/usr/share/gnudatalanguage/astrolib/wcssph2xy.pro is in gdl-astrolib 2018.02.16+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 | ;+
; NAME:
; WCSSPH2XY
; PURPOSE:
; Convert spherical coordinates to x and y (map) angular coordinates
; EXPLANATION:
; Convert spherical (longitude and latitude -- sky) coordinates to x
; and y intermediate world coordinates (still nominally in degrees) in
; the projection plane of the map. This procedure is the inverse of
; WCSXY2SPH. See WCS_DEMO for example of use.
;
; This is a lower level procedure -- given a FITS header, the user will
; usually use ADXY which will then call WCSSPH2XY with the appropriate
; parameters.
; CATEGORY:
; Mapping and Auxiliary FITS Routine
;
; CALLING SEQUENCE:
; wcssph2xy, longitude, latitude, x, y, [ map_type , CTYPE = ,
; FACE =, PV1= PV2= , CRVAL = , CRXY = , LONGPOLE = ,
; LATPOLE = , PHI0 = , NORTH_OFFSET =, SOUTH_OFFSET =, BADINDEX =]
;
; INPUT PARAMETERS:
; longitude - longitude of data, scalar or vector, in degrees
; latitude - latitude of data, same number of elements as longitude,
; in degrees
; map_type - optional positional parameter, numeric scalar (0-29)
; corresponding to a particular map projection. This is not a
; FITS standard, it is simply put in to allow function similar
; to that of less general map projection procedures (eg AITOFF).
; The following list gives the map projection types and their
; respective numbers.
;
; FITS Number Name Comments
; code code
; ---- ------ ----------------------- -----------------------------------
; DEF 0 Default = Plate Carree
; AZP 1 Zenithal perspective PV2_1 required
; TAN 2 Gnomic AZP w/ mu = 0
; SIN 3 Orthographic PV2_1,PV2_2 optional
; STG 4 Stereographic AZP w/ mu = 1
; ARC 5 Zenithal Equidistant
; ZPN 6 Zenithal polynomial PV2_0, PV2_1....PV2_20 possible
; ZEA 7 Zenithal equal area
; AIR 8 Airy PV2_1 required
; CYP 9 Cylindrical perspective PV2_1 and PV2_2 required
; CAR 10 Plate Carree
; MER 11 Mercator
; CEA 12 Cylindrical equal area PV2_1 required
; COP 13 Conical perspective PV2_1 and PV2_2 required
; COD 14 Conical equidistant PV2_1 and PV2_2 required
; COE 15 Conical equal area PV2_1 and PV2_2 required
; COO 16 Conical orthomorphic PV2_1 and PV2_2 required
; BON 17 Bonne's equal area PV2_1 required
; PCO 18 Polyconic
; SFL 19 Sanson-Flamsteed (GLS is allowed as a synonym for SFL)
; PAR 20 Parabolic
; AIT 21 Hammer-Aitoff
; MOL 22 Mollweide
; CSC 23 Cobe Quadrilateralized convergence of inverse is poor
; Spherical Cube
; QSC 24 Quadrilateralized
; Spherical Cube
; TSC 25 Tangential Spherical Cube
; SZP 26 Slant Zenithal Projection PV2_1,PV2_2, PV2_3 optional
; HPX 27 HealPix
; HCT 28 HealCart (Cartesian approximation of Healpix)
; XPH 29 HEALPix butterfly projection
;
; OPTIONAL INPUT KEYWORD PARAMETERS:
;
; CTYPE - One, two, or three element vector containing 8 character
; strings corresponding to the CTYPE1, CTYPE2, and CTYPE3
; FITS keywords:
;
; CTYPE[0] - first four characters specify standard system
; ('RA--','GLON' or 'ELON' for right ascension, Galactic
; longitude or ecliptic longitude respectively), second four
; letters specify the type of map projection (eg '-AIT' for
; Aitoff projection)
; CTYPE[1] - first four characters specify standard system
; ('DEC-','GLAT' or 'ELAT' for declination, galactic latitude
; or ecliptic latitude respectively; these must match
; the appropriate system of ctype1), second four letters of
; ctype2 must match second four letters of ctype1.
; CTYPE[2] - if present must be the 8 character string,'CUBEFACE',
; only used for spherical cube projections to identify an axis
; as containing the face on which each x and y pair of
; coordinates lie.
; PV2 - Vector of projection parameter associated with latitude axis
; PV2 will have up to 21 elements for the ZPN projection, up to 3
; for the SIN projection and no more than 2 for any other
; projection. The first element corresponds to PV2_1, the
; second to PV2_2, etc.
; CRXY - 2 element vector giving the x and y coordinates of the
; reference point. if this is not set the offset is [0,0].
; Used to implement (x0,y0) in Sect 2.5 of Griesen & Calabretta 2002
; Do not confuse with CRPIX.
;
; Parameters simply passed to WCS_ROTATE:
;
; CRVAL - 2 element vector containing standard system coordinates (the
; longitude and latitude) of the reference point
; PV1 - Vector of projection parameters associated with longitude
; LONGPOLE - native longitude of standard system's North Pole
; LATPOLE - "target" native latitude of the standard system's North Pole
;
; Parameters intended to enhance invertability:
;
; NORTH_OFFSET - offset (radians) added to input points near north pole.
; SOUTH_OFFSET - offset (radians) added to input points near south pole.
;
; OUTPUT PARAMETERS:
;
; x - x coordinate of data, same number of elements as longitude, in
; degrees; if CRXY is set, then x will be returned offset by
; crxy[0]. NOTE: x in all map projections increases to the
; left, not the right.
; y - y coordinate of data, same number of elements as longitude, in
; degrees; if CRXY is set, y will be returned offset by crxy[1]
;
; OPTIONAL OUTPUT KEYWORD PARAMETERS:
; FACE - a output variable used for spherical cube projections to
; designate the face of the cube on which the x and y
; coordinates lie. Will contain the same number of elements as
; X and Y. Must contain at least 1 arbitrary element on input
; If FACE is NOT defined on input, it is assumed that the
; spherical cube projection is laid out over the whole sky
; in the "sideways T" configuration.
; BADINDEX - vector, list of transformed points too close to poles.
;
; NOTES:
; The conventions followed here are described in more detail in
; "Representations of Celestial Coordinates in FITS" by Calabretta
; and Greisen (2002, A&A, 395, 1077; also see
; http://fits.gsfc.nasa.gov/fits_wcs.html). The general
; scheme outlined in that article is to first use WCS_ROTATE to convert
; coordinates in one of three standard systems (celestial, galactic,
; or ecliptic) into a "native system" of latitude and longitude. The
; latitude and longitude are then converted into x and y coordinates
; which depend on the map projection which is performed. The rotation
; from standard to native coordinates can be skipped if one so desires.
; This procedure necessitates two basic sections. The first converts
; "standard" coordinates to "native" coordinates while the second converts
; "native" coordinates to x and y coordinates. The first section is
; simply a call to WCS_ROTATE, while the second contains the guts of
; the code in which all of the map projection is done. This procedure
; can be called in a form similar to AITOFF, EQPOLE, or QDCB by calling
; wcssph2xy with a fifth parameter specifying the map projection by
; number and by not using any of the keywords related to the map
; projection type (e.g. CTYPE).
;
; PROCEDURE:
;
; The first task of the procedure is to do general error-checking to
; make sure the procedure was called correctly and none of the
; parameters or keywords conflict. This is particularly important
; because the procedure can be called in two ways (either using
; FITS-type keywords or using a number corresponding to a map projection
; type). All variables are converted into double precision values and
; angular measurements are converted from degrees into radians.
; If necessary, longitude values are converted into the range -pi to pi.
; Any latitude points close to the of the poles are mapped to a specific
; latitude of from the pole so that the map transformations become
; completely invertible. The magnitude of this correction is given by
; the keywords NORTH_OFFSET and SOUTH_OFFSET and a list of affected
; points is optionally returned in the "badindex" output parameter.
; The next task of the procedure is to convert the "standard"
; coordinates to "native" coordinates by rotating the coordinate system.
; This rotation is performed by the procedure WCS_ROTATE and is governed
; by the keywords CRVAL and LONGPOLE. The final task of the WCSSPH2XY
; is to take "native" latitude and longitude coordinates and convert
; them into x and y coordinates. Any map specific error-checking is
; done at this time. All of the equations were obtained from
; "Representations of Celestial Coordinates in FITS" and cases needing
; special attention are handled appropriately (see the comments with
; individual map projections for more information on special cases).
;
; Note that a further transformation (using the CD matrix) is required
; to convert the (x,y) coordinates to pixel coordinates.
; COMMON BLOCKS:
;
; none
;
; PROCEDURES CALLED:
; WCS_ROTATE
;
; ORIGINAL AUTHOR:
;
; Rick Balsano LANL V1.1 8/31/93
;
; MODIFICATIONS/REVISION LEVEL:
; 2.3 9/15/93 W. Landsman (HSTX) Update quad cube coords, vectorize
; keywords
; 2.4 12/29/93 I. Freedman (HSTX) Eliminated LU decomposition
; 2.5 1/5/93 I. Freedman (HSTX) Offset keywords / bad point index
; 2.6 Dec 94 Compute pole for transformations where the reference
; pixel is at the native origin W. Landsman (HSTX)
; 2.7 May 95 Change internal variable BETA for V4.0 compatibility
; 2.8 June 95 Change loop indices from integer to long
; 2.9 3/18/96 Change FACE usage for cube projections to match WCSLIB
; C/FORTRAN software library.
; 2.10 02/18/99 Fixed implementation of ARC algorithm
; 2.11 June 2003 Update conic projections, add LATPOLE keyword
; 2.12 Aug 2003, N.Rich - Fix pre-V5.5 bug from previous update
; 2.13 Sep 2003, W. Landsman CTYPE keywords need not be 8 characters
; 2.14 Jan 2004, W. Landsman don't modify scalars, fix PARabolic code
; 2.15 Feb 2004, W. Landsman Fix AZP and AIR algorithms
; 3.0 May 2004 W. Landsman Support extended SIN (=NCP), slant zenithal
; (SZP), and zenithal polynomial (ZPN) projections, use
; PV2 keyword vector instead of PROJP1, PROJP2
; 3.1 Jul 2005 W.Landsman/C. Markwardt Set unprojectable points in
; tangent projection to NaN
; 3.1.1 Jul 2005 Fixed 3.1 mod to work for scalars
; 3.2 Dec 2005 Fixed Airy projection for latitude centered at 90 deg
; 3.3 Aug 2007 R. Munoz, W.Landsman Correct treatment of PV1_2 and
; PV2_2 parameters
; 3.4 Oct 2007 Sergey Koposov Support HEALPIX projection
; 3.4.1 June 2009 Check for range of validity of ZPN polynomial W.L.
; 3.5 May 2012 Benjamin Alan Weaver, Add nonstandard HEALCART
; projection, Allow map_index to be > 25
; 3.5.1 May 2013 W. Landsman Allow GLS as a synonym for SFL
; 3.6 Jul 2013 J. P. Leahy added XPH projection, apply polar offsets
; only for cylindrical & conic projections.
; 3.6.1 Dec 2013 W. Landsman Polar offsets done in radians
; 3.6.2 Jan 2016 W. Landsman Lat and Long can have different size so long
; as they have the same number of elements
;-
PRO wcssph2xy,longitude,latitude,x,y,map_type, ctype=ctype,$
face = face, pv1 = pv1, pv2 = pv2, crval = crval, $
crxy = crxy, longpole = longpole, latpole = latpole, $
north_offset = north_offset, south_offset = south_offset, $
badindex = badindex
compile_opt idl2, hidden
; DEFINE ANGLE CONSTANTS
pi = !DPI
pi2 = pi/2.d0
radeg = 57.295779513082323d0
map_types=['DEF','AZP','TAN','SIN','STG','ARC','ZPN','ZEA','AIR','CYP',$
'CAR','MER','CEA','COP','COD','COE','COO','BON','PCO','SFL',$
'PAR','AIT','MOL','CSC','QSC','TSC','SZP','HPX','HCT','XPH']
; check to see that enough parameters (at least 4) were sent
if (N_params() lt 4) then begin
print,'Syntax - WCSSPH2XY, longitude, latitude, x, y, [ map_type,'
print,' CTYPE= ,FACE=, PV1=, PV2=, CRVAL=, CRXY=, LATPOLE='
print,' LONGPOLE= ,NORTH_OFFSET=, SOUTH_OFFSET=, BADINDEX=]'
return
endif
; GENERAL ERROR CHECKING
; find the number of elements in each of the data arrays
n_long = N_elements( longitude )
n_lat = N_elements( latitude )
; check to see that the data arrays have the same size
if n_long NE n_lat then begin
message,$
'LONGITUDE and LATITUDE must have the same number of elements.'
endif
if (N_params() eq 5) then begin
if keyword_set(ctype) then message,$
'Use either the MAP_TYPE positional parameter or set the projection type' + $
' with CTYPE, but not both.'
; set projection_type string using map_type parameter (a number)
ntypes = n_elements(map_types)
if (N_ELEMENTS(map_type) eq 1 && map_type ge 0 && $
map_type lt ntypes) then begin
projection_type = map_types[map_type]
endif else message,'MAP_TYPE must be a scalar >= 0 and < '+$
strtrim(string(ntypes),2)+'; it was set to '+$
strtrim(string(map_type),2)
endif else if (n_params() eq 4) then wcs_check_ctype, ctype, projection_type
; checks CTYPE format and extract projection type
; this sets the default map projection type for the cases when map_type or
; projection_type is set to 'DEF' or if projection_type is not set at this
; point. As suggested in 'Representations of Celestial Coordinates in FITS'
; the default type is set to CAR (Plate Caree) the simplest of all projections.
if ((n_elements(projection_type) eq 0) || $
(projection_type eq 'DEF') ) then begin
projection_type='CAR'
message, /INFORMATIONAL, $
'Projection type not supplied, set to default (Plate Caree)'
endif
; Check to make sure all the correct parameters and keywords are set for
; spherical projections.
if (N_ELEMENTS(ctype) EQ 3 || keyword_set(face) || (projection_type eq 'CSC') || $
(projection_type eq 'QSC') || (projection_type eq 'TSC')) then begin
noface = n_elements(face) eq 0
endif
; check to see if the x and y offsets are set properly. If not, break out
; of program. If the x and y offsets are not set then assume they are zero.
if ((n_elements(crxy) ne 0) && (n_elements(crxy) ne 2)) then $
message,'Offset keyword CRXY must contain 2 elements'
if ((n_elements(crval) ne 0) && (n_elements(crval) ne 2)) then $
message,'CRVAL keyword must contain 2 elements'
; Convert all longitude values into the range -180 to 180 so that equations
; work properly.
lng = double( longitude ) & lat = double( latitude )
temp = where(lng ge 180d0, Ntemp)
if Ntemp GT 0 then lng[temp] = lng[temp] - 360.0d0
; Convert from standard coordinate system to "native" coordinate system
; if the CRVAL keyword is set. Otherwise, assume the latitude and longitude
; given are in "native" coordinates already (this is essentially what is done
; in the procedure AITOFF).
PV2_1 = N_elements(pv2) GT 0 ? pv2[0] : 0
PV2_2 = N_elements(pv2) GT 1 ? pv2[1] : 0
if N_elements(map_type) EQ 0 then begin
wmt = where(projection_type EQ map_types)
map_type = wmt[0]
endif
conic = (map_type GE 13) && (map_type LE 16)
zenithal = ((map_type GE 1) && (map_type LE 8)) || $
(map_type EQ 26) || (map_type EQ 29)
cylindrical = (map_type GE 9 && map_type LE 12) || $
map_type EQ 27 || map_type EQ 28
; Rotate from standard celestial coordinates into the native system.
if conic then theta0 = PV2_1 else if zenithal then theta0 = 90 $
else theta0 = 0
if N_elements(crval) GE 2 then begin
wcs_rotate, lng, lat, phi, theta, crval, pv1 = pv1, $
latpole = latpole, longpole=longpole, theta0 = theta0
phi /= radeg
theta /= radeg
endif else begin
phi = lng/radeg
theta = lat/radeg
endelse
IF cylindrical || conic THEN BEGIN
; Make small offsets at poles to allow the transformations to be
; completely invertible. They are necessary in cylindrical & conic
; projections since the pole is mapped to a line in the projection plane.
; These introduce a small fractional error but only at the poles.
;
IF N_elements(north_offset) EQ 0 then north_offset = 1.d-7
IF N_elements(south_offset) EQ 0 then south_offset = 1.d-7
bad = where(abs(theta - pi2) lt north_offset, Nbad)
IF (Nbad GT 0) THEN BEGIN
MESSAGE,/INFORM,'Some input points are too close to the NORTH pole.'
theta[bad] = pi2 - north_offset
IF KEYWORD_SET(badindex) THEN badindex = bad
ENDIF
bad = where(abs(theta + pi2) lt south_offset, Nbad)
IF (Nbad GT 0) THEN BEGIN
MESSAGE,/INFORM,'Some input points are too close to the SOUTH pole.'
lat[bad] = south_offset - pi2
IF KEYWORD_SET(badindex) THEN BEGIN
badindex = [badindex, bad]
badindex = badindex[sort(badindex)]
ENDIF
ENDIF
ENDIF
; BRANCH BY MAP PROJECTION TYPE
case strupcase(projection_type) of
'AZP':begin
if (PV2_1 lt 0) then message,$
'AZP map projection requires the keyword PV2_1 >= 0'
gamma = PV2_2/radeg
mu = PV2_1
r_theta = radeg*cos(theta)*(mu + 1.d0)/ $
( (mu + sin(theta)) + cos(theta)*cos(phi)*tan(gamma))
x = r_theta*sin(phi)
y = -r_theta*cos(phi)/cos(gamma)
end
'SZP': begin
mu = N_elements(PV2) GT 0 ? PV2[0] : 0
phi_c = N_elements(PV2) GT 1 ? PV2[1] : 0
theta_c = N_elements(PV2) GT 1 ? PV2[2] : 90
phi_c = phi_c/radeg & theta_c = theta_c/radeg
xp = -mu*cos(theta_c)*sin(phi_c)
yp = mu*cos(theta_c)*cos(phi_c)
zp = mu*sin(theta_c) + 1.
denom = zp - (1-sin(theta))
x = radeg*( zp*cos(theta)*sin(phi) - xp*(1-sin(theta)) )/ denom
y = -radeg*( zp*cos(theta)*cos(phi) + yp*(1-sin(theta)) )/ denom
end
'TAN':begin
sz_theta = size(theta,/dimen)
if sz_theta[0] EQ 0 then x = !Values.D_NAN else $
x = make_array(value = !values.D_NAN, dimen=sz_theta)
y = x
g = where(theta GT 0, Ng)
if Ng GT 0 then begin
r_theta = radeg/tan(theta[g])
x[g] = r_theta*sin(phi[g])
y[g] = -r_theta*cos(phi[g])
endif
end
'SIN':begin
if N_elements(PV2_1) EQ 0 then PV2_1 = 0
if N_elements(PV2_2) EQ 0 then PV2_2 = 0
if (PV2_1 EQ 0) && (PV2_2 EQ 0) then begin
r_theta = radeg*cos(theta)
x = r_theta*sin(phi)
y = -r_theta*cos(phi)
endif else begin ;NCP projection
x = radeg*(cos(theta)*sin(phi) + PV2_1*(1-sin(theta)) )
y = -radeg*(cos(theta)*cos(phi) - PV2_2*(1-sin(theta)) )
endelse
end
'STG':begin
r_theta = 2.d0*radeg*tan((pi2-theta)/2.d0)
x = r_theta*sin(phi)
y = -r_theta*cos(phi)
end
'ARC':begin
r_theta = radeg*( pi2 - theta )
x = r_theta*sin(phi)
y = -r_theta*cos(phi)
end
'ZPN':begin
z = pi2 - theta
g = where(pv2 NE 0, Ng)
np = Ng GT 0 ? max(g) : 0
par = pv2[0:np]
Nbad = 0
;Check for range of validity for a nonlinear polynomial. Set the derivative
; to zero and check for any real, positive roots.
if np GT 2 then begin
dpar = (indgen(np)+1) * par[1:*] ;Polynomial derivative
zroots = fz_roots(dpar) ;Find zeros
g = where(imaginary(zroots) EQ 0, Ng) ;Any real roots?
if Ng GT 0 then zroots = float(zroots[g])
g = where(zroots gt 0,Ng)
if Ng GT 0 then rlim = min(zroots[g])
bad = where(z GT rlim, Nbad)
endif
r_theta = radeg*poly(z, par)
x = r_theta*sin(phi)
y = -r_theta*cos(phi)
if Nbad GT 0 then begin
x[bad] = !VALUES.D_NAN
y[bad] = !VALUES.D_NAN
endif
end
'ZEA':begin
r_theta = 2.d0*radeg*sin((pi2 - theta)/2.d0)
x = r_theta*sin(phi)
y = -r_theta*cos(phi)
end
'AIR':begin
if ~keyword_set(PV2_1) then begin
message,/informational,$
'PV2_1 not set, using default of PV2_1 = 90 for AIR map projection'
PV2_1 = 9.d1
endif
theta_b = PV2_1/radeg
xi = (pi2 - theta)/2.d0
; When theta_b (aka PV2_1 in radians) is equal to pi/2 the normal equations
; for the AIR projection produce infinities. To avoid the problem, values
; of theta_b equal to pi/2 cause a different set of equations to be used.
if (theta_b eq pi2) then begin
; AIR produces the same radii for different latitudes, causing some overlap. To
; avoid this problem, if latitudes which are far enough south to be a problem
; are included in the data, the routine will stop.
if (min(theta) lt -36/radeg) then begin
message,'AIR produces overlap of native latitudes south of ',/continue
print,'-36 with the PV2_1 = 90'
return
endif
; points with xi too small are labelled as bad to prevent poor behavior of the
; equation for r_theta
good = where(abs(xi) ge 1.d-10, Ngood)
r_theta = lng*0
if (Ngood GT 0) then $
r_theta[good] = -2*radeg*(alog(cos(xi[good]))/tan(xi[good]) - $
0.5*tan(xi[good]))
endif else begin
xi_b = (pi2 - theta_b)/2.d0
a = alog(cos(xi_b))/tan(xi_b)/tan(xi_b)
; AIR produces the same radii for different latitudes, causing some overlap. To
; avoid this problem, if latitudes which are far enough south to be a problem
; are included in the data, the routine will stop.
xi_temp = (findgen(90) + 1)/radeg
radius=-radeg*(alog(cos(xi_temp))/tan(xi_temp)+alog(cos(xi_b))/$
tan(xi_b)*tan(xi_temp))
i = 0
repeat i = i + 1 $
until ((radius[i + 1] le radius[i]) || (i eq n_elements(radius) - 2))
if (i lt (n_elements(radius)- 2)) then min_lat = 90 - 2*radeg*xi_temp[i] $
else min_lat = -90
if (min(theta) lt min_lat[0]/radeg) then begin
message,'AIR produces overlap of native latitudes south of ',/continue
print,format='(i3,a21,i3)',min_lat[0],' with the PV2_1 = ',PV2_1
return
endif
; points with xi too small are labelled as bad to prevent poor behavior of the
; equation for r_theta
good = where(abs(xi) ge 1.d-10, Ngood)
r_theta = lng*0
if (Ngood GT 0) then r_theta[good] = -2*radeg*(alog(cos(xi[good]))/$
tan(xi[good]) + a*tan(xi[good]))
endelse
x = r_theta*sin(phi)
y = -r_theta*cos(phi)
end
'CYP':begin
if (n_elements(PV2_1) eq 0) then begin
message,/informational,$
'PV2_1 not set, using default of PV2_1 = 0 for CYP map projection'
PV2_1 = 0.d0
endif
if (n_elements(PV2_2) eq 0) then begin
message,/informational,$
'PV2_2 not set, using default of PV2_2 = 1 for CYP map projection'
PV2_2 = 1.d0
endif
if (PV2_1 eq -PV2_2) then message,$
'PV2_1 = -PV2_2 is not allowed for CYP map projection.'
x = PV2_2*radeg*phi
y = radeg*(PV2_1 + PV2_2)*sin(theta)/(PV2_1 + cos(theta))
end
'CAR':begin
x = radeg*phi
y = radeg*theta
end
'MER':begin
x = radeg*phi
y = radeg*alog(tan((pi2 + theta)/2.d0))
end
'CEA':begin
if N_elements(PV2_1) EQ 0 then message,$
'CEA map projection requires that PV2_1 keyword be set.'
if ((PV2_1 le 0) || (PV2_1 gt 1)) then message,$
'CEA map projection requires 0 < PV2_1 <= 1'
x = radeg*phi
y = radeg*sin(theta)/PV2_1
end
'COP':begin
if ~keyword_set(PV2_1) then message,$
'COP map projection requires that PV2_1 keyword be set.'
if ~keyword_set(PV2_2) then begin
message,/informational,$
'PV2_2 not set, using default of PV2_2 = 0 for COP map projection'
PV2_2= 0
endif
if ((PV2_1 lt -90) || (PV2_2 gt 90) || (PV2_1 gt 90)) then message,$
'PV2_1 and PV2_2 must satisfy -90<=PV2_1<=90,0<=PV2_2<=90 for COP projection'
if (PV2_1 eq -PV2_2) then message,$
'COP projection with PV2_1=-PV2_2 is better done as a cylindrical projection'
theta_a = PV2_1/radeg
alpha = PV2_2/radeg
bad = where((theta ge theta_a + pi2) or (theta le theta_a - pi2))
if (bad[0] ne -1) then begin
message,/continue,$
'COP map projection diverges for native latitude = PV2_1 +- 90.'
message,'Remove these points and try again.'
endif
r_theta = radeg*cos(alpha)*(1.d0/tan(theta_a)-tan(theta-theta_a))
a_phi = phi*sin(theta_a)
y_0 = radeg*cos(alpha)/tan(theta_a)
x = r_theta*sin(a_phi)
y = y_0 - r_theta*cos(a_phi)
end
'COD':begin
if ~keyword_set(PV2_1) then message,$
'COD map projection requires that PV2_1 keyword be set.'
if ~keyword_set(PV2_2) then begin
message,/informational,$
'PV2_2 not set, using default of PV2_2 = 0 for COD map projection'
PV2_2 = 0
end
if ((PV2_1 lt -90) || (PV2_2 gt 90) || (PV2_1 gt 90)) then message,$
'PV2_1 and PV2_2 must satisfy -90<=PV2_1<=90,PV2_2<=90 for COD projection'
if (PV2_1 eq -PV2_2) then message,$
'COD gives divergent equations for PV2_1 = -PV2_2'
theta_a = PV2_1/radeg
; when PV2_1 not = PV2_2 use regular equations
if (PV2_2 NE 0) then begin
alpha = PV2_2/radeg
r_theta = theta_a - theta + alpha/(tan(alpha)*tan(theta_a))
a_phi = sin(theta_a)*sin(alpha)*phi/alpha
y_0 = radeg*alpha/(tan(alpha)*tan(theta_a))
; if the two parameters PV2_1 and PV2_2 are equal use the simpler set of
; equations
endif else begin
r_theta = theta_a - theta + 1.d0/tan(theta_a)
a_phi = phi*sin(theta_a)
y_0 = radeg/tan(theta_a)
endelse
x = radeg*r_theta*sin(a_phi)
y = y_0 - radeg*r_theta*cos(a_phi)
end
'COE':begin
if N_elements(PV2_1) EQ 0 then message,$
'COE map projection requires that PV2_1 keyword be set.'
if N_elements(PV2_2) EQ 0 then begin
message,/informational,$
'PV2_2 not set, using default of PV2_2 = 0 for COE map projection'
PV2_2 = 0
end
if ((PV2_1 lt -90) || (PV2_2 gt 90) || (PV2_1 gt PV2_2)) then message,$
'PV2_1 and PV2_2 must satisfy -90<=PV2_1<=PV2_2<=90 for COE map projection'
if (PV2_1 eq -PV2_2) then message,$
'COE gives divergent equations for PV2_1 = -PV2_2'
theta_1 = (PV2_1 - PV2_2)/radeg
theta_2 = (PV2_1 + PV2_2)/radeg
s_1 = sin(theta_1)
s_2 = sin(theta_2)
stheta_a = sin(PV2_1/radeg)
gamma = s_1 + s_2
r_theta=radeg*2.d0*sqrt(1.d0+ s_1*s_2-gamma*sin(theta))/gamma
a_phi = phi*gamma/2.d0
y_0 = radeg*2.d0*sqrt(1.d0+ s_1*s_2-gamma*stheta_a)/gamma
x = r_theta*sin(a_phi)
y = y_0 - r_theta*cos(a_phi)
end
'COO':begin
if ~keyword_set(PV2_1) then message,$
'COO map projection requires that PV2_1 keyword be set.'
if ~keyword_set(PV2_2) then begin
message,/informational,$
'PV2_2 not set, using default of PV2_2 = 0 for COO map projection'
PV2_2 = 0
end
if ((PV2_1 lt -90) || (PV2_2 gt 90) || (PV2_1 gt 90)) then message,$
'PV2_1 and PV2_2 must satisfy -90<=PV2_1<=90,PV2_2<=90 for COO projection'
if (PV2_1 eq -PV2_2) then message,$
'COO gives divergent equations for PV2_1 = -PV2_2'
theta_1 = (PV2_1 - PV2_2)/radeg
theta_2 = (PV2_1 + PV2_2)/radeg
theta_a = PV2_1/radeg
; for cases where PV2_1 = 0, use a simpler formula to calculate c,
; otherwise use the regular formula
if (PV2_2 eq 0) then c = sin(theta_1) else $
c = alog(cos(theta_2)/cos(theta_1))/alog(tan((pi2-theta_2)/2.d0)/$
tan((pi2-theta_1)/2.d0))
alpha = radeg*cos(theta_1)/(c*(tan((pi2-theta_1)/2.d0))^c)
r_theta = alpha*(tan((pi2-theta)/2.d0))^c
y_0 = alpha*tan((pi2-theta_a)/2.)^c
a_phi = c*phi
x = r_theta*sin(a_phi)
y = y_0 - r_theta*cos(a_phi)
end
'BON':begin
if (N_elements(PV2) LT 1) then message,$
'BON map projection requires that PV2_1 keyword be set.'
pv2_1 = pv2[0]
if ((PV2_1 lt -90) || (PV2_1 gt 90)) then message,$
'PV2_1 must satisfy -90 <= PV2_1 <= 90 for BON map projection'
if (PV2_1 eq 0) then message,$
'PV2_1 = 0 for BON map projection is better done with SFL map projection'
theta_1 = PV2_1/radeg
s = theta_1/abs(theta_1)
y_0 = 1.d0/tan(theta_1) + theta_1
a = phi*cos(theta)/(y_0 - theta)
x = radeg*(y_0 - theta)*sin(a)
y = radeg*(y_0 - (y_0 - theta)*cos(a))
end
'PCO':begin
; The equations for x and y are poorly behaved for theta = 0. Avoid this by
; explicitly assigning values for x and y when theta = 0.
zero_ind = where(theta eq 0, Nzero)
; create x and y with same structure as longitude
x = lng*0 & y = x
if (Nzero GT 0) then begin
x[zero_ind] = radeg*phi[zero_ind]
y[zero_ind] = 0.d0
endif
good_ind = where(theta ne 0, Ngood)
if Ngood GT 0 then begin
x[good_ind] = radeg*sin(phi[good_ind]*sin(theta[good_ind]))/$
tan(theta[good_ind])
y[good_ind] = radeg*(theta[good_ind]+$
(1.d0 - cos(phi[good_ind]*sin(theta[good_ind])))/tan(theta[good_ind]))
endif
end
'SFL':begin
x = radeg*phi*cos(theta)
y = radeg*theta
end
'GLS':begin ;Alternative name for SFL projection
x = radeg*phi*cos(theta)
y = radeg*theta
end
'PAR':begin
x = radeg*phi*(2.d0*cos(2.d0*theta/3.d0) - 1.d0)
y = 180.0*sin(theta/3.d0)
end
'AIT':begin
alpha = radeg*sqrt(2.d0/(1.d0 + cos(theta)*cos(0.5d0*phi)))
x = 2.d0*alpha*cos(theta)*sin(0.5d0*phi)
y = alpha*sin(theta)
end
'MOL':begin
; Use Newton's method to find a numerical solution to the equation:
; alpha + 1/2*sin(2*alpha) - 1/2*pi*sin(theta) = 0
tolerance = 1.0d-14
alpha = lng*0
repeat begin
alpha_old = alpha
alpha = alpha_old - (alpha_old + 0.5*sin(2.d0*alpha_old) - $
0.5*pi*sin(theta))/(1.d0 + cos(2.d0*alpha_old))
endrep until (max(abs(alpha - alpha_old)) lt tolerance)
x = 2.d0^1.5*phi*radeg*cos(alpha)/pi
y = sqrt(2.d0)*radeg*sin(alpha)
end
'CSC':begin
; calculate direction cosines
l = cos(theta)*sin(phi)
m = cos(theta)*cos(phi)
n = sin(theta)
; determine the face on which the x and y coordinates will reside by setting
; rho equal to the maximum of n,m,l,-m,-l,-n which corresponds to faces 0
; through 5 respectively
rho = lng*0
if size(lng,/N_dimen) EQ 0 then face = 0 else face = lonarr(n_long)
; use an array to store a remapping of the direction cosines. This way, faces
; 0 and 5 take points on their borders with faces 1-4. The reason for this is
; that if the max function sees identical values in an array, it takes the
; index of the first occurrence of that value.
remap = [0,5,2,1,4,3]
for i = 0l, n_long-1 do begin
dir_cos = float([n[i],-n[i],l[i],m[i],-l[i],-m[i]])
rho[i] = max(dir_cos,temp)
face[i] = remap[temp]
endfor
; based on the face determined for each point, find the parameters alpha and
; beta1
alpha = lng*0
beta1 = alpha
for i = 0l, n_long-1 do begin
case face[i] of
0:begin
alpha[i] = l[i]/n[i]
beta1[i] = -m[i]/n[i]
end
1:begin
alpha[i] = l[i]/m[i]
beta1[i] = n[i]/m[i]
end
2:begin
alpha[i] = -m[i]/l[i]
beta1[i] = n[i]/l[i]
end
3:begin
alpha[i] = l[i]/m[i]
beta1[i] = -n[i]/m[i]
end
4:begin
alpha[i] = -m[i]/l[i]
beta1[i] = -n[i]/l[i]
end
5:begin
alpha[i] = -l[i]/n[i]
beta1[i] = -m[i]/n[i]
end
endcase
end
; define all of the numerical constants to use in determining x and y
r_0 = 0.577350269
gam_s = 1.37484847732
em = 0.004869491981
gam = -0.13161671474
ome = -0.159596235474
d_0 = 0.0759196200467
d_1 = -0.0217762490699
c_00 = 0.141189631152
c_10 = 0.0809701286525
c_01 = -0.281528535557
c_20 = -0.178251207466
c_11 = 0.15384112876
c_02 = 0.106959469314
fconst = 45.0d0
x = fconst*(alpha*gam_s+alpha^3*(1-gam_s)+alpha*beta1^2*(1-alpha^2)*$
(gam+(em-gam)*alpha^2+(1-beta1^2)*(c_00+c_10*alpha^2+c_01*beta1^2+$
c_20*alpha^4+c_11*alpha^2*beta1^2+c_02*beta1^4))+alpha^3*(1-alpha^2)*$
(ome-(1-alpha^2)*(d_0+d_1*alpha^2)))
y = fconst*(beta1*gam_s+beta1^3*(1-gam_s)+beta1*alpha^2*(1-beta1^2)*$
(gam+(em-gam)*beta1^2+(1-alpha^2)*(c_00+c_10*beta1^2+c_01*alpha^2+$
c_20*beta1^4+c_11*beta1^2*alpha^2+c_02*alpha^4))+beta1^3*(1-beta1^2)*$
(ome-(1-beta1^2)*(d_0+d_1*beta1^2)))
if noface eq 1 then begin
xf=fconst*[0.0d0,0.0d0,2.0d0,4.0d0,6.0d0,0.0d0]
yf=fconst*[2.0d0,0.0d0,0.0d0,0.0d0,0.0d0,-2.0d0]
x=x+xf[face]
y=y+yf[face]
endif
end
'QSC':begin
; calculate direction cosines
l = cos(theta)*sin(phi)
m = cos(theta)*cos(phi)
n = sin(theta)
; determine the face on which the x and y coordinates will reside by setting
; rho equal to the maximum of n,m,l,-m,-l,-n which corresponds to faces 0
; through 5 respectively
rho = lng*0
if size(lng,/N_dimen) EQ 0 then face = 0 else face = lonarr(n_long)
; use an array to store a remapping of the direction cosines. This way, faces
; 0 and 5 take points on their borders with faces 1-4. The reason for this is
; that if the max function sees identical values in an array, it takes the
; index of the first occurrence of that value.
remap = [0,5,2,1,4,3]
for i = 0l, n_long-1 do begin
dir_cos = float([n[i],-n[i],l[i],m[i],-l[i],-m[i]])
rho[i] = max(dir_cos,temp)
face[i] = remap[temp]
endfor
; based on the face determined for each point, find the parameters alpha and
; beta1
alpha = lng*0
beta1 = alpha
for i = 0l, n_long-1 do begin
case face[i] of
0:begin
alpha[i] = l[i]/n[i]
beta1[i] = -m[i]/n[i]
end
1:begin
alpha[i] = l[i]/m[i]
beta1[i] = n[i]/m[i]
end
2:begin
alpha[i] = -m[i]/l[i]
beta1[i] = n[i]/l[i]
end
3:begin
alpha[i] = l[i]/m[i]
beta1[i] = -n[i]/m[i]
end
4:begin
alpha[i] = -m[i]/l[i]
beta1[i] = -n[i]/l[i]
end
5:begin
alpha[i] = -l[i]/n[i]
beta1[i] = -m[i]/n[i]
end
endcase
end
x = lng*0
y = x & xi = y
s = 2.d0*(((alpha gt abs(beta1)) or (beta1 ge abs(alpha))) - 0.5d0)
case_1 = where(abs(alpha) gt abs(beta1))
case_2 = where((abs(alpha) le abs(beta1)) and (beta1 ne 0.d0))
case_3 = where((alpha eq 0.d0) and (beta1 eq 0.d0))
if (case_1[0] ne -1) then xi[case_1] = beta1[case_1]/alpha[case_1]
if (case_2[0] ne -1) then xi[case_2] = alpha[case_2]/beta1[case_2]
if (case_3[0] ne -1) then xi[case_3] = 0.d0
fconst=45.0d0
u = fconst*s*sqrt((1.d0 - rho)/(1.d0 - 1.d0/sqrt(2.d0 + xi^2)))
v = (u/1.5d1)*radeg*(atan(xi) - asin(xi/sqrt(2.d0*(1.d0 + xi^2))))
if (case_1[0] ne -1) then begin
x[case_1] = u[case_1]
y[case_1] = v[case_1]
endif
if (case_2[0] ne -1) then begin
x[case_2] = v[case_2]
y[case_2] = u[case_2]
endif
if (case_3[0] ne -1) then begin
x[case_3] = 0.d0
y[case_3] = 0.d0
endif
if noface eq 1 then begin
xf=fconst*[0.0d0,0.0d0,2.0d0,4.0d0,6.0d0,0.0d0]
yf=fconst*[2.0d0,0.0d0,0.0d0,0.0d0,0.0d0,-2.0d0]
x=(x+xf[face])
y=(y+yf[face])
endif
end
'TSC':begin
; calculate direction cosines
l = cos(theta)*sin(phi)
m = cos(theta)*cos(phi)
n = sin(theta)
; determine the face on which the x and y coordinates will reside by setting
; rho equal to the maximum of n,m,l,-m,-l,-n which corresponds to faces 0
; through 5 respectively
rho = lng*0
if size(lng,/N_dimen) EQ 0 then face = 0 else face = lonarr(n_long)
; use an array to store a remapping of the direction cosines. This way, faces
; 0 and 5 take points on their borders with faces 1-4. The reason for this is
; that if the max function sees identical values in an array, it takes the
; index of the first occurrence of that value.
remap = [0,5,2,1,4,3]
for i = 0l, n_long-1 do begin
dir_cos = float([n[i],-n[i],l[i],m[i],-l[i],-m[i]])
rho[i] = max(dir_cos,temp)
face[i] = remap[temp]
endfor
; based on the face determined for each point, find the parameters eta and xi
eta = lng*0
xi = eta
for i = 0l, n_long-1 do begin
case face[i] of
0:begin
eta[i] = -m[i]
xi[i] = l[i]
end
1:begin
eta[i] = n[i]
xi[i] = l[i]
end
2:begin
eta[i] = n[i]
xi[i] = -m[i]
end
3:begin
eta[i] = n[i]
xi[i] = -l[i]
end
4:begin
eta[i] = n[i]
xi[i] = m[i]
end
5:begin
eta[i] = m[i]
xi[i] = l[i]
end
endcase
endfor
fconst = 45.0d0
r_theta = fconst/tan(asin(rho))
a_phi = atan(xi,-eta)
x = r_theta*sin(a_phi)
y = -r_theta*cos(a_phi)
if noface eq 1 then begin
xf=fconst*[0.0d0,0.0d0,2.0d0,4.0d0,6.0d0,0.0d0]
yf=fconst*[2.0d0,0.0d0,0.0d0,0.0d0,0.0d0,-2.0d0]
x=(x+xf[face])
y=(y+yf[face])
endif
end
'HPX': begin
;
; See Calabretta & Roukema 2007, MNRAS, 381, 865
;
pv2_1 = N_ELEMENTS(pv2) GE 1 ? pv2[0] : 4.d
pv2_2 = N_ELEMENTS(pv2) GE 2 ? pv2[1] : 3.d
hpx_k = pv2_2 ; The main generalised HEALPIX parameters
hpx_h = pv2_1 ;
ik = ROUND(hpx_k)
ih = ROUND(hpx_h)
thetalim = asin((hpx_k-1d0)/hpx_k)
eqfaces = where( abs(theta) le thetalim, complement=polfaces)
x = phi ; make x & y arrays in same shape as phi/theta.
y = phi
; equatorial region
if eqfaces[0] ne -1 then begin
x[eqfaces] = phi[eqfaces]*radeg
y[eqfaces] = (90d * hpx_k / hpx_h) * sin( theta[eqfaces])
endif
;polar regions
if polfaces[0] ne -1 then begin
hpx_sig = sqrt ( hpx_k * (1d0 - abs(sin(theta[polfaces]))))
hpx_omega = ((hpx_k mod 2 eq 1) or theta[polfaces] gt 0)*1.D
hpx_phic = -180d0 + (2*floor((phi[polfaces]*radeg+180d0)*hpx_h/360d0 + $
(1-hpx_omega)/2.) + hpx_omega)*180d0/hpx_h
x[polfaces] = hpx_phic + (phi[polfaces]*radeg-hpx_phic) * hpx_sig
y[polfaces] = 180./hpx_h * ((theta[polfaces] gt 0)*2-1) * $
((hpx_k+1)/2 - hpx_sig)
endif
end
'HCT':begin
x = phi*radeg
y = DBLARR(N_ELEMENTS(theta))
thetalim = ASIN(2.D/3.D)
w_np = WHERE(theta GE thetalim, n_np)
w_eq = WHERE((theta LT thetalim) AND (theta GT -thetalim), n_eq)
w_sp = WHERE(theta LE -thetalim, n_sp)
IF n_np GT 0 THEN y[w_np] = 45.D*(2.D - SQRT(3.D*(1.D - SIN(theta[w_np]))))
IF n_eq GT 0 THEN y[w_eq] = 45.D*(3.D/2.D)*SIN(theta[w_eq])
IF n_sp GT 0 THEN y[w_sp] = 45.D*(SQRT(3.D*(1.D + SIN(theta[w_sp])))-2.D)
end
'XPH':begin
;
; HEALPix butterfly projection: see Calabretta & Lowe (2013)
;
scale = 1d0/sqrt(2d0)
thetalim = asin(2d0/3d0)
out_of_range = WHERE(phi EQ !dpi, nout)
IF nout GT 0 THEN phi[out_of_range] = -!dpi
xi = phi ; get array of same shape
eta = SIN(theta)
test = 0*FIX(xi)
psi = (phi*radeg + 180d0) mod 90d0
eqfaces = where(abs(theta) le thetalim, complement=polfaces)
IF eqfaces[0] NE -1 THEN BEGIN
xi[eqfaces] = psi[eqfaces]
eta[eqfaces] *= 67.5d0
ENDIF
IF polfaces[0] NE -1 THEN BEGIN
hpx_sigma = SQRT(3d0*(1d0 - ABS(eta[polfaces])))
xi[polfaces] = 45d0 + (psi[polfaces] - 45d0)*hpx_sigma
sgn = 2*(theta[polfaces] GT 0) - 1
eta[polfaces] = TEMPORARY(sgn)*(90d0 - 45d0*hpx_sigma)
ENDIF
psi = 0
xi -= 45d0
eta -= 90d0
x = xi + eta
y = TEMPORARY(xi) - TEMPORARY(eta)
quad = WHERE((-!dpi LE phi) AND (phi LT -pi2))
IF quad[0] NE -1 THEN BEGIN
temp = x[quad]
x[quad] = -y[quad]
y[quad] = -temp
test[quad] = 1
ENDIF
quad = WHERE((-pi2 LE phi) AND (phi LT 0))
IF quad[0] NE -1 THEN BEGIN
y[quad] *= -1d0
test[quad] = 1
ENDIF
quad = WHERE((0d0 LE phi) AND (phi LT pi2))
IF quad[0] NE -1 THEN BEGIN
temp = x[quad]
x[quad] = y[quad]
y[quad] = temp
test[quad] = 1
ENDIF
quad = WHERE((pi2 LE phi) AND (phi LT !dpi))
IF quad[0] NE -1 THEN BEGIN
x[quad] *= -1d0
test[quad] = 1
ENDIF
quad = 0
x *= scale
y *= scale
end
else:message,strupcase(projection_type)+$
' is not a valid projection type. Reset CTYPE'
endcase
if keyword_set(crxy) && ~array_equal(crxy, [0d0,0d0]) then begin
x = x - crxy[0]
y = y - crxy[1]
endif
END
|