/usr/share/gnudatalanguage/astrolib/moonpos.pro is in gdl-astrolib 2018.02.16+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | PRO MOONPOS, jd, ra, dec, dis, geolong, geolat, RADIAN = radian
;+
; NAME:
; MOONPOS
; PURPOSE:
; To compute the RA and Dec of the Moon at specified Julian date(s).
;
; CALLING SEQUENCE:
; MOONPOS, jd, ra, dec, dis, geolong, geolat, [/RADIAN ]
;
; INPUTS:
; JD - Julian ephemeris date, scalar or vector, double precision suggested
;
; OUTPUTS:
; Ra - Apparent right ascension of the moon in DEGREES, referred to the
; true equator of the specified date(s)
; Dec - The declination of the moon in DEGREES
; Dis - The Earth-moon distance in kilometers (between the center of the
; Earth and the center of the Moon).
; Geolong - Apparent longitude of the moon in DEGREES, referred to the
; ecliptic of the specified date(s)
; Geolat - Apparent longitude of the moon in DEGREES, referred to the
; ecliptic of the specified date(s)
;
; The output variables will all have the same number of elements as the
; input Julian date vector, JD. If JD is a scalar then the output
; variables will be also.
;
; OPTIONAL INPUT KEYWORD:
; /RADIAN - If this keyword is set and non-zero, then all output variables
; are given in Radians rather than Degrees
;
; EXAMPLES:
; (1) Find the position of the moon on April 12, 1992
;
; IDL> jdcnv,1992,4,12,0,jd ;Get Julian date
; IDL> moonpos, jd, ra ,dec ;Get RA and Dec of moon
; IDL> print,adstring(ra,dec,1)
; ==> 08 58 45.23 +13 46 6.1
;
; This is within 1" from the position given in the Astronomical Almanac
;
; (2) Plot the Earth-moon distance for every day at 0 TD in July, 1996
;
; IDL> jdcnv,1996,7,1,0,jd ;Get Julian date of July 1
; IDL> moonpos,jd+dindgen(31), ra, dec, dis ;Position at all 31 days
; IDL> plot,indgen(31),dis, /YNOZ
;
; METHOD:
; Derived from the Chapront ELP2000/82 Lunar Theory (Chapront-Touze' and
; Chapront, 1983, 124, 50), as described by Jean Meeus in Chapter 47 of
; ``Astronomical Algorithms'' (Willmann-Bell, Richmond), 2nd edition,
; 1998. Meeus quotes an approximate accuracy of 10" in longitude and
; 4" in latitude, but he does not give the time range for this accuracy.
;
; Comparison of this IDL procedure with the example in ``Astronomical
; Algorithms'' reveals a very small discrepancy (~1 km) in the distance
; computation, but no difference in the position calculation.
;
; This procedure underwent a major rewrite in June 1996, and the new
; calling sequence is *incompatible with the old* (e.g. angles now
; returned in degrees instead of radians).
;
; PROCEDURES CALLED:
; CIRRANGE, ISARRAY(), NUTATE, TEN() - from IDL Astronomy Library
; POLY() - from IDL User's Library
; MODIFICATION HISTORY:
; Written by Michael R. Greason, STX, 31 October 1988.
; Major rewrite, new (incompatible) calling sequence, much improved
; accuracy, W. Landsman Hughes STX June 1996
; Added /RADIAN keyword W. Landsman August 1997
; Converted to IDL V5.0 W. Landsman September 1997
; Use improved expressions for L',D,M,M', and F given in 2nd edition of
; Meeus (very slight change), W. Landsman November 2000
; Avoid 32767 overflow W. Landsman January 2005
;
;-
compile_opt idl2
On_error,2
if N_params() LT 3 then begin
print,'Syntax - MOONPOS, jd, ra, dec, dis, geolong, geolat, [/RADIAN]'
print,'Output angles in DEGREES unless /RADIAN is set'
return
endif
npts = N_elements(jd)
dtor = !DPI/180.0d
; form time in Julian centuries from 1900.0
t = (jd[*] - 2451545.0d)/36525.0d0
d_lng = [0,2,2,0,0,0,2,2,2,2,0,1,0,2,0,0,4,0,4,2,2,1,1,2,2,4,2,0,2,2,1,2,0,0, $
2,2,2,4,0,3,2,4,0,2,2,2,4,0,4,1,2,0,1,3,4,2,0,1,2,2]
m_lng = [0,0,0,0,1,0,0,-1,0,-1,1,0,1,0,0,0,0,0,0,1,1,0,1,-1,0,0,0,1,0,-1,0, $
-2,1,2,-2,0,0,-1,0,0,1,-1,2,2,1,-1,0,0,-1,0,1,0,1,0,0,-1,2,1,0,0]
mp_lng = [1,-1,0,2,0,0,-2,-1,1,0,-1,0,1,0,1,1,-1,3,-2,-1,0,-1,0,1,2,0,-3,-2,$
-1,-2,1,0,2,0,-1,1,0,-1,2,-1,1,-2,-1,-1,-2,0,1,4,0,-2,0,2,1,-2,-3,2,1,-1, $
3,-1]
f_lng = [0,0,0,0,0,2,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0, $
0,0,0,-2,2,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2,-2,0,0,0,0,0,0,0,-2]
sin_lng = [6288774,1274027,658314,213618,-185116,-114332,58793,57066,53322, $
45758,-40923,-34720,-30383,15327,-12528,10980,10675,10034,8548,-7888,-6766, $
-5163,4987,4036,3994,3861,3665,-2689,-2602,2390,-2348,2236,-2120,-2069,2048, $
-1773,-1595,1215,-1110,-892,-810,759,-713,-700,691,596,549,537,520,-487, $
-399,-381,351,-340,330,327,-323,299,294,0.0d]
cos_lng = [-20905355,-3699111,-2955968,-569925,48888,-3149,246158,-152138, $
-170733,-204586,-129620,108743,104755,10321,0,79661,-34782,-23210,-21636, $
24208,30824,-8379,-16675,-12831,-10445,-11650,14403,-7003,0,10056,6322, $
-9884,5751,0,-4950,4130,0,-3958,0,3258,2616,-1897,-2117,2354,0,0,-1423, $
-1117,-1571,-1739,0,-4421,0,0,0,0,1165,0,0,8752.0d]
d_lat = [0,0,0,2,2,2,2,0,2,0,2,2,2,2,2,2,2,0,4,0,0,0,1,0,0,0,1,0,4,4,0,4,2,2,$
2,2,0,2,2,2,2,4,2,2,0,2,1,1,0,2,1,2,0,4,4,1,4,1,4,2]
m_lat = [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,-1,-1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0,$
0,0,-1,0,0,0,0,1,1,0,-1,-2,0,1,1,1,1,1,0,-1,1,0,-1,0,0,0,-1,-2]
mp_lat = [0,1,1,0,-1,-1,0,2,1,2,0,-2,1,0,-1,0,-1,-1,-1,0,0,-1,0,1,1,0,0,3,0, $
-1,1, -2,0,2,1,-2,3,2,-3,-1,0,0,1,0,1,1,0,0,-2,-1,1,-2,2,-2,-1,1,1,-1,0,0]
f_lat =[ 1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,3,1,1,1,-1,-1,-1, $
1,-1,1,-3,1,-3,-1,-1,1,-1,1,-1,1,1,1,1,-1,3,-1,-1,1,-1,-1,1,-1,1,-1,-1, $
-1,-1,-1,-1,1]
sin_lat = [5128122,280602,277693,173237,55413,46271,32573,17198,9266,8822, $
8216,4324,4200,-3359,2463,2211,2065,-1870,1828,-1794,-1749,-1565,-1491, $
-1475,-1410,-1344,-1335,1107,1021,833,777,671,607,596,491,-451,439,422, $
421,-366,-351,331,315,302,-283,-229,223,223,-220,-220,-185,181,-177,176, $
166,-164,132,-119,115,107.0d]
; Mean longitude of the moon referred to mean equinox of the date
coeff0 = [218.3164477d, 481267.88123421d, -0.0015786d0, 1.0d/538841.0d, $
-1.0d/6.5194d7 ]
lprimed = poly(T, coeff0)
cirrange, lprimed
lprime = lprimed*dtor
; Mean elongation of the Moon
coeff1 = [297.8501921d, 445267.1114034d, -0.0018819d, 1.0d/545868.0d, $
-1.0d/1.13065d8 ]
d = poly(T, coeff1)
cirrange,d
d = d*dtor
; Sun's mean anomaly
coeff2 = [357.5291092d, 35999.0502909d, -0.0001536d, 1.0d/2.449d7 ]
M = poly(T,coeff2)
cirrange, M
M = M*dtor
; Moon's mean anomaly
coeff3 = [134.9633964d, 477198.8675055d, 0.0087414d, 1.0/6.9699d4, $
-1.0d/1.4712d7 ]
Mprime = poly(T, coeff3)
cirrange, Mprime
Mprime = Mprime*dtor
; Moon's argument of latitude
coeff4 = [93.2720950d, 483202.0175233d, -0.0036539, -1.0d/3.526d7, $
1.0d/8.6331d8 ]
F = poly(T, coeff4 )
cirrange, F
F = F*dtor
; Eccentricity of Earth's orbit around the Sun
E = 1 - 0.002516d*T - 7.4d-6*T^2
E2 = E^2
ecorr1 = where(abs(m_lng) EQ 1)
ecorr2 = where(abs(m_lat) EQ 1)
ecorr3 = where(abs(m_lng) EQ 2)
ecorr4 = where(abs(m_lat) EQ 2)
; Additional arguments
A1 = (119.75d + 131.849d*T) * dtor
A2 = (53.09d + 479264.290d*T) * dtor
A3 = (313.45d + 481266.484d*T) * dtor
suml_add = 3958*sin(A1) + 1962*sin(lprime - F) + 318*sin(A2)
sumb_add = -2235*sin(lprime) + 382*sin(A3) + 175*sin(A1-F) + $
175*sin(A1 + F) + 127*sin(Lprime - Mprime) - $
115*sin(Lprime + Mprime)
; Sum the periodic terms
geolong = dblarr(npts) & geolat = geolong & dis = geolong
for i=0L,npts-1 do begin
sinlng = sin_lng & coslng = cos_lng & sinlat = sin_lat
sinlng[ecorr1] = e[i]*sinlng[ecorr1]
coslng[ecorr1] = e[i]*coslng[ecorr1]
sinlat[ecorr2] = e[i]*sinlat[ecorr2]
sinlng[ecorr3] = e2[i]*sinlng[ecorr3]
coslng[ecorr3] = e2[i]*coslng[ecorr3]
sinlat[ecorr4] = e2[i]*sinlat[ecorr4]
arg = d_lng*d[i] + m_lng*m[i] +mp_lng*mprime[i] + f_lng*f[i]
geolong[i] = lprimed[i] + ( total(sinlng*sin(arg)) + suml_add[i] )/1.0d6
dis[i] = 385000.56d + total(coslng*cos(arg))/1.0d3
arg = d_lat*d[i] + m_lat*m[i] +mp_lat*mprime[i] + f_lat*f[i]
geolat[i] = (total(sinlat*sin(arg)) + sumb_add[i])/1.0d6
endfor
nutate, jd, nlong, elong ;Find the nutation in longitude
geolong= geolong + nlong/3.6d3
cirrange,geolong
lambda = geolong*dtor
beta = geolat*dtor
;Find mean obliquity and convert lambda,beta to RA, Dec
c = [21.448,-4680.93,-1.55,1999.25,-51.38,-249.67,-39.05,7.12,27.87,5.79,2.45d]
epsilon = ten(23,26) + poly(t/1.d2,c)/3600.d
eps = (epsilon + elong/3600.d )*dtor ;True obliquity in radians
ra = atan( sin(lambda)*cos(eps) - tan(beta)* sin(eps), cos(lambda) )
cirrange,ra,/RADIAN
dec = asin( sin(beta)*cos(eps) + cos(beta)*sin(eps)*sin(lambda) )
if not isarray(jd) then begin
ra = ra[0] & dec = dec[0] & dis = dis[0]
geolong = geolong[0] & geolat = geolat[0]
endif
if not keyword_set(RADIAN) then begin
ra = ra/dtor & dec = dec/dtor
endif else begin
geolong = lambda & geolat = beta
endelse
return
end
|