/usr/share/gnudatalanguage/astrolib/getpsf.pro is in gdl-astrolib 2018.02.16+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | pro getpsf,image,xc,yc,apmag,sky,ronois,phpadu, gauss,psf,idpsf,psfrad, $
fitrad,psfname, DEBUG = debug
;+
; NAME:
; GETPSF
; PURPOSE:
; To generate a point-spread function (PSF) from observed stars.
; EXPLANATION:
; The PSF is represented as a 2-dimensional Gaussian
; (integrated over each pixel) and a lookup table of residuals.
; The lookup table and Gaussian parameters are output in a FITS
; image file. The PSF FITS file created by GETPSF can be
; read with the procedure RDPSF. Adapted from the 1986 STSDAS
; version of DAOPHOT
;
; CALLING SEQUENCE:
; GETPSF, image, xc, yc, apmag, sky, [ronois, phpadu, gauss, psf,
; idpsf, psfrad, fitrad, psfname, /DEBUG ]
;
; INPUTS:
; IMAGE - input image array
; XC - input vector of x coordinates (from FIND), these should be
; IDL (first pixel is (0,0)) convention.
; YC - input vector of y coordinates (from FIND)
; APMAG - vector of magnitudes (from APER), used for initial estimate
; of gaussian intensity. If APMAG is multidimensional, (more
; than 1 aperture was used in APER) then the first aperture
; is used.
; SKY - vector of sky values (from APER)
;
; OPTIONAL INPUTS:
; The user will be prompted for the following parameters if not supplied.
;
; RONOIS - readout noise per pixel, (in electrons, or equivalent photons)
; PHPADU - photons per analog digital unit, used to scale the data
; numbers in IMAGE into photon units
; IDPSF - subscripts of the list of stars created by
; APER which will be used to define the PSF. Stars whose
; centroid does not fall within PSFRAD of the edge of the frame,
; or for which a Gaussian fit requires more than 25 iterations,
; will be ignored when creating the final PSF.
; PSFRAD - the scalar radius, in pixels, of the circular area within
; which the PSF will be defined. This should be slightly larger
; than the radius of the brightest star that one will be
; interested in.
; FITRAD - the scalar radius, in pixels of the circular area used in the
; least-square star fits. Stetson suggest that FITRAD should
; approximately equal to the FWHM, slightly less for crowded
; fields. (FITRAD must be smaller than PSFRAD.)
; PSFNAME- Name of the FITS file that will contain the table of residuals,
; and the best-fit Gaussian parameters. This file is
; subsequently required for use by NSTAR.
;
; OPTIONAL OUTPUTS:
; GAUSS - 5 element vector giving parameters of gaussian fit to the
; first PSF star
; GAUSS(0) - height of the gaussian (above sky)
; GAUSS(1) - the offset (in pixels) of the best fitting gaussian
; and the original X centroid
; GAUSS(2) - similiar offset from the Y centroid
; GAUSS(3) - Gaussian sigma in X
; GAUSS(4) - Gaussian sigma in Y
; PSF - 2-d array of PSF residuals after a Gaussian fit.
;
; PROCEDURE:
; GETPSF fits a Gaussian profile to the core of the first PSF star
; and generates a look-up table of the residuals of the
; actual image data from the Gaussian fit. If desired, it will then
; fit this PSF to another star (using PKFIT) to determine its precise
; centroid, scale the same Gaussian to the new star's core, and add the
; differences between the actual data and the scaled Gaussian to the
; table of residuals. (In other words, the Gaussian fit is performed
; only on the first star.)
;
; OPTIONAL KEYWORD INPUT:
; DEBUG - if this keyword is set and non-zero, then the result of each
; fitting iteration will be displayed.
;
; PROCEDURES CALLED
; DAOERF, MAKE_2D, MKHDR, RINTER(), PKFIT, STRNUMBER(), STRN(), WRITEFITS
;
; REVISON HISTORY:
; Adapted from the 1986 version of DAOPHOT in STSDAS
; IDL Version 2 W Landsman November 1988
; Use DEBUG keyword instead of !DEBUG W. Landsman May 1996
; Converted to IDL V5.0 W. Landsman September 1997
;-
On_error,2 ;Return to caller
common rinter,c1,c2,c3,init ;Save time in RINTER
init = 0 ;Initialize the common blocks
npar = N_params()
if npar LT 5 then begin ;Enough parameters passed?
print,'Syntax - GETPSF, image, x, y, mags, sky, '
print,' [ronois, phpadu, gauss, psf, idpsf, psfrad, fitrad, ' + $
'psfname, /DEBUG]'
return
endif
s = size(image) ;Get number of rows and columns in image
ncol = s[1] & nrow = s[2]
nstar = N_elements(xc) ;Total # of stars identified in image
if N_elements(idpsf) LT 1 then begin ;Array of PSF id's defined?
idpsf = intarr(25)
i = 0 & id = ''
print,"GETPSF: Enter index of stars to be used for PSF, one index per line"
RD_ID:
print,'Enter a stellar ID ( [RETURN] when finished) '
read,id
if id EQ '' then begin ;Did User hit the [RETURN] key
if i EQ 0 then return ;No stellar ID's supplied
idpsf = idpsf[0:i-1]
goto, GOT_ID
endif else result = strnumber(id,val)
if not result then print,string(7b),'INVALID INPUT:' else $
if (val GE nstar) or (val LT 0) then $
print,string(7b),'INVALID ID NUMBER' else begin
idpsf[i] = fix(val)
i = i+1
endelse
goto,RD_ID
endif
GOT_ID:
if N_elements(psfrad) NE 1 then read, $
'Enter radius (in pixels) of circular area defining the PSF: ',psfrad
if N_elements(fitrad) NE 1 then read, $
'Enter radius (in pixels) to be used for Gaussian fitting: ',fitrad
if fitrad GE psfrad then $
message,'ERROR - Fitting radius must be smaller than radius defining PSF'
if N_elements(ronois) NE 1 then read, $
'Enter readout noise per pixel: ',ronois
if N_elements(phpadu) NE 1 then read, $
'Enter photons per analog digital unit: ',phpadu
numpsf = N_elements(idpsf) ;# of stars used to create the PSF
smag = size(apmag) ;Is APMAG multidimensional?
if N_elements(apmag) NE smag[1] then mag = apmag[0,*] else mag = apmag[*]
n = 2*fix(psfrad+0.5)+1 ;(Odd) width of box that contains PSF circle
npsf = 2*n+7 ;Lookup table has half pixel interpolation
nbox = n+7 ;(Even) Width of subarray to be extracted from image
nhalf = nbox/2
if keyword_set(DEBUG) then begin
print,'GETPSF: Fitting radius - ',string(float(fitrad),'(F5.1)')
print,' PSF Radius - ',string(float(psfrad),'(F5.1)')
print,' Stellar IDs: ',idpsf & print,' '
endif
boxgen = findgen(nbox)
make_2d, boxgen, boxgen, xgen, ygen
; Find the first PSF star in the star list.
nstrps = -1 ;Counter for number of stars used to create PSF
GETSTAR:
nstrps = nstrps + 1
if nstrps GE numpsf then $
message,'ERROR - No valid PSF stars were supplied'
istar = idpsf[nstrps] ;ID number of first PSF star
ixcen = fix(xc[istar])
iycen = fix(yc[istar])
; Now a subarray F will be read in from the big image, given by
; IXCEN-NBOX/2+1 <= x <= IXCEN+NBOX/2, IYCEN-NBOX/2+1 <= y <= IYCEN+NBOX/2.
; (NBOX is an even number.) In the subarray, the coordinates of the centroid
; of the star will lie between NBOX/2 and NBOX/2+1 in each coordinate.
lx = ixcen-nhalf+1 & ux = ixcen + nhalf ;Upper & lower bounds in X
ly = iycen-nhalf+1 & uy = iycen + nhalf
if ((lx LT 0) or (ly LT 0) or $ ;Star too close to edge?
(ux GE ncol) or (uy GE nrow)) then begin
print,'GETPSF: Star ',strn(istar),' too near edge of frame.'
goto, GETSTAR
endif
f = image[lx:ux,ly:uy] - sky[istar] ;Read in subarray, subtract off sky
; An integrated Gaussian function will be fit to the central part of the
; stellar profile. Initially, a 5x5 box centered on the centroid of the
; star is used, but if the sigma in one coordinate drops to less than
; 1 pixel, then the box width of 3 will be used in that coordinate.
; If the sigma increases to over 3 pixels, then a box width of 7 will be
; used in that coordinate
x = xc[istar] - lx ;X coordinate of stellar centroid in subarray F
y = yc[istar] - ly ;Y coordinate of stellar centroid in subarray F
ix = fix(x+0.5) ;Index of pixel containing centroid
iy = fix(y+0.5)
; ;Begin least squares
h = max(f) ;Initial guess for peak intensity
sigx = 2.0 & sigy = 2.0
dxcen=0. & dycen=0.
;
niter = 0 ;Beginning of big iteration loop
v = fltarr(5)
c = fltarr(5,5)
; Print the current star
fmt1 = "(/17X, 'STAR', 5X, 'X', 8X, 'Y', 5X, 'MAG 1', 5X, 'SKY')"
fmt2 = "(15X, I5, 2F9.2, 12F9.3)"
if keyword_set(DEBUG) then begin
print,format=fmt1
print,format=fmt2,istar, xc[istar], yc[istar], mag[istar], sky[istar]
endif
if keyword_set(DEBUG) then print,'GETPSF: Gaussian Fit Iteration'
REPEAT BEGIN ;Begin the iterative loop
niter = niter + 1
if niter GT 100 then begin ;No convergence after 100 iterations?
message,'No convergence after 100 iterations for star ' + strn(istar),/INF
goto, GETSTAR
endif
if sigx LE 1 then nx = 1 $ ;A default box width
else if sigx GT 3 then nx = 3 $
else nx = 2
if sigy LE 1 then ny = 1 $
else if sigy GT 3 then ny = 3 $
else ny = 2
a = [H, x+dxcen,y+dycen,sigx,sigy]
xin = (findgen(2*nx+1)-nx) + ix
yin = (findgen(2*ny+1)-ny) + iy
make_2d, xin, yin
DAOERF, xin, yin, a, g, t
; The T's are the first derivatives of the model profile with respect
; to the five fitting parameters H, DXCEN, DYCEN, SIGX, and SIGY.
; Note that the center of the best-fitting Gaussian profile is
; expressed as an offset from the centroid of the star. In the case of
; a general, asymmetric stellar profile, the center of symmetry of the
; best-fitting Gaussian profile will not necessarily coincide with the
; centroid determined by any arbitrary centroiding algorithm.
dh = f[ ix-nx:ix+nx, iy-ny:iy+ny] - g ;Subtract best fit Gaussian from subarray
for kk = 0,4 do begin
tk = t[*,kk]
v[kk] = total( dh * tk )
for ll = 0,4 do c[kk,ll] = total( tk * t[*,ll] )
endfor
c = invert(c,status) ;IDL version assumes INVERT is successful
if status EQ 1 then begin
message,'Singular matrix encountered fitting star ' + strn(istar),/INF
goto, GETSTAR
endif
z = c#v ;Multiply by vector of residuals
h = h + z[0]/(1.0+4.0*abs(z[0]/h)) ;Correct the fitting parameters
dxcen = dxcen+z[1]/(1.0+3.0*abs(z[1]))
dycen = dycen+z[2]/(1.0+3.0*abs(z[2]))
sigx = sigx+z[3]/(1.0+4.0*abs(z[3]/sigx))
sigy = sigy+z[4]/(1.0+4.0*abs(z[4]/sigy))
if keyword_set(DEBUG) then print,niter,h,dxcen,dycen,sigx,sigy
endrep until $ ;Test for convergence
(abs(z[0]/h)+abs(z[3]/sigx)+abs(z[4]/sigy) LT 0.0001)
; Now that the solution has converged, we can generate an
; array containing the differences between the actual stellar profile
; and the best-fitting Gaussian analytic profile.
a = [H, x+dxcen, y+dycen, sigx,sigy] ;Parameters for Gaussian fit
DAOERF,xgen,ygen,a,g ;Compute Gaussian
f = f - g ;Residuals (Real profile - Gaussian)
psfmag = mag[istar]
xpsf1 = xc[istar] & ypsf1 = yc[istar]
; The look-up table is obtained by interpolation within the array of
; fitting residuals. We need to interpolate because we want the look-up
; table to be centered accurately on the centroid of the star, which of
; course is at some fractional-pixel position in the original data.
ncen = (npsf-1)/2.
psfgen = (findgen(npsf) - ncen)/2. ;Index function for PSF array
YY = psfgen + Y & XX = psfgen + X
make_2d,xx,yy
psf = RINTER(F, XX, YY) ;Interpolate residuals onto current star
gauss = [h,dxcen,dycen,sigx,sigy]
goodstar = nstrps ;Index of first good star
; For each additional star, determine the precise coordinates of the
; centroid and the relative brightness of the star
; by least-squares fitting to the current version of the point-spread
; function. Then subtract off the appropriately scaled integral under
; the analytic Gaussian function and add the departures of the actual
; data from the analytic Gaussian function to the look-up table.
GETMORE: ;Loop for additional PSF stars begins here
nstrps = nstrps+1
if nstrps GE numpsf then goto,WRITEOUT ;Have all the stars been done?
istar = idpsf[nstrps]
ixcen = fix(xc[istar])
iycen = fix(yc[istar])
scale = 10.^(-0.4*(mag[istar]-psfmag))
; Fit the current version of the point-spread function to the data for
; this star.
lx = ixcen-nhalf+1 & ux =ixcen + nhalf
ly = iycen-nhalf+1 & uy =iycen + nhalf
if ( (lx LT 0) or (ly LT 0) or $ ;Star too close to edge?
(ux GE ncol) or (uy GE nrow)) then begin
print,'GETPSF: Star ',strn(istar),' too near edge of frame.'
goto,GETMORE
endif
if keyword_set(DEBUG) then begin
print,format=fmt1
print,format=fmt2, istar, xc[istar], yc[istar], mag[istar], sky[istar]
endif
f = image[lx:ux,ly:uy]
x = xc[istar]-lx & y = yc[istar]-ly
pkfit, f, scale, x, y, sky[istar], fitrad, ronois, phpadu, $
gauss, psf, errmag, chi, sharp, niter, DEBUG = debug
if niter EQ 25 then begin ;Convergence in less than 25 iterations?
print,'GETPSF: No convergence after 25 iterations for star',istar
goto, GETMORE
endif
a = [gauss[0], x+dxcen,y+dycen,sigx,sigy] ;Parameters of successful fit
daoerf,xgen,ygen,a,e
f = f - scale*e -sky[istar] ;Compute array of residuals
; Values of the array of residuals are now interpolated to an NPSF by
; NPSF (NPSF is an odd number) array centered on the centroid of the
; star, and added to the existing look-up table of corrections to the
; analytic profile
xx = psfgen + x
yy = psfgen + y
make_2d,xx,yy
psf = psf + RINTER(f,xx,yy)
; Now correct both the height of the analytic Gaussian, and the value
; of the aperture-magnitude of the point-spread function for the
; inclusion of the additional star.
psfmag = -2.5*alog10((1.+scale)*10^(-0.4*psfmag))
gauss[0] = gauss[0]*(1.+scale)
goodstar = [ goodstar, nstrps]
goto, GETMORE
WRITEOUT:
; Create FITS file containing the PSF created.
if ( N_elements(psfname) EQ 0 ) then begin
psfname=''
read,'Enter name of FITS file to contain final PSF ([RETURN] to exit): ',psfname
endif
if ( psfname EQ '' ) then return
mkhdr, hdr, psf ;Create a minimal FITS header
sxaddpar, hdr, 'PHPADU', phpadu, 'Photons per Analog Digital Unit'
sxaddpar, hdr, 'RONOIS', ronois, 'Readout Noise'
sxaddpar, hdr, 'PSFRAD', psfrad, 'Radius where PSF is defined (pixels)'
sxaddpar, hdr, 'FITRAD', fitrad, 'Fitting Radius'
sxaddpar, hdr, 'PSFMAG', psfmag, 'PSF Magnitude'
sxaddpar, hdr, 'GAUSS1', gauss[0], 'Gaussian Scale Factor'
sxaddpar, hdr, 'GAUSS2', gauss[1], 'Gaussian X Position'
sxaddpar, hdr, 'GAUSS3', gauss[2], 'Gaussian Y Position'
sxaddpar, hdr, 'GAUSS4', gauss[3], 'Gaussian Sigma: X Direction'
sxaddpar, hdr, 'GAUSS5', gauss[4], 'Gaussian Sigma: Y Direction'
ngood = N_elements(goodstar)
sxaddhist,'GETPSF: '+ systime() + ' ' + strn(ngood) + $
' Stars Used to Create PSF',hdr
sxaddhist,'GETPSF: ID - '+ string(idpsf[goodstar[0:12<ngood-1]], $
format='(13i5)'),hdr
if ngood gt 13 then $
sxaddhist,'GETPSF: ID - '+ string(idpsf[goodstar[13:*]], $
format='(13i5)'),hdr
sxaddhist,'PSF Coordinates:'+ $
string(xpsf1, format='(F7.2)') + $
string(ypsf1, format='(F7.2)'), hdr
writefits,psfname,psf,hdr
return
end
|