/usr/share/gnudatalanguage/astrolib/uvbybeta.pro is in gdl-astrolib 2018.02.16+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 | pro uvbybeta,xby,xm1,xc1,xHbeta,xn,Te,MV,eby,delm0,radius,TEXTOUT=textout, $
eby_in = eby_in, name = name, prompt=prompt,print=print
;+
; NAME:
; UVBYBETA
; PURPOSE:
; Derive dereddened colors, metallicity, and Teff from Stromgren colors.
; EXPLANATION:
; Adapted from FORTRAN routine of same name published by T.T. Moon,
; Communications of University of London Observatory, No. 78. Parameters
; can either be input interactively (with /PROMPT keyword) or supplied
; directly.
;
; CALLING SEQUENCE:
; uvbybeta, /PROMPT ;Prompt for all parameters
; uvbybeta,by,m1,c1,Hbeta,n ;Supply inputs, print outputs
; uvbybeta, by, m1, c1, Hbeta, n, Te, Mv, Eby, delm0, radius,
; [ TEXTOUT=, Eby_in =, Name = ]
;
; INPUTS:
; by - Stromgren b-y color, scalar or vector
; m1 - Stromgren line-blanketing parameter, scalar or vector
; c1 - Stromgren Balmer discontinuity parameter, scalar or vector
; Hbeta - H-beta line strength index. Set Hbeta to 0 if it is not
; known, and UVBYBETA will estimate a value based on by, m1,and c1.
; Hbeta is not used for stars in group 8.
; n - Integer (1-8), scalar or vector, giving approximate stellar
; classification
;
; (1) B0 - A0, classes III - V, 2.59 < Hbeta < 2.88,-0.20 < c0 < 1.00
; (2) B0 - A0, class Ia , 2.52 < Hbeta < 2.59,-0.15 < c0 < 0.40
; (3) B0 - A0, class Ib , 2.56 < Hbeta < 2.61,-0.10 < c0 < 0.50
; (4) B0 - A0, class II , 2.58 < Hbeta < 2.63,-0.10 < c0 < 0.10
; (5) A0 - A3, classes III - V, 2.87 < Hbeta < 2.93,-0.01 < (b-y)o< 0.06
; (6) A3 - F0, classes III - V, 2.72 < Hbeta < 2.88, 0.05 < (b-y)o< 0.22
; (7) F1 - G2, classes III - V, 2.60 < Hbeta < 2.72, 0.22 < (b-y)o< 0.39
; (8) G2 - M2, classes IV _ V, 0.20 < m0 < 0.76, 0.39 < (b-y)o< 1.00
;
;
; OPTIONAL INPUT KEYWORD:
; Eby_in - numeric scalar specifying E(b-y) color to use. If not
; supplied, then E(b-y) will be estimated from the Stromgren colors
; NAME - scalar or vector string giving name(s) of star(s). Used only
; when writing to disk for identification purposes.
; /PROMPT - if set, then uvbybeta.pro will prompt for Stromgren indicies
; interactively
; TEXTOUT - Used to determine output device. If not present, the
; value of the !TEXTOUT system variable is used (see TEXTOPEN)
; textout=1 Terminal with /MORE (if a tty)
; textout=2 Terminal without /MORE
; textout=3 uvbybeta.prt (output file)
; textout=4 Laser Printer
; textout=5 User must open file
; textout=7 Append to existing uvbybeta.prt file
; textout = filename (default extension of .prt)
; /PRINT - if set, then force display output information to the device
; specified by !TEXTOUT. By default, UVBYBETA does not display
; information if output variables are supplied (and TEXTOUT is
; not set).
;
; OPTIONAL OUTPUTS:
; Te - approximate effective temperature
; MV - absolute visible magnitude
; Eby - Color excess E(b-y)
; delm0 - metallicity index, delta m0, (may not be calculable for early
; B stars).
; radius - Stellar radius (R/R(solar))
; EXAMPLE:
; Suppose 5 stars have the following Stromgren parameters
;
; by = [-0.001 ,0.403, 0.244, 0.216, 0.394 ]
; m1 = [0.105, -0.074, -0.053, 0.167, 0.186 ]
; c1 = [0.647, 0.215, 0.051, 0.785, 0.362]
; hbeta = [2.75, 2.552, 2.568, 2.743, 0 ]
; nn = [1,2,3,7,8] ;Processing group number
;
; Determine stellar parameters and write to a file uvbybeta.prt
; IDL> uvbybeta, by,m1,c1,hbeta, nn, t=3
; ==> E(b-y) = 0.050 0.414 0.283 0.023 -0.025
; Teff = 13060 14030 18420 7250 5760
; M_V = -0.27 -6.91 -5.94 2.23 3.94
; radius= 2.71 73.51 39.84 2.02 1.53
; SYSTEM VARIABLES:
; The non-standard system variables !TEXTOUT and !TEXTUNIT will be
; automatically defined if they are not already present.
;
; DEFSYSV,'!TEXTOUT',1
; DEFSYSV,'!TEXTUNIT',0
;
; NOTES:
; (1) **This procedure underwent a major revision in January 2002
; and the new calling sequence may not be compatible with the old** (NAME
; is now a keyword rather than a parameter.)
;
; (2) Napiwotzki et al. (1993, A&A, 268, 653) have written a FORTRAN
; program that updates some of the Moon (1985) calibrations. These
; updates are *not* included in this IDL procedure.
; PROCEDURES USED:
; DEREDD, TEXTOPEN, TEXTCLOSE
; REVISION HISTORY:
; W. Landsman IDL coding February, 1988
; Keyword textout added, J. Isensee, July, 1990
; Made some constants floating point. W. Landsman April, 1994
; Converted to IDL V5.0 W. Landsman September 1997
; Added Eby_in, /PROMPT keywords, make NAME a keyword and not a parameter
; W. Landsman January 2002
;-
npar = N_params()
if (npar EQ 0) and ( not keyword_set(PROMPT)) then begin
print,'Syntax - UVBYBETA, by, m1, c1, beta, n, ;Input parameters'
print,' Te,MV,eby,delm0,radius ;Output parameters'
print,'Input Keywords: Eby_in=, /PROMPT, NAME=, TEXTOUT ='
return
endif
defsysv,'!textout',exists = i
if i EQ 0 then astrolib
if N_elements( TEXTOUT ) EQ 0 then textout = !TEXTOUT ;default output dev.
do_print = (npar LT 6) || (TEXTOUT GT 2) || keyword_set(PRINT)
Rm1 = -0.33 & Rc1 = 0.19 & Rub = 1.53 ;Parameter values
init = 0
READ_PAR: if keyword_set(PROMPT) then begin
ans = ''
print,'Enter (b-y), m1, c1, and Hbeta in that order ([RETURN] to exit)'
read,ans
if ans eq '' then begin ;Normal Exit
if ( init EQ 1 ) then textclose, TEXTOUT = textout
return
endif else ans = getopt(ans)
if ( N_elements(ans) NE 4 ) then begin
message, 'INPUT ERROR - Expecting 4 scalar values', /CON
print, 'Enter 0.0 for Hbeta if it is not known: '
goto, READ_PAR
endif else begin
xby = ans[0] & xm1 = ans[1] & xc1 = ans[2] & xhbeta = ans[3]
endelse
endif
nstar = N_elements(xby)
xub = xc1 + 2*(xm1+xby)
xflag1 = (xHbeta EQ 0.)
READ_GROUP: if ( npar LT 5 )then begin
print,' The following group of stars are available'
print, $
'(1) B0 - A0, classes III - V, 2.59 < Hbeta < 2.88,-0.20 < c0 < 1.00'
print, $
'(2) B0 - A0, class Ia , 2.52 < Hbeta < 2.59,-0.15 < c0 < 0.40'
print, $
'(3) B0 - A0, class Ib , 2.56 < Hbeta < 2.61,-0.10 < c0 < 0.50'
print, $
'(4) B0 - A0, class II , 2.58 < Hbeta < 2.63,-0.10 < c0 < 0.10'
print, $
'(5) A0 - A3, classes III - V, 2.87 < Hbeta < 2.93,-0.01 < (b-y)o< 0.06'
print, $
'(6) A3 - F0, classes III - V, 2.72 < Hbeta < 2.88, 0.05 < (b-y)o< 0.22'
print,$
'(7) F1 - G2, classes III - V, 2.60 < Hbeta < 2.72, 0.22 < (b-y)o< 0.39'
print, $
'(8) G2 - M2, classes IV _ V, 0.20 < m0 < 0.76, 0.39 < (b-y)o< 1.00'
xn = 0
read,'Enter group number to which star belongs: ',xn
if N_elements(name) Eq 0 then begin
if (TEXTOUT ne 1) and (npar lt 6) then begin ;Prompt for star name?
name = ''
read,'Enter name of star: ',name
endif
endif
endif
do_eby = N_elements(eby_in) EQ 0
te = fltarr(nstar) & MV = te & delm0 = te & radius = te
if N_elements(name) EQ 0 then name = strtrim( indgen(nstar)+1,2)
if not do_eby then eby = replicate(eby_in,nstar) else eby = te
for i=0,Nstar -1 do begin
by = xby[i] & m1 = xm1[i] & c1 = xc1[i] & hbeta = xhbeta[i] & n = fix(xn[i])
ub = xub[i] & flag1 = xflag1[i]
flag2 = 0
warn = ''
case n of
1: BEGIN
; For group 1, beta is a luminosity indicator and c0 is a temperature
; indicator. (u-b) is also a suitable temperature indicator.
; For dereddening a linear relation between the intrinsic (b-y)
; and (u-b) colors is used (Crawford 1978, AJ 83, 48)
if do_eby then Eby[i] = ( 13.608*by-ub+1.467 ) / (13.608-Rub)
DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
; If beta is not given it is estimated using a cubic fit to the
; c0-beta relation for luminosity class V given in Crawford (1978).
IF flag1 EQ 1 then Hbeta = $
poly(c0, [2.61033, 0.132557, 0.161463, -0.027352] )
; Calculation of the absolute magnitude by applying the calibration
; of Balona & Shobbrock (1974, MNRAS 211, 375)
g = ALOG10(Hbeta - 2.515) - 1.6*ALOG10(c0 +0.322)
MV[i] = 3.4994 + 7.2026*ALOG10(Hbeta - 2.515) -2.3192*g + 2.9375*g^3
Te[i] = 5040/(0.2917*c0 + 0.2)
; The ZAMS value of m0 is calculated from a fit to the data of
; Crawford (1978), modified by Hilditch, Hill & Barnes (1983,
; MNRAS 204, 241)
m0zams = poly(c0, [0.07473, 0.109804, -0.139003, 0.0957758] )
delm0[i] = m0zams - m0
flag2 = 1
END
2: BEGIN
if do_eby then begin
; For dereddening the linear relations between c0 and (u-b)
; determined from Zhang (1983, AJ 88, 825) is used.
Eub = ( 1.5*c1 - ub + 0.035) / (1.5/(Rub/Rc1)-1)
Eby[i] = Eub/Rub
endif
DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
if ( flag1 EQ 1 ) then Hbeta = 0.037*c0 + 2.542
END
3: BEGIN
; For dereddening the linear relations between c0 and (u-b)
; determined from Zhang (1983, AJ 88, 825) is used.
if do_Eby then begin
Eub = (1.36*c1-ub+0.004) / (1.36/(Rub/Rc1)-1)
Eby[i] = Eub/Rub
endif
DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
; If beta is not given it is derived from a fit of the c0-beta
; relation of Zhang (1983).
if flag1 then Hbeta = 0.047*c0 +2.578
END
4: BEGIN
; For dereddening the linear relations between c0 and (u-b)
; determined from Zhang (1983, AJ 88, 825) is used.
if do_Eby then begin
Eub = ( 1.32*c1 - ub - 0.056) / ( 1.32 / (Rub/Rc1)-1 )
Eby[i] = Eub/Rub
endif
DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
; If beta is not given it is derived from a fit of the c0-beta
; relation of Zhang (1983).
if ( flag1 EQ 1 ) then Hbeta = 0.066*c0+2.59
END
5: BEGIN
; For group 5, the hydrogen Balmer lines are at maximum; hence two
; new parameters, a0 = f{(b-y),(u-b)} and r = f{beta,[c1]} are defined
; in order to calculate absolute magnitude and metallicity.
if do_eby then begin
m = m1 - Rm1*by
by0 = 4.2608*m^2 - 0.53921*m - 0.0235
REPEAT BEGIN
bycorr = by0
m0 = m1 - Rm1*(by-bycorr)
by0 = 14.0881*m0^2 - 3.36225*m0 + 0.175709
ENDREP UNTIL ( abs(bycorr - by0) LT 0.001)
Eby[i] = by - by0
endif
DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
if flag1 eq 1 then Hbeta = 2.7905 - 0.6105*by + 0.5*m0 + 0.0355*c0
r = 0.35*(c1-Rc1*by) - (Hbeta-2.565)
a0 = by0+ 0.18*(ub0-1.36)
; MV is calculated according to Stroemgren (1966, ARA&A 4, 433)
; with corrections by Moon & Dworetsky (1984, Observatory 104, 273)
MV[i] = 1.5 + 6.0*a0 - 17.0*r
Te[i] = 5040. /(0.7536 *a0 +0.5282)
m0zams = -3.95105*by0^2 + 0.86888*by0 + 0.1598
delm0[i] = m0zams - m0
end
6: begin
if flag1 then begin
warn = ' Estimate of Hbeta only valid if star is unreddened'
Hbeta = 3.06 - 1.221*by - 0.104*c1
endif
m1zams = -2.158*Hbeta^2 +12.26*Hbeta-17.209
if ( Hbeta LE 2.74 ) then begin
c1zams = 3.0*Hbeta - 7.56
MVzams = 22.14 - 7*Hbeta
endif else if ( ( Hbeta GT 2.74 ) and ( Hbeta LE 2.82 ) ) then begin
c1zams = 2.0*Hbeta - 4.82
MVzams = 11.16-3*Hbeta
endif else begin
c1zams = 2.0*Hbeta-4.83
MVzams =-88.4*Hbeta^2+497.2*Hbeta-696.41
endelse
if do_eby then begin
delm1 = m1zams - m1
delc1 = c1-c1zams
if delm1 lt 0. then $
by0 = 2.946 - Hbeta - 0.1*delc1 - 0.25*delm1 else $
by0 = 2.946 - Hbeta - 0.1*delc1
Eby[i] = by - by0
endif
Deredd, eby[i], by, m1, c1, ub, by0, m0, c0, ub0
delm0[i] = m1zams - m0
delc0 = c0 - c1zams
MV[i] = MVzams -9.0*delc0
Te[i] = 5040 / (0.771453*by0 + 0.546544)
end
7: begin
; For group 7 c1 is the luminosity indicator for a particular beta,
; while beta {or (b-y)0} indicates temperature.
; Where beta is not available iteration is necessary to evaluate
; a corrected (b-y) from which beta is then estimated.
if flag1 then begin
byinit = by
m1init = m1
for ii = 1,1000 do begin
m1by = 2.5*byinit^2 - 1.32*byinit + 0.345
bycorr = byinit + (m1by-m1init) / 2.0
if ( abs(bycorr-byinit) LE 0.0001 ) then goto,T71
byinit = bycorr
m1init = m1by
endfor
T71: Hbeta = 1.01425*bycorr^2 - 1.32861*bycorr + 2.96618
endif
; m1(ZAMS) and MV(ZAMS) are calculated according to Crawford (1975)
; with corrections suggested by Hilditch, Hill & Barnes (1983,
; MNRAS 204, 241) and Olson (1984, A&AS 57, 443).
m1zams = poly(Hbeta, [ 46.4167, -34.4538, 6.41701] )
MVzams = poly(Hbeta, [324.482, -188.748, 11.0494, 5.48012])
;c1(ZAMS) calculated according to Crawford (1975)
if Hbeta le 2.65 then $
c1zams = 2*Hbeta - 4.91 else $
c1zams = 11.1555*Hbeta^2-56.9164*Hbeta+72.879
if do_eby then begin
delm1 = m1zams - m1
delc1 = c1 - c1zams
dbeta = 2.72 - Hbeta
by0 = 0.222+1.11*dbeta +2.7*dbeta^2-0.05*delc1-(0.1+3.6*dbeta)*delm1
Eby[i] = by - by0
endif
Deredd,Eby[i],by,m1,c1,ub,by0,m0,c0,ub0
delm0[i] = m1zams - m0
delc0 = c0 - c1zams
f = 9.0 + 20.0*dbeta
MV[i] = MVzams - f*delc0
Te[i] = 5040/(0.771453*by0 + 0.546544)
end
8: begin
if ( flag1 EQ 1 ) then flag1 = 2
; Dereddening is done using color-color relations derived from
; Olson 1984, A&AS 57, 443)
if ( by LE 0.65 ) then $
Eby[i] = (5.8651*by - ub -0.8975) / (5.8651 - Rub) $
else if ( ( by GT 0.65 ) and ( by LT 0.79 ) ) then begin
Eby[i] = (-0.7875*by - c1 +0.6585)/(-0.7875 - Rc1)
by0 = by - Eby[i]
if ( by0 LT 0.65 ) then $
Eby[i] = (5.8651*by - ub -0.8975) / (5.8651-Rub)
endif else begin
Eby[i] = ( 0.5126*by - c1 - 0.3645 ) / (0.5126-Rc1)
by0 = by - Eby[i]
if ( by0 LT 0.79 ) then $
Eby[i] = (-0.7875*by - c1 + 0.6585) / (-0.7875-Rc1)
by0 = by - Eby[i]
if ( by0 LT 0.65 ) then $
Eby[i] = ( 5.8651*by - ub - 0.8975) / (5.8651-Rub)
endelse
DEREDD,Eby[i],by,m1,c1,ub,by0,m0,c0,ub0
; m1(ZAMS), c1(ZAMS), and MV(ZAMS) are calculated according to Olson (1984)
m1zams = poly( by0, [7.18436, -49.43695, 122.1875, -122.466, 42.93678])
IF by0 lt 0.65 THEN BEGIN
c1zams = poly(by0, [3.78514, -21.278, 42.7486, -28.7056 ] )
MVzams = $
poly(by0, [-59.2095, 432.156, -1101.257, 1272.503, -552.48])
ENDIF ELSE IF (by0 GE 0.65) and (by0 lt 0.79) THEN BEGIN
c1zams = -0.631821*by0^2+0.116031*by0+0.33657
MVzams = 1.37632*by0^2 + 4.97911*by0+3.4305
ENDIF ELSE BEGIN
c1zams = -0.010028*by0^2 + 0.530426*by0 - 0.37237
MVzams = 1.18298*by0^2 + 3.92776*by0 + 4.37507
ENDELSE
delm0[i] = m1zams - m0
delc0 =c0 - c1zams
; Teff and MV calibration of Olson (1984)
IF (by0 LE 0.505) THEN BEGIN
f = 10. - 80.*(by0-0.38)
Te[i] = 10^(-0.416*by0+3.924)
ENDIF ELSE BEGIN
f = 0.0
Te[i] = 10^(-0.341*by0+3.869)
ENDELSE
MV[i] = MVzams - f*delc0 + 3.2*delm0[i] - 0.07
END
ELSE: BEGIN
print,'A stellar group of',n,' is not available'
npar = npar<4
goto, READ_GROUP
end
endcase
if (n GE 2) and ( n LE 4 ) then begin
; c0-beta relation for ZAMS stars according to Crawford (1978,
; AJ 83, 48), modified by Hilditch, Hill & Barnes (1983, MNRAS 204, 241).
betaza = poly(c0, [2.62745, 0.228638, -0.099623, 0.277363, -0.160402 ] )
B = betaza - 2.5
; MV(ZAMS) calculated according to Balona & Shobbrock (1984, MNRAS 211, 375)
MVzams =203.704*B^3 - 206.98*B^2 + 77.18*b - 9.563
; MV is calculated from the d(beta)-d(MV) relation of Zhang (1983)
dbeta = betaza - Hbeta
dMV = -121.6*dbeta^2 +61.0*dbeta + 0.08
MV[i] = MVzams - dMV
; Estimate of Teff by coupling the relations of Boehm-Vitense
; (1981, ARA&A 19, 295) and Zhang (1983)
Te[i] = 5040 / (0.35866*ub0 + 0.27346)
flag2 = 2
endif
; Transformation according to the FV-(b-y)0 relation of Moon
; (1984, MNRAS 211, 21P)
if ( by0 LE 0.335 ) then $
FV = -6.759*by0^3 + 3.731*by0^2 - 1.092*by0 + 3.981 $
else FV = -0.534*by0 + 3.959
radius[i] = 10^(2.*(4.236-0.1*MV[i] - FV))
if do_print then begin
if ( flag2 EQ 2 )then metal = 'no delta(m0)' else metal = 'delta(m0) = '
Hbeta = round(Hbeta*1000)/1000.
Teff = long(round(Te[i]/10.)*10.)
if !TEXTUNIT eq 0 then textopen,'uvbybeta',textout=textout
init = 1 ;First star has been done
printf,!TEXTUNIT,' Star is: ',strtrim(name[i],2), $
' Processed in group ' + strtrim(n,2)
fmt = '(2x,A, f6.3,7x, A, f6.3, 10x,A, F6.3,A,F5.3)'
if strlen(warn) GT 0 then printf, !TEXTUNIT, warn
nohbeta = ' Hbeta is not used'
case flag1 of
2: printf, !TEXTUNIT, 'b-y = ',by, 'm1 = ', m1,'c1 = ',c1, f=fmt, $
nohbeta
1: printf, !TEXTUNIT, f = fmt, $
'b-y = ',by, 'm1 = ', m1,'c1 = ',c1,' estimated Hbeta = ', Hbeta
0: printf,!TEXTUNIT, f = fmt, $
'b-y = ',by, 'm1 = ', m1,'c1 = ',c1,' Hbeta = ', Hbeta
endcase
fmt = '(1x,A, F6.3,7X, A,F6.3,10X,A,F6.3, 8x, A, F6.3,/)'
printf,!TEXTUNIT,f=fmt, '(b-y)0 = ', by0, 'm0 = ',m0,'c0 = ', c0, $
'E(b-y) = ',Eby[i]
printf,!TEXTUNIT,form="(1X,'Absolute Magnitude (Mv) = ',F6.2,5x," + $
"'Radius (R/R[solar]) = ',F7.2)",MV[i],radius[i]
fmt1 = "(1X,A12,25X,'Effective Temperature (Teff) = ',I5,1X,'K'//)"
fmt2 = "(1X,A12,F6.3,20X,'Effective Temperature (Teff) = ',I5,1X,'K'//)"
if ( flag2 EQ 2 ) then printf,!TEXTUNIT,form=fmt1,metal,Teff else $
printf,!TEXTUNIT,form=fmt2,metal,delm0[i],Teff
endif
endfor
if keyword_set(PROMPT) then goto, READ_PAR
if do_print then textclose, textout = textout
return
end
|