This file is indexed.

/usr/share/gnudatalanguage/astrolib/uvbybeta.pro is in gdl-astrolib 2018.02.16+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
pro uvbybeta,xby,xm1,xc1,xHbeta,xn,Te,MV,eby,delm0,radius,TEXTOUT=textout, $
    eby_in = eby_in, name = name, prompt=prompt,print=print
;+
; NAME:
;       UVBYBETA
; PURPOSE:
;       Derive dereddened colors, metallicity, and Teff from Stromgren colors.
; EXPLANATION:
;       Adapted from FORTRAN routine of same name published by T.T. Moon, 
;       Communications of University of London Observatory, No. 78. Parameters 
;       can either be input interactively (with /PROMPT keyword) or supplied 
;       directly.   
;
; CALLING SEQUENCE:
;       uvbybeta, /PROMPT               ;Prompt for all parameters
;       uvbybeta,by,m1,c1,Hbeta,n        ;Supply inputs, print outputs
;       uvbybeta, by, m1, c1, Hbeta, n, Te, Mv, Eby, delm0, radius, 
;                       [ TEXTOUT=, Eby_in =, Name =  ]
;
; INPUTS:
;       by - Stromgren b-y color, scalar or vector
;       m1 - Stromgren line-blanketing parameter, scalar or vector
;       c1 - Stromgren Balmer discontinuity parameter, scalar or vector
;       Hbeta - H-beta line strength index.  Set  Hbeta to 0 if it is not 
;            known, and UVBYBETA will estimate a value based on by, m1,and c1.
;            Hbeta is not used for stars in group 8.
;       n -  Integer (1-8), scalar or vector,  giving approximate stellar 
;            classification
;
;       (1) B0 - A0, classes III - V, 2.59 < Hbeta < 2.88,-0.20 <   c0  < 1.00
;       (2) B0 - A0, class   Ia     , 2.52 < Hbeta < 2.59,-0.15 <   c0  < 0.40
;       (3) B0 - A0, class   Ib     , 2.56 < Hbeta < 2.61,-0.10 <   c0  < 0.50
;       (4) B0 - A0, class   II     , 2.58 < Hbeta < 2.63,-0.10 <   c0  < 0.10
;       (5) A0 - A3, classes III - V, 2.87 < Hbeta < 2.93,-0.01 < (b-y)o< 0.06
;       (6) A3 - F0, classes III - V, 2.72 < Hbeta < 2.88, 0.05 < (b-y)o< 0.22
;       (7) F1 - G2, classes III - V, 2.60 < Hbeta < 2.72, 0.22 < (b-y)o< 0.39
;       (8) G2 - M2, classes  IV _ V, 0.20 < m0   < 0.76, 0.39 < (b-y)o< 1.00
;
;
; OPTIONAL INPUT KEYWORD:
;       Eby_in - numeric scalar specifying E(b-y) color to use.   If not
;             supplied, then E(b-y) will be estimated from the Stromgren colors
;       NAME - scalar or vector string giving name(s) of star(s).  Used only 
;               when writing to  disk for identification purposes.
;       /PROMPT - if set, then uvbybeta.pro will prompt for Stromgren indicies
;                interactively
;       TEXTOUT  -  Used to determine output device.  If not present, the
;               value of the !TEXTOUT system variable is used (see TEXTOPEN)
;               textout=1       Terminal with /MORE (if a tty)
;               textout=2       Terminal without /MORE
;               textout=3       uvbybeta.prt   (output file)
;               textout=4       Laser Printer 
;               textout=5       User must open file         
;               textout=7       Append to existing uvbybeta.prt file
;               textout = filename (default extension of .prt)
;      /PRINT - if set, then force display output information to the device 
;               specified by !TEXTOUT.    By default, UVBYBETA does not display
;               information if output variables are supplied (and TEXTOUT is
;               not set). 
;
; OPTIONAL OUTPUTS:
;       Te - approximate effective temperature
;       MV - absolute visible magnitude
;       Eby - Color excess E(b-y)
;       delm0 - metallicity index, delta m0, (may not be calculable for early
;               B stars).
;       radius - Stellar radius (R/R(solar))
; EXAMPLE:
;       Suppose 5 stars have the following Stromgren parameters
;
;       by = [-0.001 ,0.403, 0.244, 0.216, 0.394 ]
;       m1 = [0.105, -0.074, -0.053, 0.167, 0.186 ]
;       c1 = [0.647, 0.215, 0.051, 0.785, 0.362] 
;       hbeta = [2.75, 2.552, 2.568, 2.743, 0 ]
;       nn = [1,2,3,7,8]              ;Processing group number
;
;       Determine stellar parameters and write to a file uvbybeta.prt
;       IDL> uvbybeta, by,m1,c1,hbeta, nn, t=3
;            ==> E(b-y) = 0.050    0.414   0.283  0.023  -0.025
;                Teff =   13060    14030   18420  7250    5760
;                M_V =    -0.27    -6.91   -5.94  2.23    3.94
;                radius=  2.71     73.51    39.84 2.02    1.53
; SYSTEM VARIABLES:
;       The non-standard system variables !TEXTOUT and !TEXTUNIT will be  
;       automatically defined if they are not already present.   
;
;       DEFSYSV,'!TEXTOUT',1
;       DEFSYSV,'!TEXTUNIT',0
;
; NOTES:
;       (1) **This procedure underwent a major revision in January 2002
;       and the new calling sequence may not be compatible with the old** (NAME
;       is now a keyword rather than a parameter.)
;
;       (2) Napiwotzki et al. (1993, A&A, 268, 653) have written a FORTRAN
;           program that updates some of the Moon (1985) calibrations.  These
;           updates are *not* included in this IDL procedure.
; PROCEDURES USED:
;       DEREDD, TEXTOPEN, TEXTCLOSE
; REVISION HISTORY:                                           
;       W. Landsman          IDL coding              February, 1988
;       Keyword textout added, J. Isensee, July, 1990
;       Made some constants floating point.   W. Landsman    April, 1994
;       Converted to IDL V5.0   W. Landsman   September 1997
;       Added Eby_in, /PROMPT keywords, make NAME a keyword and not a parameter
;                 W. Landsman      January 2002
;-
 npar = N_params()
 if (npar EQ 0) and ( not keyword_set(PROMPT)) then begin
     print,'Syntax - UVBYBETA, by, m1, c1, beta, n,     ;Input parameters'
     print,'                   Te,MV,eby,delm0,radius   ;Output parameters'
     print,'Input Keywords: Eby_in=, /PROMPT, NAME=, TEXTOUT ='
     return
 endif

 defsysv,'!textout',exists = i
 if i EQ 0 then astrolib

 if N_elements( TEXTOUT ) EQ 0 then textout = !TEXTOUT  ;default output dev.
 do_print =  (npar LT 6) || (TEXTOUT GT 2) || keyword_set(PRINT)

 Rm1 = -0.33 & Rc1 = 0.19 & Rub = 1.53          ;Parameter values
 init = 0

 READ_PAR:  if keyword_set(PROMPT) then begin 
  ans = ''
  print,'Enter (b-y), m1, c1, and Hbeta in that order ([RETURN] to exit)'
  read,ans
  if ans eq '' then begin               ;Normal Exit
    if ( init EQ 1 ) then textclose, TEXTOUT = textout
    return 
  endif else ans = getopt(ans)
  if ( N_elements(ans) NE 4 ) then begin
    message, 'INPUT ERROR - Expecting 4 scalar values', /CON
    print, 'Enter 0.0 for Hbeta if it is not known: '
    goto, READ_PAR 
  endif else begin
    xby = ans[0] & xm1 = ans[1] & xc1 = ans[2]  & xhbeta = ans[3]
    endelse
 endif 
    
 nstar  = N_elements(xby)
 xub = xc1 + 2*(xm1+xby)
 xflag1 = (xHbeta EQ 0.)

 
 READ_GROUP:  if ( npar LT 5 )then begin

   print,' The following group of stars are available'
   print, $ 
     '(1) B0 - A0, classes III - V, 2.59 < Hbeta < 2.88,-0.20 <   c0  < 1.00'
   print, $
     '(2) B0 - A0, class   Ia     , 2.52 < Hbeta < 2.59,-0.15 <   c0  < 0.40'
   print, $
     '(3) B0 - A0, class   Ib     , 2.56 < Hbeta < 2.61,-0.10 <   c0  < 0.50'
   print, $ 
     '(4) B0 - A0, class   II     , 2.58 < Hbeta < 2.63,-0.10 <   c0  < 0.10'
   print, $ 
     '(5) A0 - A3, classes III - V, 2.87 < Hbeta < 2.93,-0.01 < (b-y)o< 0.06'
   print, $
     '(6) A3 - F0, classes III - V, 2.72 < Hbeta < 2.88, 0.05 < (b-y)o< 0.22'
   print,$ 
     '(7) F1 - G2, classes III - V, 2.60 < Hbeta < 2.72, 0.22 < (b-y)o< 0.39'
   print, $ 
     '(8) G2 - M2, classes  IV _ V, 0.20 < m0   < 0.76, 0.39 < (b-y)o< 1.00'
   xn = 0                   
   read,'Enter group number to which star belongs: ',xn

   if N_elements(name) Eq 0 then begin
   if (TEXTOUT ne 1) and (npar lt 6) then begin ;Prompt for star name?
     name = ''
     read,'Enter name of star: ',name
   endif
   endif
 endif

 do_eby = N_elements(eby_in) EQ 0
 te = fltarr(nstar) & MV = te & delm0 = te & radius = te
 if N_elements(name) EQ 0 then name = strtrim( indgen(nstar)+1,2)
 if not do_eby then eby = replicate(eby_in,nstar) else eby = te

 for i=0,Nstar -1 do begin
   by = xby[i] & m1 = xm1[i] & c1 = xc1[i] & hbeta = xhbeta[i] & n = fix(xn[i])
   ub = xub[i] & flag1 = xflag1[i] 
   flag2 = 0
   warn = ''

 case n of

 1: BEGIN

;   For group 1, beta is a luminosity indicator and c0 is a temperature
;   indicator. (u-b) is also a suitable temperature indicator.

;   For dereddening a linear relation between the intrinsic (b-y)
;   and (u-b) colors is used (Crawford 1978, AJ 83, 48)

    if do_eby then Eby[i] = ( 13.608*by-ub+1.467 ) / (13.608-Rub)
    DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0

; If beta is not given it is estimated using a cubic fit to the
; c0-beta relation for luminosity class V given in Crawford (1978).
    IF flag1 EQ 1 then Hbeta = $
                   poly(c0, [2.61033, 0.132557, 0.161463, -0.027352] )
; Calculation of the absolute magnitude by applying the calibration
; of Balona & Shobbrock (1974, MNRAS 211, 375)   
   g = ALOG10(Hbeta - 2.515) - 1.6*ALOG10(c0 +0.322)
   MV[i] = 3.4994 + 7.2026*ALOG10(Hbeta - 2.515) -2.3192*g + 2.9375*g^3
   Te[i] = 5040/(0.2917*c0 + 0.2)  

; The ZAMS value of m0 is calculated from a fit to the data of 
; Crawford (1978), modified by Hilditch, Hill & Barnes (1983, 
; MNRAS 204, 241)
   m0zams = poly(c0, [0.07473, 0.109804, -0.139003, 0.0957758] )
   delm0[i] = m0zams - m0
   flag2 = 1
   END

 2: BEGIN
    if do_eby then begin
; For dereddening the linear relations between c0 and (u-b)
; determined from Zhang (1983, AJ 88, 825) is used.
       Eub = ( 1.5*c1 - ub + 0.035) / (1.5/(Rub/Rc1)-1)
       Eby[i] = Eub/Rub
    endif
    DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
    if ( flag1 EQ 1 ) then Hbeta = 0.037*c0 + 2.542
    END

 3: BEGIN
; For dereddening the linear relations between c0 and (u-b)
; determined from Zhang (1983, AJ 88, 825) is used.
    if do_Eby then begin
       Eub = (1.36*c1-ub+0.004) / (1.36/(Rub/Rc1)-1)
       Eby[i] = Eub/Rub
    endif
    DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
; If beta is not given it is derived from a fit of the c0-beta
; relation of Zhang (1983).
    if flag1 then Hbeta = 0.047*c0 +2.578
    END

 4: BEGIN
; For dereddening the linear relations between c0 and (u-b)
; determined from Zhang (1983, AJ 88, 825) is used.
    if do_Eby then begin
       Eub = ( 1.32*c1 - ub - 0.056) / ( 1.32 / (Rub/Rc1)-1 )
       Eby[i] = Eub/Rub
    endif
    DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
; If beta is not given it is derived from a fit of the c0-beta
; relation of Zhang (1983).
    if ( flag1 EQ 1 ) then Hbeta = 0.066*c0+2.59
    END

 5: BEGIN
; For group 5, the hydrogen Balmer lines are at maximum; hence two
; new parameters, a0 = f{(b-y),(u-b)} and r = f{beta,[c1]} are defined
; in order to calculate absolute magnitude and metallicity.

    if do_eby then begin
      m = m1 - Rm1*by
      by0 = 4.2608*m^2 - 0.53921*m - 0.0235
      REPEAT BEGIN
         bycorr = by0
         m0 = m1 - Rm1*(by-bycorr)
         by0 = 14.0881*m0^2 - 3.36225*m0 + 0.175709
      ENDREP UNTIL ( abs(bycorr - by0) LT 0.001)
       Eby[i] = by - by0
    endif
    DEREDD, Eby[i], by, m1, c1, ub, by0, m0, c0, ub0
    if flag1 eq 1 then Hbeta = 2.7905 - 0.6105*by + 0.5*m0 + 0.0355*c0
    r = 0.35*(c1-Rc1*by) - (Hbeta-2.565)
    a0 = by0+ 0.18*(ub0-1.36)
; MV is calculated according to Stroemgren (1966, ARA&A 4, 433)
; with corrections by Moon & Dworetsky (1984, Observatory 104, 273)
    MV[i] = 1.5 + 6.0*a0 - 17.0*r
    Te[i] =  5040. /(0.7536 *a0 +0.5282)
    m0zams = -3.95105*by0^2 + 0.86888*by0 + 0.1598
    delm0[i] = m0zams - m0
   end

 6: begin
    if flag1 then begin
        warn = ' Estimate of Hbeta only valid if star is unreddened'
        Hbeta = 3.06 - 1.221*by - 0.104*c1
    endif
    m1zams = -2.158*Hbeta^2 +12.26*Hbeta-17.209
    if ( Hbeta LE 2.74 ) then begin

        c1zams = 3.0*Hbeta - 7.56
        MVzams = 22.14 - 7*Hbeta

   endif else if ( ( Hbeta GT 2.74 ) and ( Hbeta LE 2.82 ) ) then begin

        c1zams = 2.0*Hbeta - 4.82
        MVzams = 11.16-3*Hbeta

   endif else begin
        c1zams = 2.0*Hbeta-4.83
        MVzams =-88.4*Hbeta^2+497.2*Hbeta-696.41

   endelse        
   if do_eby then begin
     delm1 = m1zams - m1
     delc1 = c1-c1zams
     if delm1 lt 0. then $
          by0 = 2.946 - Hbeta - 0.1*delc1 - 0.25*delm1 else $
          by0 = 2.946 - Hbeta - 0.1*delc1
     Eby[i] = by - by0
   endif 
   Deredd, eby[i], by, m1, c1, ub, by0, m0, c0, ub0
   delm0[i] = m1zams - m0
   delc0 = c0 - c1zams
   MV[i] = MVzams -9.0*delc0
   Te[i] = 5040 / (0.771453*by0 + 0.546544)
 end

 7: begin

;  For group 7 c1 is the luminosity indicator for a particular beta,
;  while beta {or (b-y)0} indicates temperature.
;  Where beta is not available iteration is necessary to evaluate
;  a corrected (b-y) from which beta is then estimated.

   if flag1 then begin 
        byinit = by
        m1init = m1
        for ii = 1,1000 do begin
          m1by = 2.5*byinit^2 - 1.32*byinit + 0.345
          bycorr = byinit + (m1by-m1init) / 2.0
          if ( abs(bycorr-byinit) LE 0.0001 ) then goto,T71
          byinit = bycorr
          m1init = m1by
        endfor
        T71: Hbeta = 1.01425*bycorr^2 - 1.32861*bycorr + 2.96618 
    endif

; m1(ZAMS) and MV(ZAMS) are calculated according to Crawford (1975)
;	with corrections suggested by Hilditch, Hill & Barnes (1983,
;	MNRAS 204, 241) and Olson (1984, A&AS 57, 443).

    m1zams = poly(Hbeta, [ 46.4167, -34.4538, 6.41701] )
    MVzams = poly(Hbeta, [324.482, -188.748, 11.0494, 5.48012])

;c1(ZAMS) calculated according to Crawford (1975)
    if Hbeta le 2.65 then $
        c1zams = 2*Hbeta - 4.91 else $
        c1zams = 11.1555*Hbeta^2-56.9164*Hbeta+72.879

     if do_eby then begin
       delm1 = m1zams - m1
       delc1 = c1 - c1zams
       dbeta = 2.72 - Hbeta
       by0 = 0.222+1.11*dbeta +2.7*dbeta^2-0.05*delc1-(0.1+3.6*dbeta)*delm1
       Eby[i] = by - by0
     endif
     Deredd,Eby[i],by,m1,c1,ub,by0,m0,c0,ub0
     delm0[i] = m1zams - m0
     delc0 = c0 - c1zams
     f = 9.0 + 20.0*dbeta
     MV[i] = MVzams - f*delc0
     Te[i] = 5040/(0.771453*by0 + 0.546544)
 end

 8:   begin
     if ( flag1 EQ 1 ) then flag1 = 2
;  Dereddening is done using color-color relations derived from 
;  Olson 1984, A&AS 57, 443)
     if ( by LE 0.65 ) then $
           Eby[i] = (5.8651*by - ub -0.8975) / (5.8651 - Rub) $

     else if ( ( by GT 0.65 ) and ( by LT 0.79 ) ) then begin 

           Eby[i] = (-0.7875*by - c1 +0.6585)/(-0.7875 - Rc1)
           by0 = by - Eby[i]
        if ( by0 LT 0.65 ) then $
           Eby[i] = (5.8651*by - ub -0.8975) / (5.8651-Rub)

     endif else begin 

        Eby[i] = ( 0.5126*by - c1 - 0.3645 ) / (0.5126-Rc1)
        by0 = by - Eby[i]
        if ( by0 LT 0.79 ) then $ 
                  Eby[i] = (-0.7875*by - c1 + 0.6585) / (-0.7875-Rc1)
        by0  = by - Eby[i]
        if ( by0 LT 0.65 ) then $ 
                  Eby[i] = ( 5.8651*by - ub - 0.8975) / (5.8651-Rub)

     endelse 
    

        DEREDD,Eby[i],by,m1,c1,ub,by0,m0,c0,ub0
; m1(ZAMS), c1(ZAMS), and MV(ZAMS) are calculated according to Olson (1984)
        m1zams = poly( by0, [7.18436, -49.43695, 122.1875, -122.466, 42.93678]) 
         IF by0 lt 0.65 THEN BEGIN
                c1zams = poly(by0, [3.78514, -21.278, 42.7486, -28.7056 ] )
                MVzams =  $
                  poly(by0, [-59.2095, 432.156, -1101.257, 1272.503, -552.48])
        ENDIF ELSE IF (by0 GE 0.65) and (by0 lt 0.79) THEN BEGIN
                c1zams = -0.631821*by0^2+0.116031*by0+0.33657
                MVzams = 1.37632*by0^2 + 4.97911*by0+3.4305
        ENDIF ELSE BEGIN
                c1zams = -0.010028*by0^2 + 0.530426*by0 - 0.37237
                MVzams =  1.18298*by0^2  + 3.92776*by0 + 4.37507
        ENDELSE
        delm0[i] = m1zams - m0
        delc0 =c0 - c1zams
; Teff and MV calibration of Olson (1984)
        IF (by0 LE 0.505) THEN BEGIN
                f = 10. - 80.*(by0-0.38)
                Te[i] = 10^(-0.416*by0+3.924)
        ENDIF ELSE BEGIN
                f = 0.0
                Te[i] = 10^(-0.341*by0+3.869)
        ENDELSE
        MV[i] = MVzams - f*delc0 + 3.2*delm0[i] - 0.07
      END 
 ELSE: BEGIN
      print,'A stellar group of',n,' is not available'
      npar = npar<4
      goto, READ_GROUP 
      end

 endcase
 if (n GE 2) and ( n LE 4 ) then begin
; c0-beta relation for ZAMS stars according to Crawford (1978,
; AJ 83, 48), modified by Hilditch, Hill & Barnes (1983, MNRAS 204, 241).
     betaza = poly(c0, [2.62745, 0.228638, -0.099623, 0.277363, -0.160402 ] )
     B = betaza - 2.5
; MV(ZAMS) calculated according to Balona & Shobbrock (1984, MNRAS 211, 375)
     MVzams =203.704*B^3 - 206.98*B^2 + 77.18*b - 9.563
; MV is calculated from the d(beta)-d(MV) relation of Zhang (1983)
     dbeta = betaza - Hbeta
     dMV = -121.6*dbeta^2 +61.0*dbeta + 0.08
     MV[i] = MVzams - dMV
; Estimate of Teff by coupling the relations of Boehm-Vitense 
; (1981, ARA&A 19, 295) and Zhang (1983)     
     Te[i] = 5040 / (0.35866*ub0 + 0.27346)
     flag2 = 2
endif

; Transformation according to the FV-(b-y)0 relation of Moon 
; (1984, MNRAS 211, 21P)
 if ( by0 LE 0.335 ) then $
            FV = -6.759*by0^3 + 3.731*by0^2 - 1.092*by0 + 3.981 $
       else FV = -0.534*by0 + 3.959
 radius[i] = 10^(2.*(4.236-0.1*MV[i] - FV))
  if do_print then begin
 if ( flag2 EQ 2 )then metal = 'no delta(m0)' else metal = 'delta(m0) = '
 Hbeta = round(Hbeta*1000)/1000.
 Teff = long(round(Te[i]/10.)*10.)
 if !TEXTUNIT eq 0 then textopen,'uvbybeta',textout=textout
 init = 1                          ;First star has been done
 printf,!TEXTUNIT,'        Star is: ',strtrim(name[i],2), $
        '                Processed in group ' + strtrim(n,2) 
 fmt = '(2x,A, f6.3,7x, A, f6.3, 10x,A, F6.3,A,F5.3)'
 if strlen(warn) GT 0 then printf, !TEXTUNIT, warn
 nohbeta = '      Hbeta is not used'

 case flag1 of 
    2: printf, !TEXTUNIT, 'b-y   = ',by, 'm1 = ', m1,'c1 = ',c1, f=fmt, $
               nohbeta
    1: printf, !TEXTUNIT, f = fmt, $
       'b-y   = ',by, 'm1 = ', m1,'c1 = ',c1,' estimated Hbeta  = ', Hbeta 
    0: printf,!TEXTUNIT, f = fmt, $
       'b-y   = ',by, 'm1 = ', m1,'c1 = ',c1,'         Hbeta  = ', Hbeta 
 endcase

 fmt = '(1x,A, F6.3,7X, A,F6.3,10X,A,F6.3, 8x, A, F6.3,/)' 
 printf,!TEXTUNIT,f=fmt, '(b-y)0 = ', by0, 'm0 = ',m0,'c0 = ', c0, $
         'E(b-y) = ',Eby[i]

 printf,!TEXTUNIT,form="(1X,'Absolute Magnitude (Mv) = ',F6.2,5x," + $
       "'Radius  (R/R[solar]) = ',F7.2)",MV[i],radius[i]

 fmt1 = "(1X,A12,25X,'Effective Temperature (Teff) = ',I5,1X,'K'//)"
 fmt2 = "(1X,A12,F6.3,20X,'Effective Temperature (Teff) = ',I5,1X,'K'//)"

 if ( flag2 EQ 2 ) then printf,!TEXTUNIT,form=fmt1,metal,Teff else  $
                       printf,!TEXTUNIT,form=fmt2,metal,delm0[i],Teff

 endif
 endfor
 if keyword_set(PROMPT) then goto, READ_PAR 
 if do_print then textclose, textout = textout
 return
 end