/usr/share/gnudatalanguage/astrolib/pixwt.pro is in gdl-astrolib 2018.02.16+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | ;+
; NAME:
; PIXWT
; PURPOSE:
; Circle-rectangle overlap area computation.
; DESCRIPTION:
; Compute the fraction of a unit pixel that is interior to a circle.
; The circle has a radius r and is centered at (xc, yc). The center of
; the unit pixel (length of sides = 1) is at (x, y).
;
; CATEGORY:
; CCD data processing
; CALLING SEQUENCE:
; area = Pixwt( xc, yc, r, x, y )
; INPUTS:
; xc, yc : Center of the circle, numeric scalars
; r : Radius of the circle, numeric scalars
; x, y : Center of the unit pixel, numeric scalar or vector
; OPTIONAL INPUT PARAMETERS:
; None.
; KEYWORD PARAMETERS:
; None.
; OUTPUTS:
; Function value: Computed overlap area.
; EXAMPLE:
; What is the area of overlap of a circle with radius 3.44 units centered
; on the point 3.23, 4.22 with the pixel centered at [5,7]
;
; IDL> print,pixwt(3.23,4.22,3.44,5,7) ==> 0.6502
; COMMON BLOCKS:
; None.
; PROCEDURE:
; Divides the circle and rectangle into a series of sectors and
; triangles. Determines which of nine possible cases for the
; overlap applies and sums the areas of the corresponding sectors
; and triangles. Called by aper.pro
;
; NOTES:
; If improved speed is needed then a C version of this routines, with
; notes on how to linkimage it to IDL is available at
; ftp://ftp.lowell.edu/pub/buie/idl/custom/
;
; MODIFICATION HISTORY:
; Ported by Doug Loucks, Lowell Observatory, 1992 Sep, from the
; routine pixwt.c, by Marc Buie.
;-
; ---------------------------------------------------------------------------
; Function Arc( x, y0, y1, r )
;
; Compute the area within an arc of a circle. The arc is defined by
; the two points (x,y0) and (x,y1) in the following manner: The circle
; is of radius r and is positioned at the origin. The origin and each
; individual point define a line which intersects the circle at some
; point. The angle between these two points on the circle measured
; from y0 to y1 defines the sides of a wedge of the circle. The area
; returned is the area of this wedge. If the area is traversed clockwise
; then the area is negative, otherwise it is positive.
; ---------------------------------------------------------------------------
FUNCTION Arc, x, y0, y1, r
RETURN, 0.5 * r*r * ( ATAN( FLOAT(y1)/FLOAT(x) ) - ATAN( FLOAT(y0)/FLOAT(x) ) )
END
; ---------------------------------------------------------------------------
; Function Chord( x, y0, y1 )
;
; Compute the area of a triangle defined by the origin and two points,
; (x,y0) and (x,y1). This is a signed area. If y1 > y0 then the area
; will be positive, otherwise it will be negative.
; ---------------------------------------------------------------------------
FUNCTION Chord, x, y0, y1
RETURN, 0.5 * x * ( y1 - y0 )
END
; ---------------------------------------------------------------------------
; Function Oneside( x, y0, y1, r )
;
; Compute the area of intersection between a triangle and a circle.
; The circle is centered at the origin and has a radius of r. The
; triangle has verticies at the origin and at (x,y0) and (x,y1).
; This is a signed area. The path is traversed from y0 to y1. If
; this path takes you clockwise the area will be negative.
; ---------------------------------------------------------------------------
FUNCTION Oneside, x, y0, y1, r
true = 1
size_x = SIZE( x )
CASE size_x[ 0 ] OF
0 : BEGIN
IF x EQ 0 THEN RETURN, x
IF ABS( x ) GE r THEN RETURN, Arc( x, y0, y1, r )
yh = SQRT( r*r - x*x )
CASE true OF
( y0 LE -yh ) : BEGIN
CASE true OF
( y1 LE -yh ) : RETURN, Arc( x, y0, y1, r )
( y1 LE yh ) : RETURN, Arc( x, y0, -yh, r ) $
+ Chord( x, -yh, y1 )
ELSE : RETURN, Arc( x, y0, -yh, r ) $
+ Chord( x, -yh, yh ) + Arc( x, yh, y1, r )
ENDCASE
END
( y0 LT yh ) : BEGIN
CASE true OF
( y1 LE -yh ) : RETURN, Chord( x, y0, -yh ) $
+ Arc( x, -yh, y1, r )
( y1 LE yh ) : RETURN, Chord( x, y0, y1 )
ELSE : RETURN, Chord( x, y0, yh ) + Arc( x, yh, y1, r )
ENDCASE
END
ELSE : BEGIN
CASE true OF
( y1 LE -yh ) : RETURN, Arc( x, y0, yh, r ) $
+ Chord( x, yh, -yh ) + Arc( x, -yh, y1, r )
( y1 LE yh ) : RETURN, Arc( x, y0, yh, r ) + Chord( x, yh, y1 )
ELSE : RETURN, Arc( x, y0, y1, r )
ENDCASE
END
ENDCASE
END
ELSE : BEGIN
ans = x
t0 = WHERE( x EQ 0, count )
IF count EQ n_elements( x ) THEN RETURN, ans
ans = x * 0
yh = ans
to = WHERE( ABS( x ) GE r, tocount )
ti = WHERE( ABS( x ) LT r, ticount )
IF tocount NE 0 THEN ans[ to ] = Arc( x[to], y0[to], y1[to], r )
IF ticount EQ 0 THEN RETURN, ans
yh[ ti ] = SQRT( r*r - x[ti]*x[ti] )
t1 = WHERE( y0[ti] LE -yh[ti], count )
IF count NE 0 THEN BEGIN
i = ti[ t1 ]
t2 = WHERE( y1[i] LE -yh[i], count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Arc( x[j], y0[j], y1[j], r )
ENDIF
t2 = WHERE( ( y1[i] GT -yh[i] ) AND ( y1[i] LE yh[i] ), count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Arc( x[j], y0[j], -yh[j], r ) $
+ Chord( x[j], -yh[j], y1[j] )
ENDIF
t2 = WHERE( y1[i] GT yh[i], count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Arc( x[j], y0[j], -yh[j], r ) $
+ Chord( x[j], -yh[j], yh[j] ) $
+ Arc( x[j], yh[j], y1[j], r )
ENDIF
ENDIF
t1 = WHERE( ( y0[ti] GT -yh[ti] ) AND ( y0[ti] LT yh[ti] ), count )
IF count NE 0 THEN BEGIN
i = ti[ t1 ]
t2 = WHERE( y1[i] LE -yh[i], count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Chord( x[j], y0[j], -yh[j] ) $
+ Arc( x[j], -yh[j], y1[j], r )
ENDIF
t2 = WHERE( ( y1[i] GT -yh[i] ) AND ( y1[i] LE yh[i] ), count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Chord( x[j], y0[j], y1[j] )
ENDIF
t2 = WHERE( y1[i] GT yh[i], count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Chord( x[j], y0[j], yh[j] ) $
+ Arc( x[j], yh[j], y1[j], r )
ENDIF
ENDIF
t1 = WHERE( y0[ti] GE yh[ti], count )
IF count NE 0 THEN BEGIN
i = ti[ t1 ]
t2 = WHERE ( y1[i] LE -yh[i], count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Arc( x[j], y0[j], yh[j], r ) $
+ Chord( x[j], yh[j], -yh[j] ) $
+ Arc( x[j], -yh[j], y1[j], r )
ENDIF
t2 = WHERE( ( y1[i] GT -yh[i] ) AND ( y1[i] LE yh[i] ), count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Arc( x[j], y0[j], yh[j], r ) $
+ Chord( x[j], yh[j], y1[j] )
ENDIF
t2 = WHERE( y1[i] GT yh[i], count )
IF count NE 0 THEN BEGIN
j = ti[ t1[ t2 ] ]
ans[j] = Arc( x[j], y0[j], y1[j], r )
ENDIF
ENDIF
RETURN, ans
END
ENDCASE
END
; ---------------------------------------------------------------------------
; Function Intarea( xc, yc, r, x0, x1, y0, y1 )
;
; Compute the area of overlap of a circle and a rectangle.
; xc, yc : Center of the circle.
; r : Radius of the circle.
; x0, y0 : Corner of the rectangle.
; x1, y1 : Opposite corner of the rectangle.
; ---------------------------------------------------------------------------
FUNCTION Intarea, xc, yc, r, x0, x1, y0, y1
;
; Shift the objects so that the circle is at the origin.
;
x0 = x0 - xc
y0 = y0 - yc
x1 = x1 - xc
y1 = y1 - yc
RETURN, Oneside( x1, y0, y1, r ) + Oneside( y1, -x1, -x0, r ) +$
Oneside( -x0, -y1, -y0, r ) + Oneside( -y0, x0, x1, r )
END
; ---------------------------------------------------------------------------
; FUNCTION Pixwt( xc, yc, r, x, y )
;
; Compute the fraction of a unit pixel that is interior to a circle.
; The circle has a radius r and is centered at (xc, yc). The center of
; the unit pixel (length of sides = 1) is at (x, y).
; ---------------------------------------------------------------------------
FUNCTION Pixwt, xc, yc, r, x, y
RETURN, Intarea( xc, yc, r, x-0.5, x+0.5, y-0.5, y+0.5 )
END
|