/usr/share/gnudatalanguage/astrolib/cic.pro is in gdl-astrolib 2018.02.16+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | FUNCTION cic,value,posx,nx,posy,ny,posz,nz, $
AVERAGE=average,WRAPAROUND=wraparound,ISOLATED=isolated, $
NO_MESSAGE=no_message
;+
; NAME:
; CIC
;
; PURPOSE:
; Interpolate an irregularly sampled field using Cloud in Cell method
;
; EXPLANATION:
; This function interpolates an irregularly sampled field to a
; regular grid using Cloud In Cell (nearest grid point gets
; weight 1-dngp, point on other side gets weight dngp, where
; dngp is the distance to the nearest grid point in units of the
; cell size).
;
; CATEGORY:
; Mathematical functions, Interpolation
;
; CALLING SEQUENCE:
; Result = CIC, VALUE, POSX, NX[, POSY, NY, POSZ, NZ,
; AVERAGE = average, WRAPAROUND = wraparound,
; ISOLATED = isolated, NO_MESSAGE = no_message]
;
; INPUTS:
; VALUE: Array of sample weights (field values). For e.g. a
; temperature field this would be the temperature and the
; keyword AVERAGE should be set. For e.g. a density field
; this could be either the particle mass (AVERAGE should
; not be set) or the density (AVERAGE should be set).
; POSX: Array of X coordinates of field samples, unit indices: [0,NX>.
; NX: Desired number of grid points in X-direction.
;
; OPTIONAL INPUTS:
; POSY: Array of Y coordinates of field samples, unit indices: [0,NY>.
; NY: Desired number of grid points in Y-direction.
; POSZ: Array of Z coordinates of field samples, unit indices: [0,NZ>.
; NZ: Desired number of grid points in Z-direction.
;
; KEYWORD PARAMETERS:
; AVERAGE: Set this keyword if the nodes contain field samples
; (e.g. a temperature field). The value at each grid
; point will then be the weighted average of all the
; samples allocated to it. If this keyword is not
; set, the value at each grid point will be the
; weighted sum of all the nodes allocated to it
; (e.g. for a density field from a distribution of
; particles). (D=0).
; WRAPAROUND: Set this keyword if you want the first grid point
; to contain samples of both sides of the volume
; (see below).
; ISOLATED: Set this keyword if the data is isolated, i.e. not
; periodic. In that case total `mass' is not conserved.
; This keyword cannot be used in combination with the
; keyword WRAPAROUND.
; NO_MESSAGE: Suppress informational messages.
;
; Example of default allocation of nearest grid points: n0=4, *=gridpoint.
;
; 0 1 2 3 Index of gridpoints
; * * * * Grid points
; |---|---|---|---| Range allocated to gridpoints ([0.0,1.0> --> 0, etc.)
; 0 1 2 3 4 posx
;
; Example of ngp allocation for WRAPAROUND: n0=4, *=gridpoint.
;
; 0 1 2 3 Index of gridpoints
; * * * * Grid points
; |---|---|---|---|-- Range allocated to gridpoints ([0.5,1.5> --> 1, etc.)
; 0 1 2 3 4=0 posx
;
;
; OUTPUTS:
; Prints that a CIC interpolation is being performed of x
; samples to y grid points, unless NO_MESSAGE is set.
;
; RESTRICTIONS:
; Field data is assumed to be periodic with the sampled volume
; the basic cell, unless ISOLATED is set.
; All input arrays must have the same dimensions.
; Position coordinates should be in `index units' of the
; desired grid: POSX=[0,NX>, etc.
; Keywords ISOLATED and WRAPAROUND cannot both be set.
;
; PROCEDURE:
; Nearest grid point is determined for each sample.
; CIC weights are computed for each sample.
; Samples are interpolated to the grid.
; Grid point values are computed (sum or average of samples).
; NOTES:
; Use tsc.pro for a higher-order interpolation scheme, ngp.pro for a lower
; order interpolation scheme. A standard reference for these
; interpolation methods is: R.W. Hockney and J.W. Eastwood, Computer
; Simulations Using Particles (New York: McGraw-Hill, 1981).
; EXAMPLE:
; nx=20
; ny=10
; posx=randomu(s,1000)
; posy=randomu(s,1000)
; value=posx^2+posy^2
; field=cic(value,posx*nx,nx,posy*ny,ny,/average)
; surface,field,/lego
;
; MODIFICATION HISTORY:
; Written by Joop Schaye, Feb 1999.
; Avoid integer overflow for large dimensions P.Riley/W.Landsman Dec. 1999
;-
nrsamples=n_elements(value)
nparams=n_params()
dim=(nparams-1)/2
IF dim LE 2 THEN BEGIN
nz=1
IF dim EQ 1 THEN ny=1
ENDIF
nxny=long(nx)*long(ny)
;---------------------
; Some error handling.
;---------------------
on_error,2 ; Return to caller if an error occurs.
IF NOT (nparams EQ 3 OR nparams EQ 5 OR nparams EQ 7) THEN BEGIN
message,'Incorrect number of arguments!',/continue
message,'Syntax: CIC, VALUE, POSX, NX[, POSY, NY, POSZ, NZ,' + $
' AVERAGE = average, PERIODIC = periodic]'
ENDIF
IF (nrsamples NE n_elements(posx)) OR $
(dim GE 2 AND nrsamples NE n_elements(posy)) OR $
(dim EQ 3 AND nrsamples NE n_elements(posz)) THEN $
message,'Input arrays must have the same dimensions!'
IF keyword_set(isolated) AND keyword_set(wraparound) THEN $
message,'Keywords ISOLATED and WRAPAROUND cannot both be set!'
IF NOT keyword_set(no_message) THEN $
print,'Interpolating ' + strtrim(string(nrsamples,format='(i10)'),1) $
+ ' samples to ' + strtrim(string(nxny*nz,format='(i10)'),1) + $
' grid points using CIC...'
;-----------------------
; Calculate CIC weights.
;-----------------------
; Compute weights per axis, in order to reduce memory (everything
; needs to be in memory if we compute all nearest grid points first).
;*************
; X-direction.
;*************
; Coordinates of nearest grid point (ngp).
IF keyword_set(wraparound) THEN ngx=fix(posx+0.5) $
ELSE ngx=fix(posx)+0.5
; Distance from sample to ngp.
dngx=ngx-posx
; Index of ngp.
IF keyword_set(wraparound) THEN kx1=temporary(ngx) $
ELSE kx1=temporary(ngx)-0.5
; Weight of ngp.
wx1=1.0-abs(dngx)
; Other side.
left=where(dngx LT 0.0,nrleft) ; samples with ngp to the left.
; The following is only correct if x(ngp)>posx (ngp to the right).
kx2=kx1-1
; Correct points where x(ngp)<posx (ngp to the left).
IF nrleft NE 0 THEN kx2[left]=kx2[left]+2
wx2=abs(temporary(dngx))
; Free memory.
left=0
; Periodic boundary conditions.
; Note that kx2 can be both -1 and nx at this point, regardless of
; wraparound or not. The reason is that dngx can be exactly zero.
bad=where(kx2 EQ -1,count)
IF count NE 0 THEN BEGIN
kx2[bad]=nx-1
IF keyword_set(isolated) THEN wx2[bad]=0.
ENDIF
bad=where(kx2 EQ nx,count)
IF count NE 0 THEN BEGIN
kx2[bad]=0
IF keyword_set(isolated) THEN wx2[bad]=0.
ENDIF
IF keyword_set(wraparound) THEN BEGIN
bad=where(kx1 EQ nx,count)
IF count NE 0 THEN kx1[bad]=0
ENDIF
bad=0 ; Free memory.
;*************
; Y-direction.
;*************
IF dim GE 2 THEN BEGIN
; Coordinates of nearest grid point (ngp).
IF keyword_set(wraparound) THEN ngy=fix(posy+0.5) $
ELSE ngy=fix(posy)+0.5
; Distance from sample to ngp.
dngy=ngy-posy
; Index of ngp.
IF keyword_set(wraparound) THEN ky1=temporary(ngy) $
ELSE ky1=temporary(ngy)-0.5
; Weight of ngp.
wy1=1.0-abs(dngy)
; Other side.
left=where(dngy LT 0.0,nrleft) ; samples with ngp to the left.
; The following is only correct if y(ngp)>posy (ngp to the right).
ky2=ky1-1
; Correct points where y(ngp)<posy (ngp to the left).
IF nrleft NE 0 THEN ky2[left]=ky2[left]+2
wy2=abs(temporary(dngy))
; Free memory.
left=0
; Periodic boundary conditions.
bad=where(ky2 EQ -1,count)
IF count NE 0 THEN BEGIN
ky2[bad]=ny-1
IF keyword_set(isolated) THEN wy2[bad]=0.
ENDIF
bad=where(ky2 EQ ny,count)
IF count NE 0 THEN BEGIN
ky2[bad]=0
IF keyword_set(isolated) THEN wy2[bad]=0.
ENDIF
IF keyword_set(wraparound) THEN BEGIN
bad=where(ky1 EQ ny,count)
IF count NE 0 THEN ky1[bad]=0
ENDIF
bad=0 ; Free memory.
ENDIF ELSE BEGIN
ky1=0
ky2=0
wy1=1
wy2=1
ENDELSE
;*************
; Z-direction.
;*************
IF dim EQ 3 THEN BEGIN
; Coordinates of nearest grid point (ngp).
IF keyword_set(wraparound) THEN ngz=fix(posz+0.5) $
ELSE ngz=fix(posz)+0.5
; Distance from sample to ngp.
dngz=ngz-posz
; Index of ngp.
IF keyword_set(wraparound) THEN kz1=temporary(ngz) $
ELSE kz1=temporary(ngz)-0.5
; Weight of ngp.
wz1=1.0-abs(dngz)
; Other side.
left=where(dngz LT 0.0,nrleft) ; samples with ngp to the left.
; The following is only correct if z(ngp)>posz (ngp to the right).
kz2=kz1-1
; Correct points where z(ngp)<posz (ngp to the left).
IF nrleft NE 0 THEN kz2[left]=kz2[left]+2
wz2=abs(temporary(dngz))
; Free memory.
left=0
; Periodic boundary conditions.
bad=where(kz2 EQ -1,count)
IF count NE 0 THEN BEGIN
kz2[bad]=nz-1
IF keyword_set(isolated) THEN wz2[bad]=0.
ENDIF
bad=where(kz2 EQ nz,count)
IF count NE 0 THEN BEGIN
kz2[bad]=0
IF keyword_set(isolated) THEN wz2[bad]=0.
ENDIF
IF keyword_set(wraparound) THEN BEGIN
bad=where(kz1 EQ nz,count)
IF count NE 0 THEN kz1[bad]=0
ENDIF
bad=0 ; Free memory.
ENDIF ELSE BEGIN
kz1=0
kz2=0
wz1=1
wz2=1
ENDELSE
;-----------------------------
; Interpolate samples to grid.
;-----------------------------
field=fltarr(nx,ny,nz)
IF keyword_set(average) THEN totcicweight=fltarr(nx,ny,nz)
; Cicweight adds up all cic weights allocated to a grid point, we need
; to keep track of this in order to compute the temperature.
; Note that total(cicweight) is equal to nrsamples and that
; total(field)=n0^3 if sph.plot NE 'sph,temp' (not 1 because we use
; posx=[0,n0> --> cube length different from EDFW paper).
index=kx1+ky1*nx+kz1*nxny
cicweight=wx1*wy1*wz1
IF keyword_set(average) THEN BEGIN
FOR j=0l,nrsamples-1l DO BEGIN
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
totcicweight[index[j]]=totcicweight[index[j]]+cicweight[j]
ENDFOR
ENDIF ELSE FOR j=0l,nrsamples-1l DO $
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
index=kx2+ky1*nx+kz1*nxny
cicweight=wx2*wy1*wz1
IF keyword_set(average) THEN BEGIN
FOR j=0l,nrsamples-1l DO BEGIN
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
totcicweight[index[j]]=totcicweight[index[j]]+cicweight[j]
ENDFOR
ENDIF ELSE FOR j=0l,nrsamples-1l DO $
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
IF dim GE 2 THEN BEGIN
index=kx1+ky2*nx+kz1*nxny
cicweight=wx1*wy2*wz1
IF keyword_set(average) THEN BEGIN
FOR j=0l,nrsamples-1l DO BEGIN
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
totcicweight[index[j]]=totcicweight[index[j]]+cicweight[j]
ENDFOR
ENDIF ELSE FOR j=0l,nrsamples-1l DO $
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
index=kx2+ky2*nx+kz1*nxny
cicweight=wx2*wy2*wz1
IF keyword_set(average) THEN BEGIN
FOR j=0l,nrsamples-1l DO BEGIN
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
totcicweight[index[j]]=totcicweight[index[j]]+cicweight[j]
ENDFOR
ENDIF ELSE FOR j=0l,nrsamples-1l DO $
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
IF dim EQ 3 THEN BEGIN
index=kx1+ky1*nx+kz2*nxny
cicweight=wx1*wy1*wz2
IF keyword_set(average) THEN BEGIN
FOR j=0l,nrsamples-1l DO BEGIN
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
totcicweight[index[j]]=totcicweight[index[j]]+cicweight[j]
ENDFOR
ENDIF ELSE FOR j=0l,nrsamples-1l DO $
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
index=kx2+ky1*nx+kz2*nxny
cicweight=wx2*wy1*wz2
IF keyword_set(average) THEN BEGIN
FOR j=0l,nrsamples-1l DO BEGIN
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
totcicweight[index[j]]=totcicweight[index[j]]+cicweight[j]
ENDFOR
ENDIF ELSE FOR j=0l,nrsamples-1l DO $
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
index=kx1+ky2*nx+kz2*nxny
cicweight=wx1*wy2*wz2
IF keyword_set(average) THEN BEGIN
FOR j=0l,nrsamples-1l DO BEGIN
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
totcicweight[index[j]]=totcicweight[index[j]]+cicweight[j]
ENDFOR
ENDIF ELSE FOR j=0l,nrsamples-1l DO $
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
index=kx2+ky2*nx+kz2*nxny
cicweight=wx2*wy2*wz2
IF keyword_set(average) THEN BEGIN
FOR j=0l,nrsamples-1l DO BEGIN
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
totcicweight[index[j]]=totcicweight[index[j]]+cicweight[j]
ENDFOR
ENDIF ELSE FOR j=0l,nrsamples-1l DO $
field[index[j]]=field[index[j]]+cicweight[j]*value[j]
ENDIF
ENDIF
; Free memory (no need to free any more local arrays, will not lower
; maximum memory usage).
index=0
;--------------------------
; Compute weighted average.
;--------------------------
IF keyword_set(average) THEN BEGIN
good=where(totcicweight NE 0,nrgood)
field[good]=temporary(field[good])/temporary(totcicweight[good])
ENDIF
return,field
END ; End of function cic.
|