This file is indexed.

/usr/share/gnudatalanguage/astrolib/moonpos.pro is in gdl-astrolib 2018.02.16+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
  PRO MOONPOS, jd, ra, dec, dis, geolong, geolat, RADIAN = radian
;+
; NAME:                                     
;       MOONPOS
; PURPOSE:
;       To compute the RA and Dec of the Moon at specified Julian date(s).
;
; CALLING SEQUENCE:
;       MOONPOS, jd, ra, dec, dis, geolong, geolat, [/RADIAN ]
;
; INPUTS:
;       JD - Julian ephemeris date, scalar or vector, double precision suggested
;
; OUTPUTS:
;       Ra  - Apparent right ascension of the moon in DEGREES, referred to the
;               true equator of the specified date(s) 
;       Dec - The declination of the moon in DEGREES 
;       Dis - The Earth-moon distance in kilometers (between the center of the
;             Earth and the center of the Moon).
;       Geolong - Apparent longitude of the moon in DEGREES, referred to the
;               ecliptic of the specified date(s)
;       Geolat - Apparent longitude of the moon in DEGREES, referred to the
;               ecliptic of the specified date(s)
;
;       The output variables will all have the same number of elements as the
;       input Julian date vector, JD.   If JD is a scalar then the output 
;       variables will be also.
;
; OPTIONAL INPUT KEYWORD:
;       /RADIAN - If this keyword is set and non-zero, then all output variables 
;               are given in Radians rather than Degrees
;
; EXAMPLES:
;       (1) Find the position of the moon on April 12, 1992
;
;       IDL> jdcnv,1992,4,12,0,jd    ;Get Julian date
;       IDL> moonpos, jd, ra ,dec     ;Get RA and Dec of moon
;       IDL> print,adstring(ra,dec,1)
;               ==> 08 58 45.23  +13 46  6.1
;
;       This is within 1" from the position given in the Astronomical Almanac
;       
;       (2) Plot the Earth-moon distance for every day at 0 TD in July, 1996
;
;       IDL> jdcnv,1996,7,1,0,jd                   ;Get Julian date of July 1
;       IDL> moonpos,jd+dindgen(31), ra, dec, dis  ;Position at all 31 days
;       IDL> plot,indgen(31),dis, /YNOZ
;
; METHOD:
;       Derived from the Chapront ELP2000/82 Lunar Theory (Chapront-Touze' and
;       Chapront, 1983, 124, 50), as described by Jean Meeus in Chapter 47 of
;       ``Astronomical Algorithms'' (Willmann-Bell, Richmond), 2nd edition, 
;       1998.    Meeus quotes an approximate accuracy of 10" in longitude and
;       4" in latitude, but he does not give the time range for this accuracy.
;
;       Comparison of this IDL procedure with the example in ``Astronomical
;       Algorithms'' reveals a very small discrepancy (~1 km) in the distance 
;       computation, but no difference in the position calculation.
;
;       This procedure underwent a major rewrite in June 1996, and the new
;       calling sequence is *incompatible with the old* (e.g. angles now 
;       returned in degrees instead of radians).
;
; PROCEDURES CALLED:
;       CIRRANGE, ISARRAY(), NUTATE, TEN()  - from IDL Astronomy Library
;       POLY() - from IDL User's Library
; MODIFICATION HISTORY:
;       Written by Michael R. Greason, STX, 31 October 1988.
;       Major rewrite, new (incompatible) calling sequence, much improved 
;               accuracy,       W. Landsman   Hughes STX      June 1996
;       Added /RADIAN keyword  W. Landsman August 1997
;       Converted to IDL V5.0   W. Landsman   September 1997
;       Use improved expressions for L',D,M,M', and F given in 2nd edition of
;            Meeus (very slight change),  W. Landsman    November 2000
;       Avoid 32767 overflow   W. Landsman January 2005
;       
;-
 compile_opt idl2 
 On_error,2

 if N_params() LT 3 then begin
        print,'Syntax - MOONPOS, jd, ra, dec, dis, geolong, geolat, [/RADIAN]' 
        print,'Output angles in DEGREES unless /RADIAN is set'
        return
 endif

 npts = N_elements(jd)
 dtor = !DPI/180.0d

 ;  form time in Julian centuries from 1900.0

 t = (jd[*] - 2451545.0d)/36525.0d0

 d_lng = [0,2,2,0,0,0,2,2,2,2,0,1,0,2,0,0,4,0,4,2,2,1,1,2,2,4,2,0,2,2,1,2,0,0, $
 2,2,2,4,0,3,2,4,0,2,2,2,4,0,4,1,2,0,1,3,4,2,0,1,2,2]

 m_lng = [0,0,0,0,1,0,0,-1,0,-1,1,0,1,0,0,0,0,0,0,1,1,0,1,-1,0,0,0,1,0,-1,0, $
 -2,1,2,-2,0,0,-1,0,0,1,-1,2,2,1,-1,0,0,-1,0,1,0,1,0,0,-1,2,1,0,0]

 mp_lng = [1,-1,0,2,0,0,-2,-1,1,0,-1,0,1,0,1,1,-1,3,-2,-1,0,-1,0,1,2,0,-3,-2,$
 -1,-2,1,0,2,0,-1,1,0,-1,2,-1,1,-2,-1,-1,-2,0,1,4,0,-2,0,2,1,-2,-3,2,1,-1, $
  3,-1]

 f_lng = [0,0,0,0,0,2,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0, $
 0,0,0,-2,2,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2,-2,0,0,0,0,0,0,0,-2]

 sin_lng = [6288774,1274027,658314,213618,-185116,-114332,58793,57066,53322, $
 45758,-40923,-34720,-30383,15327,-12528,10980,10675,10034,8548,-7888,-6766, $
 -5163,4987,4036,3994,3861,3665,-2689,-2602,2390,-2348,2236,-2120,-2069,2048, $
 -1773,-1595,1215,-1110,-892,-810,759,-713,-700,691,596,549,537,520,-487, $
  -399,-381,351,-340,330,327,-323,299,294,0.0d]

 cos_lng = [-20905355,-3699111,-2955968,-569925,48888,-3149,246158,-152138, $
  -170733,-204586,-129620,108743,104755,10321,0,79661,-34782,-23210,-21636, $
   24208,30824,-8379,-16675,-12831,-10445,-11650,14403,-7003,0,10056,6322, $
  -9884,5751,0,-4950,4130,0,-3958,0,3258,2616,-1897,-2117,2354,0,0,-1423, $
  -1117,-1571,-1739,0,-4421,0,0,0,0,1165,0,0,8752.0d]

 d_lat = [0,0,0,2,2,2,2,0,2,0,2,2,2,2,2,2,2,0,4,0,0,0,1,0,0,0,1,0,4,4,0,4,2,2,$
    2,2,0,2,2,2,2,4,2,2,0,2,1,1,0,2,1,2,0,4,4,1,4,1,4,2]

 m_lat = [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,-1,-1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0,$
    0,0,-1,0,0,0,0,1,1,0,-1,-2,0,1,1,1,1,1,0,-1,1,0,-1,0,0,0,-1,-2]

 mp_lat = [0,1,1,0,-1,-1,0,2,1,2,0,-2,1,0,-1,0,-1,-1,-1,0,0,-1,0,1,1,0,0,3,0, $ 
   -1,1, -2,0,2,1,-2,3,2,-3,-1,0,0,1,0,1,1,0,0,-2,-1,1,-2,2,-2,-1,1,1,-1,0,0]

 f_lat =[ 1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,3,1,1,1,-1,-1,-1, $
     1,-1,1,-3,1,-3,-1,-1,1,-1,1,-1,1,1,1,1,-1,3,-1,-1,1,-1,-1,1,-1,1,-1,-1, $
     -1,-1,-1,-1,1]

 sin_lat = [5128122,280602,277693,173237,55413,46271,32573,17198,9266,8822, $
     8216,4324,4200,-3359,2463,2211,2065,-1870,1828,-1794,-1749,-1565,-1491, $
     -1475,-1410,-1344,-1335,1107,1021,833,777,671,607,596,491,-451,439,422, $
     421,-366,-351,331,315,302,-283,-229,223,223,-220,-220,-185,181,-177,176, $
    166,-164,132,-119,115,107.0d]

; Mean longitude of the moon referred to mean equinox of the date

 coeff0 = [218.3164477d, 481267.88123421d, -0.0015786d0, 1.0d/538841.0d, $
         -1.0d/6.5194d7 ]
 lprimed = poly(T, coeff0)
 cirrange, lprimed
 lprime = lprimed*dtor

; Mean elongation of the Moon

  coeff1 = [297.8501921d, 445267.1114034d, -0.0018819d, 1.0d/545868.0d, $
           -1.0d/1.13065d8 ]
  d = poly(T, coeff1)
  cirrange,d
  d = d*dtor

; Sun's mean anomaly

   coeff2 = [357.5291092d, 35999.0502909d, -0.0001536d, 1.0d/2.449d7 ]
   M = poly(T,coeff2) 
   cirrange, M 
   M = M*dtor

; Moon's mean anomaly

   coeff3 = [134.9633964d, 477198.8675055d, 0.0087414d, 1.0/6.9699d4, $
             -1.0d/1.4712d7 ]
   Mprime = poly(T, coeff3) 
   cirrange, Mprime
   Mprime = Mprime*dtor

; Moon's argument of latitude

    coeff4 = [93.2720950d, 483202.0175233d, -0.0036539, -1.0d/3.526d7, $
             1.0d/8.6331d8 ]
    F = poly(T, coeff4 ) 
    cirrange, F
    F = F*dtor

; Eccentricity of Earth's orbit around the Sun

    E = 1 - 0.002516d*T - 7.4d-6*T^2
    E2 = E^2

    ecorr1 = where(abs(m_lng) EQ 1)
    ecorr2 = where(abs(m_lat) EQ 1)
    ecorr3 = where(abs(m_lng) EQ 2)
    ecorr4 = where(abs(m_lat) EQ 2)

; Additional arguments

    A1 = (119.75d + 131.849d*T) * dtor
    A2 = (53.09d + 479264.290d*T) * dtor
    A3 = (313.45d + 481266.484d*T) * dtor
    suml_add = 3958*sin(A1) + 1962*sin(lprime - F) + 318*sin(A2)
    sumb_add =  -2235*sin(lprime) + 382*sin(A3) + 175*sin(A1-F) + $ 
              175*sin(A1 + F) + 127*sin(Lprime - Mprime) - $
              115*sin(Lprime + Mprime)

; Sum the periodic terms 

 geolong = dblarr(npts) & geolat = geolong & dis = geolong

 for i=0L,npts-1 do begin

   sinlng = sin_lng & coslng = cos_lng & sinlat = sin_lat

   sinlng[ecorr1] = e[i]*sinlng[ecorr1]
   coslng[ecorr1] = e[i]*coslng[ecorr1]
   sinlat[ecorr2] = e[i]*sinlat[ecorr2]
   sinlng[ecorr3] = e2[i]*sinlng[ecorr3]
   coslng[ecorr3] = e2[i]*coslng[ecorr3]
   sinlat[ecorr4] = e2[i]*sinlat[ecorr4]

   arg = d_lng*d[i] + m_lng*m[i] +mp_lng*mprime[i] + f_lng*f[i]
   geolong[i] = lprimed[i] + ( total(sinlng*sin(arg)) + suml_add[i] )/1.0d6

   dis[i] = 385000.56d + total(coslng*cos(arg))/1.0d3

   arg = d_lat*d[i] + m_lat*m[i] +mp_lat*mprime[i] + f_lat*f[i]
   geolat[i] = (total(sinlat*sin(arg)) + sumb_add[i])/1.0d6
       
 endfor

 nutate, jd, nlong, elong                     ;Find the nutation in longitude
 geolong= geolong + nlong/3.6d3
 cirrange,geolong
 lambda = geolong*dtor
 beta = geolat*dtor

;Find mean obliquity and convert lambda,beta to RA, Dec 

 c = [21.448,-4680.93,-1.55,1999.25,-51.38,-249.67,-39.05,7.12,27.87,5.79,2.45d]
 epsilon = ten(23,26) + poly(t/1.d2,c)/3600.d
 eps = (epsilon + elong/3600.d )*dtor          ;True obliquity in radians

 ra = atan( sin(lambda)*cos(eps) - tan(beta)* sin(eps), cos(lambda) )
 cirrange,ra,/RADIAN
 dec = asin( sin(beta)*cos(eps) + cos(beta)*sin(eps)*sin(lambda) )

 if not isarray(jd) then begin
        ra = ra[0] & dec = dec[0] & dis = dis[0]
        geolong = geolong[0]  & geolat = geolat[0]
 endif

 if not keyword_set(RADIAN) then begin
        ra = ra/dtor & dec = dec/dtor
 endif else begin
        geolong = lambda & geolat = beta
 endelse

 return
 end