This file is indexed.

/usr/share/gnudatalanguage/astrolib/baryvel.pro is in gdl-astrolib 2018.02.16+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
pro baryvel, dje, deq, dvelh, dvelb, JPL = JPL
;+
; NAME:
;       BARYVEL
; PURPOSE:
;       Calculates heliocentric and barycentric velocity components of Earth.
;
; EXPLANATION:
;       BARYVEL takes into account the Earth-Moon motion, and is useful for 
;       radial velocity work to an accuracy of  ~1 m/s.
;
; CALLING SEQUENCE:
;       BARYVEL, dje, deq, dvelh, dvelb, [ JPL =  ] 
;
; INPUTS:
;       DJE - (scalar) Julian ephemeris date.
;       DEQ - (scalar) epoch of mean equinox of dvelh and dvelb. If deq=0
;               then deq is assumed to be equal to dje.
; OUTPUTS: 
;       DVELH: (vector(3)) heliocentric velocity component. in km/s 
;       DVELB: (vector(3)) barycentric velocity component. in km/s
;
;       The 3-vectors DVELH and DVELB are given in a right-handed coordinate 
;       system with the +X axis toward the Vernal Equinox, and +Z axis 
;       toward the celestial pole.      
;
; OPTIONAL KEYWORD SET:
;       JPL - if /JPL set, then BARYVEL will call the procedure JPLEPHINTERP
;             to compute the Earth velocity using the full JPL ephemeris.   
;             The JPL ephemeris FITS file JPLEPH.405 must exist in either the 
;             current directory, or in the directory specified by the 
;             environment variable ASTRO_DATA.   Alternatively, the JPL keyword
;             can be set to the full path and name of the ephemeris file.
;             A copy of the JPL ephemeris FITS file is available in
;                 http://idlastro.gsfc.nasa.gov/ftp/data/         
; PROCEDURES CALLED:
;       Function PREMAT() -- computes precession matrix
;       JPLEPHREAD, JPLEPHINTERP, TDB2TDT - if /JPL keyword is set
; NOTES:
;       Algorithm taken from FORTRAN program of Stumpff (1980, A&A Suppl, 41,1)
;       Stumpf claimed an accuracy of 42 cm/s for the velocity.    A 
;       comparison with the JPL FORTRAN planetary ephemeris program PLEPH
;       found agreement to within about 65 cm/s between 1986 and 1994
;
;       If /JPL is set (using JPLEPH.405 ephemeris file) then velocities are 
;       given in the ICRS system; otherwise in the FK4 system.   
; EXAMPLE:
;       Compute the radial velocity of the Earth toward Altair on 15-Feb-1994
;          using both the original Stumpf algorithm and the JPL ephemeris
;
;       IDL> jdcnv, 1994, 2, 15, 0, jd          ;==> JD = 2449398.5
;       IDL> baryvel, jd, 2000, vh, vb          ;Original algorithm
;               ==> vh = [-17.07243, -22.81121, -9.889315]  ;Heliocentric km/s
;               ==> vb = [-17.08083, -22.80471, -9.886582]  ;Barycentric km/s
;       IDL> baryvel, jd, 2000, vh, vb, /jpl   ;JPL ephemeris
;               ==> vh = [-17.07236, -22.81126, -9.889419]  ;Heliocentric km/s
;               ==> vb = [-17.08083, -22.80484, -9.886409]  ;Barycentric km/s
;
;       IDL> ra = ten(19,50,46.77)*15/!RADEG    ;RA  in radians
;       IDL> dec = ten(08,52,3.5)/!RADEG        ;Dec in radians
;       IDL> v = vb[0]*cos(dec)*cos(ra) + $   ;Project velocity toward star
;               vb[1]*cos(dec)*sin(ra) + vb[2]*sin(dec) 
;
; REVISION HISTORY:
;       Jeff Valenti,  U.C. Berkeley    Translated BARVEL.FOR to IDL.
;       W. Landsman, Cleaned up program sent by Chris McCarthy (SfSU) June 1994
;       Converted to IDL V5.0   W. Landsman   September 1997
;       Added /JPL keyword  W. Landsman   July 2001
;       Documentation update W. Landsman Dec 2005
;-
 On_Error,2
 compile_opt idl2

 if N_params() LT 4 then begin
        print,'Syntax: BARYVEL, dje, deq, dvelh, dvelb'
        print,'    dje - input Julian ephemeris date'
        print,'    deq - input epoch of mean equinox of dvelh and dvelb'
        print,'    dvelh - output vector(3) heliocentric velocity comp in km/s' 
        print,'    dvelb - output vector(3) barycentric velocity comp in km/s'
        return
 endif

 if keyword_set(JPL) then begin
      if size(jpl,/TNAME) EQ 'STRING' then jplfile = jpl else $
            jplfile = find_with_def('JPLEPH.405','ASTRO_DATA')
      if jplfile EQ '' then message,'ERROR - Cannot find JPL ephemeris file' 
      JPLEPHREAD,jplfile, pinfo, pdata, [long(dje), long(dje)+1]
      JPLEPHINTERP, pinfo, pdata, dje, x,y,z,vx,vy,vz, /EARTH,/VELOCITY, $
                 VELUNITS = 'KM/S'
      dvelb = [vx,vy,vz]
      JPLEPHINTERP, pinfo, pdata, dje, x,y,z,vx,vy,vz, /SUN,/VELOCITY, $
                 VELUNITS = 'KM/S'
      dvelh = dvelb - [vx,vy,vz]
      if deq NE 2000 then begin
             if deq EQ 0 then begin
                     DAYCNV, dje , year, month, day, hour
                     deq = year + month/12.d + day/365.25d + hour/8766.0d
             endif
             prema = premat(2000.0d,deq )
             dvelh =  prema # dvelh 
             dvelb =  prema # dvelb 
      endif         
      return
 endif

;Define constants
  dc2pi = 2*!DPI 
  cc2pi = 2*!PI 
  dc1 = 1.0D0
  dcto = 2415020.0D0
  dcjul = 36525.0D0                     ;days in Julian year
  dcbes = 0.313D0
  dctrop = 365.24219572D0               ;days in tropical year (...572 insig)
  dc1900 = 1900.0D0
  AU = 1.4959787D8

;Constants dcfel(i,k) of fast changing elements.
  dcfel = [1.7400353D00, 6.2833195099091D02,  5.2796D-6 $
          ,6.2565836D00, 6.2830194572674D02, -2.6180D-6 $
          ,4.7199666D00, 8.3997091449254D03, -1.9780D-5 $
          ,1.9636505D-1, 8.4334662911720D03, -5.6044D-5 $
          ,4.1547339D00, 5.2993466764997D01,  5.8845D-6 $
          ,4.6524223D00, 2.1354275911213D01,  5.6797D-6 $
          ,4.2620486D00, 7.5025342197656D00,  5.5317D-6 $
          ,1.4740694D00, 3.8377331909193D00,  5.6093D-6 ]
  dcfel = reform(dcfel,3,8)

;constants dceps and ccsel(i,k) of slowly changing elements.
  dceps = [4.093198D-1, -2.271110D-4, -2.860401D-8 ]
  ccsel = [1.675104E-2, -4.179579E-5, -1.260516E-7 $
          ,2.220221E-1,  2.809917E-2,  1.852532E-5 $
          ,1.589963E00,  3.418075E-2,  1.430200E-5 $
          ,2.994089E00,  2.590824E-2,  4.155840E-6 $
          ,8.155457E-1,  2.486352E-2,  6.836840E-6 $
          ,1.735614E00,  1.763719E-2,  6.370440E-6 $
          ,1.968564E00,  1.524020E-2, -2.517152E-6 $
          ,1.282417E00,  8.703393E-3,  2.289292E-5 $
          ,2.280820E00,  1.918010E-2,  4.484520E-6 $
          ,4.833473E-2,  1.641773E-4, -4.654200E-7 $
          ,5.589232E-2, -3.455092E-4, -7.388560E-7 $
          ,4.634443E-2, -2.658234E-5,  7.757000E-8 $
          ,8.997041E-3,  6.329728E-6, -1.939256E-9 $
          ,2.284178E-2, -9.941590E-5,  6.787400E-8 $
          ,4.350267E-2, -6.839749E-5, -2.714956E-7 $
          ,1.348204E-2,  1.091504E-5,  6.903760E-7 $
          ,3.106570E-2, -1.665665E-4, -1.590188E-7 ]
  ccsel = reform(ccsel,3,17)

;Constants of the arguments of the short-period perturbations.
  dcargs = [5.0974222D0, -7.8604195454652D2 $
           ,3.9584962D0, -5.7533848094674D2 $
           ,1.6338070D0, -1.1506769618935D3 $
           ,2.5487111D0, -3.9302097727326D2 $
           ,4.9255514D0, -5.8849265665348D2 $
           ,1.3363463D0, -5.5076098609303D2 $
           ,1.6072053D0, -5.2237501616674D2 $
           ,1.3629480D0, -1.1790629318198D3 $
           ,5.5657014D0, -1.0977134971135D3 $
           ,5.0708205D0, -1.5774000881978D2 $
           ,3.9318944D0,  5.2963464780000D1 $
           ,4.8989497D0,  3.9809289073258D1 $
           ,1.3097446D0,  7.7540959633708D1 $
           ,3.5147141D0,  7.9618578146517D1 $
           ,3.5413158D0, -5.4868336758022D2 ]
  dcargs = reform(dcargs,2,15)

;Amplitudes ccamps(n,k) of the short-period perturbations.
  ccamps = $
    [-2.279594E-5,  1.407414E-5,  8.273188E-6,  1.340565E-5, -2.490817E-7 $
    ,-3.494537E-5,  2.860401E-7,  1.289448E-7,  1.627237E-5, -1.823138E-7 $
    , 6.593466E-7,  1.322572E-5,  9.258695E-6, -4.674248E-7, -3.646275E-7 $
    , 1.140767E-5, -2.049792E-5, -4.747930E-6, -2.638763E-6, -1.245408E-7 $
    , 9.516893E-6, -2.748894E-6, -1.319381E-6, -4.549908E-6, -1.864821E-7 $
    , 7.310990E-6, -1.924710E-6, -8.772849E-7, -3.334143E-6, -1.745256E-7 $
    ,-2.603449E-6,  7.359472E-6,  3.168357E-6,  1.119056E-6, -1.655307E-7 $
    ,-3.228859E-6,  1.308997E-7,  1.013137E-7,  2.403899E-6, -3.736225E-7 $
    , 3.442177E-7,  2.671323E-6,  1.832858E-6, -2.394688E-7, -3.478444E-7 $
    , 8.702406E-6, -8.421214E-6, -1.372341E-6, -1.455234E-6, -4.998479E-8 $
    ,-1.488378E-6, -1.251789E-5,  5.226868E-7, -2.049301E-7,  0.E0 $
    ,-8.043059E-6, -2.991300E-6,  1.473654E-7, -3.154542E-7,  0.E0 $
    , 3.699128E-6, -3.316126E-6,  2.901257E-7,  3.407826E-7,  0.E0 $
    , 2.550120E-6, -1.241123E-6,  9.901116E-8,  2.210482E-7,  0.E0 $
    ,-6.351059E-7,  2.341650E-6,  1.061492E-6,  2.878231E-7,  0.E0 ]
  ccamps = reform(ccamps,5,15)

;Constants csec3 and ccsec(n,k) of the secular perturbations in longitude.
  ccsec3 = -7.757020E-8
  ccsec = [1.289600E-6, 5.550147E-1, 2.076942E00 $
          ,3.102810E-5, 4.035027E00, 3.525565E-1 $
          ,9.124190E-6, 9.990265E-1, 2.622706E00 $
          ,9.793240E-7, 5.508259E00, 1.559103E01 ]
  ccsec = reform(ccsec,3,4)

;Sidereal rates.
  dcsld = 1.990987D-7                   ;sidereal rate in longitude
  ccsgd = 1.990969E-7                   ;sidereal rate in mean anomaly

;Constants used in the calculation of the lunar contribution.
  cckm = 3.122140E-5
  ccmld = 2.661699E-6
  ccfdi = 2.399485E-7

;Constants dcargm(i,k) of the arguments of the perturbations of the motion
; of the moon.
  dcargm = [5.1679830D0,  8.3286911095275D3 $
           ,5.4913150D0, -7.2140632838100D3 $
           ,5.9598530D0,  1.5542754389685D4 ]
  dcargm = reform(dcargm,2,3)

;Amplitudes ccampm(n,k) of the perturbations of the moon.
  ccampm = [ 1.097594E-1, 2.896773E-7, 5.450474E-2,  1.438491E-7 $
           ,-2.223581E-2, 5.083103E-8, 1.002548E-2, -2.291823E-8 $
           , 1.148966E-2, 5.658888E-8, 8.249439E-3,  4.063015E-8 ]
  ccampm = reform(ccampm,4,3)

;ccpamv(k)=a*m*dl,dt (planets), dc1mme=1-mass(earth+moon)
  ccpamv = [8.326827E-11, 1.843484E-11, 1.988712E-12, 1.881276E-12]
  dc1mme = 0.99999696D0

;Time arguments.
  dt = (dje - dcto) / dcjul
  tvec = [1d0, dt, dt*dt]

;Values of all elements for the instant(aneous?) dje.
  temp = (tvec # dcfel) mod dc2pi
  dml = temp[0]
  forbel = temp[1:7]
  g = forbel[0]                         ;old fortran equivalence

  deps = total(tvec*dceps) mod dc2pi
  sorbel = (tvec # ccsel) mod dc2pi
  e = sorbel[0]                         ;old fortran equivalence

;Secular perturbations in longitude.
dummy=cos(2.0)
  sn = sin((tvec[0:1] # ccsec[1:2,*]) mod cc2pi)

;Periodic perturbations of the emb (earth-moon barycenter).
  pertl = total(ccsec[0,*] * sn) + dt*ccsec3*sn[2]
  pertld = 0.0
  pertr = 0.0
  pertrd = 0.0
  for k=0,14 do begin
    a = (dcargs[0,k]+dt*dcargs[1,k]) mod dc2pi
    cosa = cos(a)
    sina = sin(a)
    pertl = pertl + ccamps[0,k]*cosa + ccamps[1,k]*sina
    pertr = pertr + ccamps[2,k]*cosa + ccamps[3,k]*sina
    if k lt 11 then begin
      pertld = pertld + (ccamps[1,k]*cosa-ccamps[0,k]*sina)*ccamps[4,k]
      pertrd = pertrd + (ccamps[3,k]*cosa-ccamps[2,k]*sina)*ccamps[4,k]
    endif
  endfor

;Elliptic part of the motion of the emb.
  phi = (e*e/4d0)*(((8d0/e)-e)*sin(g) +5*sin(2*g) +(13/3d0)*e*sin(3*g))
  f = g + phi
  sinf = sin(f)
  cosf = cos(f)
  dpsi = (dc1 - e*e) / (dc1 + e*cosf)
  phid = 2*e*ccsgd*((1 + 1.5*e*e)*cosf + e*(1.25 - 0.5*sinf*sinf))
  psid = ccsgd*e*sinf / sqrt(dc1 - e*e)

;Perturbed heliocentric motion of the emb.
  d1pdro = dc1+pertr
  drd = d1pdro * (psid + dpsi*pertrd)
  drld = d1pdro*dpsi * (dcsld+phid+pertld)
  dtl = (dml + phi + pertl) mod dc2pi
  dsinls = sin(dtl)
  dcosls = cos(dtl)
  dxhd = drd*dcosls - drld*dsinls
  dyhd = drd*dsinls + drld*dcosls

;Influence of eccentricity, evection and variation on the geocentric
; motion of the moon.
  pertl = 0.0
  pertld = 0.0
  pertp = 0.0
  pertpd = 0.0
  for k = 0,2 do begin
    a = (dcargm[0,k] + dt*dcargm[1,k]) mod dc2pi
    sina = sin(a)
    cosa = cos(a)
    pertl = pertl + ccampm[0,k]*sina
    pertld = pertld + ccampm[1,k]*cosa
    pertp = pertp + ccampm[2,k]*cosa
    pertpd = pertpd - ccampm[3,k]*sina
  endfor

;Heliocentric motion of the earth.
  tl = forbel[1] + pertl
  sinlm = sin(tl)
  coslm = cos(tl)
  sigma = cckm / (1.0 + pertp)
  a = sigma*(ccmld + pertld)
  b = sigma*pertpd
  dxhd = dxhd + a*sinlm + b*coslm
  dyhd = dyhd - a*coslm + b*sinlm
  dzhd= -sigma*ccfdi*cos(forbel[2])

;Barycentric motion of the earth.
  dxbd = dxhd*dc1mme
  dybd = dyhd*dc1mme
  dzbd = dzhd*dc1mme
  for k=0,3 do begin
    plon = forbel[k+3]
    pomg = sorbel[k+1]
    pecc = sorbel[k+9]
    tl = (plon + 2.0*pecc*sin(plon-pomg)) mod cc2pi
    dxbd = dxbd + ccpamv[k]*(sin(tl) + pecc*sin(pomg))
    dybd = dybd - ccpamv[k]*(cos(tl) + pecc*cos(pomg))
    dzbd = dzbd - ccpamv[k]*sorbel[k+13]*cos(plon - sorbel[k+5])

  endfor

;Transition to mean equator of date.
  dcosep = cos(deps)
  dsinep = sin(deps)
  dyahd = dcosep*dyhd - dsinep*dzhd
  dzahd = dsinep*dyhd + dcosep*dzhd
  dyabd = dcosep*dybd - dsinep*dzbd
  dzabd = dsinep*dybd + dcosep*dzbd

;Epoch of mean equinox (deq) of zero implies that we should use
; Julian ephemeris date (dje) as epoch of mean equinox.
  if deq eq 0 then begin
    dvelh = AU * ([dxhd, dyahd, dzahd])
    dvelb = AU * ([dxbd, dyabd, dzabd])
    return
  endif

;General precession from epoch dje to deq.
  deqdat = (dje-dcto-dcbes) / dctrop + dc1900
   prema = premat(deqdat,deq,/FK4)

  dvelh = AU * ( prema # [dxhd, dyahd, dzahd] )
  dvelb = AU * ( prema # [dxbd, dyabd, dzabd] )

  return
  end