    IF nout GT 0 THEN phi[out_of_range] = -!dpi
    xi  = phi           ; get array of same shape
    eta = SIN(theta)
    test = 0*FIX(xi)
    psi = (phi*radeg + 180d0) mod 90d0
    eqfaces = where(abs(theta) le thetalim, complement=polfaces)
    IF eqfaces[0] NE -1 THEN BEGIN
        xi[eqfaces]  = psi[eqfaces]
        eta[eqfaces] *= 67.5d0
    ENDIF
    IF polfaces[0] NE -1 THEN BEGIN
        hpx_sigma = SQRT(3d0*(1d0 - ABS(eta[polfaces])))
        xi[polfaces] = 45d0 + (psi[polfaces] - 45d0)*hpx_sigma
        sgn = 2*(theta[polfaces] GT 0) - 1
        eta[polfaces] = TEMPORARY(sgn)*(90d0 - 45d0*hpx_sigma)
    ENDIF
    psi = 0
    xi  -= 45d0
    eta -= 90d0
    x = xi + eta
    y = TEMPORARY(xi) - TEMPORARY(eta)
    quad = WHERE((-!dpi LE phi) AND (phi LT -pi2))
    IF quad[0] NE -1 THEN BEGIN
        temp    = x[quad]
        x[quad] = -y[quad]
        y[quad] = -temp
        test[quad] = 1
    ENDIF
    quad = WHERE((-pi2 LE phi) AND (phi LT 0))
    IF quad[0] NE -1 THEN BEGIN
        y[quad] *= -1d0
        test[quad] = 1
    ENDIF
    quad = WHERE((0d0 LE phi) AND (phi LT pi2))
    IF quad[0] NE -1 THEN BEGIN
        temp    = x[quad] 
        x[quad] = y[quad]
        y[quad] = temp
        test[quad] = 1
    ENDIF
    quad = WHERE((pi2 LE phi) AND (phi LT !dpi))
    IF quad[0] NE -1 THEN BEGIN
        x[quad]  *= -1d0
        test[quad] = 1
    ENDIF
    quad = 0
    x *= scale
    y *= scale
  end
  else:message,strupcase(projection_type)+$
               ' is not a valid projection type.  Reset CTYPE'
endcase

if keyword_set(crxy) && ~array_equal(crxy, [0d0,0d0]) then begin
    x = x - crxy[0]
    y = y - crxy[1]
endif

END