/usr/share/gap/lib/vspc.gd is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 | #############################################################################
##
#W vspc.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for vector spaces.
##
## The operations for bases of free left modules can be found in the file
## <F>lib/basis.gd<F>.
##
#############################################################################
##
#C IsLeftOperatorRing(<R>)
##
## <ManSection>
## <Filt Name="IsLeftOperatorRing" Arg='R' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareSynonym( "IsLeftOperatorRing",
IsLeftOperatorAdditiveGroup and IsRing and IsAssociativeLOpDProd );
#T really?
#############################################################################
##
#C IsLeftOperatorRingWithOne(<R>)
##
## <ManSection>
## <Filt Name="IsLeftOperatorRingWithOne" Arg='R' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareSynonym( "IsLeftOperatorRingWithOne",
IsLeftOperatorAdditiveGroup and IsRingWithOne
and IsAssociativeLOpDProd );
#T really?
#############################################################################
##
#C IsLeftVectorSpace( <V> )
#C IsVectorSpace( <V> )
##
## <#GAPDoc Label="IsLeftVectorSpace">
## <ManSection>
## <Filt Name="IsLeftVectorSpace" Arg='V' Type='Category'/>
## <Filt Name="IsVectorSpace" Arg='V' Type='Category'/>
##
## <Description>
## A <E>vector space</E> in &GAP; is a free left module
## (see <Ref Func="IsFreeLeftModule"/>) over a division ring
## (see Chapter <Ref Chap="Fields and Division Rings"/>).
## <P/>
## Whenever we talk about an <M>F</M>-vector space <A>V</A> then <A>V</A> is
## an additive group (see <Ref Func="IsAdditiveGroup"/>) on which the
## division ring <M>F</M> acts via multiplication from the left such that
## this action and the addition in <A>V</A> are left and right distributive.
## The division ring <M>F</M> can be accessed as value of the attribute
## <Ref Func="LeftActingDomain"/>.
## <P/>
## Vector spaces in &GAP; are always <E>left</E> vector spaces,
## <Ref Filt="IsLeftVectorSpace"/> and <Ref Filt="IsVectorSpace"/> are
## synonyms.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsLeftVectorSpace",
IsLeftModule and IsLeftActedOnByDivisionRing );
DeclareSynonym( "IsVectorSpace", IsLeftVectorSpace );
InstallTrueMethod( IsFreeLeftModule,
IsLeftModule and IsLeftActedOnByDivisionRing );
#############################################################################
##
#F IsGaussianSpace( <V> )
##
## <#GAPDoc Label="IsGaussianSpace">
## <ManSection>
## <Filt Name="IsGaussianSpace" Arg='V'/>
##
## <Description>
## The filter <Ref Filt="IsGaussianSpace"/> (see <Ref Sect="Filters"/>)
## for the row space (see <Ref Filt="IsRowSpace"/>)
## or matrix space (see <Ref Filt="IsMatrixSpace"/>) <A>V</A>
## over the field <M>F</M>, say,
## indicates that the entries of all row vectors or matrices in <A>V</A>,
## respectively, are all contained in <M>F</M>.
## In this case, <A>V</A> is called a <E>Gaussian</E> vector space.
## Bases for Gaussian spaces can be computed using Gaussian elimination for
## a given list of vector space generators.
## <Example><![CDATA[
## gap> mats:= [ [[1,1],[2,2]], [[3,4],[0,1]] ];;
## gap> V:= VectorSpace( Rationals, mats );;
## gap> IsGaussianSpace( V );
## true
## gap> mats[1][1][1]:= E(4);; # an element in an extension field
## gap> V:= VectorSpace( Rationals, mats );;
## gap> IsGaussianSpace( V );
## false
## gap> V:= VectorSpace( Field( Rationals, [ E(4) ] ), mats );;
## gap> IsGaussianSpace( V );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "IsGaussianSpace", IsVectorSpace );
InstallTrueMethod( IsGaussianSpace,
IsVectorSpace and IsFullMatrixModule );
InstallTrueMethod( IsGaussianSpace,
IsVectorSpace and IsFullRowModule );
#############################################################################
##
#C IsDivisionRing( <D> )
##
## <#GAPDoc Label="IsDivisionRing">
## <ManSection>
## <Filt Name="IsDivisionRing" Arg='D' Type='Category'/>
##
## <Description>
## A <E>division ring</E> in &GAP; is a nontrivial associative algebra
## <A>D</A> with a multiplicative inverse for each nonzero element.
## In &GAP; every division ring is a vector space over a division ring
## (possibly over itself).
## Note that being a division ring is thus not a property that a ring can
## get, because a ring is usually not represented as a vector space.
## <P/>
## The field of coefficients is stored as the value of the attribute
## <Ref Func="LeftActingDomain"/> of <A>D</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsDivisionRing",
IsMagmaWithInversesIfNonzero
and IsLeftOperatorRingWithOne
and IsLeftVectorSpace
and IsNonTrivial
and IsAssociative
and IsEuclideanRing );
#############################################################################
##
#A GeneratorsOfLeftVectorSpace( <V> )
#A GeneratorsOfVectorSpace( <V> )
##
## <#GAPDoc Label="GeneratorsOfLeftVectorSpace">
## <ManSection>
## <Attr Name="GeneratorsOfLeftVectorSpace" Arg='V'/>
## <Attr Name="GeneratorsOfVectorSpace" Arg='V'/>
##
## <Description>
## For an <M>F</M>-vector space <A>V</A>,
## <Ref Attr="GeneratorsOfLeftVectorSpace"/> returns a list of vectors in
## <A>V</A> that generate <A>V</A> as an <M>F</M>-vector space.
## <Example><![CDATA[
## gap> GeneratorsOfVectorSpace( FullRowSpace( Rationals, 3 ) );
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfLeftVectorSpace",
GeneratorsOfLeftOperatorAdditiveGroup );
DeclareSynonymAttr( "GeneratorsOfVectorSpace",
GeneratorsOfLeftOperatorAdditiveGroup );
#############################################################################
##
#A CanonicalBasis( <V> )
##
## <#GAPDoc Label="CanonicalBasis">
## <ManSection>
## <Attr Name="CanonicalBasis" Arg='V'/>
##
## <Description>
## If the vector space <A>V</A> supports a <E>canonical basis</E> then
## <Ref Attr="CanonicalBasis"/> returns this basis,
## otherwise <K>fail</K> is returned.
## <P/>
## The defining property of a canonical basis is that its vectors are
## uniquely determined by the vector space.
## If canonical bases exist for two vector spaces over the same left acting
## domain (see <Ref Func="LeftActingDomain"/>) then the equality of
## these vector spaces can be decided by comparing the canonical bases.
## <P/>
## The exact meaning of a canonical basis depends on the type of <A>V</A>.
## Canonical bases are defined for example for Gaussian row and matrix
## spaces (see <Ref Sect="Row and Matrix Spaces"/>).
## <P/>
## If one designs a new kind of vector spaces
## (see <Ref Sect="How to Implement New Kinds of Vector Spaces"/>) and
## defines a canonical basis for these spaces then the
## <Ref Attr="CanonicalBasis"/> method one installs
## (see <Ref Func="InstallMethod"/>)
## must <E>not</E> call <Ref Func="Basis"/>.
## On the other hand, one probably should install a <Ref Func="Basis"/>
## method that simply calls <Ref Attr="CanonicalBasis"/>,
## the value of the method
## (see <Ref Sect="Method Installation"/> and
## <Ref Sect="Applicable Methods and Method Selection"/>)
## being <C>CANONICAL_BASIS_FLAGS</C>.
## <Example><![CDATA[
## gap> vecs:= [ [ 1, 2, 3 ], [ 1, 1, 1 ], [ 1, 1, 1 ] ];;
## gap> V:= VectorSpace( Rationals, vecs );;
## gap> B:= CanonicalBasis( V );
## CanonicalBasis( <vector space over Rationals, with 3 generators> )
## gap> BasisVectors( B );
## [ [ 1, 0, -1 ], [ 0, 1, 2 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CanonicalBasis", IsFreeLeftModule );
#############################################################################
##
#F IsRowSpace( <V> )
##
## <#GAPDoc Label="IsRowSpace">
## <ManSection>
## <Filt Name="IsRowSpace" Arg='V'/>
##
## <Description>
## A <E>row space</E> in &GAP; is a vector space that consists of
## row vectors (see Chapter <Ref Chap="Row Vectors"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRowSpace", IsRowModule and IsVectorSpace );
#############################################################################
##
#F IsGaussianRowSpace( <V> )
##
## <ManSection>
## <Func Name="IsGaussianRowSpace" Arg='V'/>
##
## <Description>
## A row space is <E>Gaussian</E> if the left acting domain contains all
## scalars that occur in the vectors.
## Thus one can use Gaussian elimination in the calculations.
## <P/>
## (Otherwise the space is non-Gaussian.
## We will need a flag for this to write down methods that delegate from
## non-Gaussian spaces to Gaussian ones.)
## <!-- reformulate this when it becomes documented -->
## </Description>
## </ManSection>
##
DeclareSynonym( "IsGaussianRowSpace", IsGaussianSpace and IsRowSpace );
#############################################################################
##
#F IsNonGaussianRowSpace( <V> )
##
## <ManSection>
## <Func Name="IsNonGaussianRowSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Func="IsNonGaussianRowSpace"/> then this expresses that <A>V</A>
## consists of row vectors (see <Ref Func="IsRowVector"/>) such
## that not all entries in these row vectors are contained in <M>F</M>
## (so Gaussian elimination cannot be used to compute an <M>F</M>-basis
## from a list of vector space generators),
## and that <A>V</A> is handled via the mechanism of nice bases
## (see <Ref ???="..."/>) in the following way.
## Let <M>K</M> be the field spanned by the entries of all vectors in
## <A>V</A>.
## Then the <Ref Attr="NiceFreeLeftModuleInfo"/> value of <A>V</A> is
## a basis <M>B</M> of the field extension <M>K / ( K \cap F )</M>,
## and the <Ref Func="NiceVector"/> value of <M>v \in <A>V</A></M>
## is defined by replacing each entry of <M>v</M> by the list of its
## <M>B</M>-coefficients, and then forming the concatenation.
## <P/>
## So the associated nice vector space is a Gaussian row space
## (see <Ref Func="IsGaussianRowSpace"/>).
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsNonGaussianRowSpace",
"for non-Gaussian row spaces" );
#############################################################################
##
#F IsMatrixSpace( <V> )
##
## <#GAPDoc Label="IsMatrixSpace">
## <ManSection>
## <Filt Name="IsMatrixSpace" Arg='V'/>
##
## <Description>
## A <E>matrix space</E> in &GAP; is a vector space that consists of matrices
## (see Chapter <Ref Chap="Matrices"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsMatrixSpace", IsMatrixModule and IsVectorSpace );
#############################################################################
##
#F IsGaussianMatrixSpace( <V> )
##
## <ManSection>
## <Func Name="IsGaussianMatrixSpace" Arg='V'/>
##
## <Description>
## A matrix space is Gaussian if the left acting domain contains all
## scalars that occur in the vectors.
## Thus one can use Gaussian elimination in the calculations.
## <P/>
## (Otherwise the space is non-Gaussian.
## We will need a flag for this to write down methods that delegate from
## non-Gaussian spaces to Gaussian ones.)
## </Description>
## </ManSection>
##
DeclareSynonym( "IsGaussianMatrixSpace", IsGaussianSpace and IsMatrixSpace );
#############################################################################
##
#F IsNonGaussianMatrixSpace( <V> )
##
## <ManSection>
## <Func Name="IsNonGaussianMatrixSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Func="IsNonGaussianMatrixSpace"/>
## then this expresses that <A>V</A> consists of matrices
## (see <Ref Func="IsMatrix"/>)
## such that not all entries in these matrices are contained in <M>F</M>
## (so Gaussian elimination cannot be used to compute an <M>F</M>-basis
## from a list of vector space generators),
## and that <A>V</A> is handled via the mechanism of nice bases
## (see <Ref ???="..."/>) in the following way.
## Let <M>K</M> be the field spanned by the entries of all vectors in <A>V</A>.
## The <Ref Attr="NiceFreeLeftModuleInfo"/> value of <A>V</A> is irrelevant,
## and the <Ref Func="NiceVector"/> value of <M>v \in <A>V</A></M>
## is defined as the concatenation of the rows of <M>v</M>.
## <P/>
## So the associated nice vector space is a (not necessarily Gaussian)
## row space (see <Ref Func="IsRowSpace"/>).
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsNonGaussianMatrixSpace",
"for non-Gaussian matrix spaces" );
#############################################################################
##
#A NormedRowVectors( <V> ) . . . normed vectors in a Gaussian row space <V>
##
## <#GAPDoc Label="NormedRowVectors">
## <ManSection>
## <Attr Name="NormedRowVectors" Arg='V'/>
##
## <Description>
## For a finite Gaussian row space <A>V</A>
## (see <Ref Func="IsRowSpace"/>, <Ref Func="IsGaussianSpace"/>),
## <Ref Attr="NormedRowVectors"/> returns a list of those nonzero
## vectors in <A>V</A> that have a one in the first nonzero component.
## <P/>
## The result list can be used as action domain for the action of a matrix
## group via <Ref Func="OnLines"/>, which yields the natural action on
## one-dimensional subspaces of <A>V</A>
## (see also <Ref Func="Subspaces"/>).
## <Example><![CDATA[
## gap> vecs:= NormedRowVectors( GF(3)^2 );
## [ [ 0*Z(3), Z(3)^0 ], [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3)^0 ],
## [ Z(3)^0, Z(3) ] ]
## gap> Action( GL(2,3), vecs, OnLines );
## Group([ (3,4), (1,2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NormedRowVectors", IsGaussianSpace );
#############################################################################
##
#A TrivialSubspace( <V> )
##
## <#GAPDoc Label="TrivialSubspace">
## <ManSection>
## <Attr Name="TrivialSubspace" Arg='V'/>
##
## <Description>
## For a vector space <A>V</A>, <Ref Attr="TrivialSubspace"/> returns the
## subspace of <A>V</A> that consists of the zero vector in <A>V</A>.
## <Example><![CDATA[
## gap> V:= GF(3)^3;;
## gap> triv:= TrivialSubspace( V );
## <vector space over GF(3), with 0 generators>
## gap> AsSet( triv );
## [ [ 0*Z(3), 0*Z(3), 0*Z(3) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "TrivialSubspace", TrivialSubmodule );
#############################################################################
##
#F VectorSpace( <F>, <gens>[, <zero>][, "basis"] )
##
## <#GAPDoc Label="VectorSpace">
## <ManSection>
## <Func Name="VectorSpace" Arg='F, gens[, zero][, "basis"]'/>
##
## <Description>
## For a field <A>F</A> and a collection <A>gens</A> of vectors,
## <Ref Func="VectorSpace"/> returns the <A>F</A>-vector space spanned by
## the elements in <A>gens</A>.
## <P/>
## The optional argument <A>zero</A> can be used to specify the zero element
## of the space; <A>zero</A> <E>must</E> be given if <A>gens</A> is empty.
## The optional string <C>"basis"</C> indicates that <A>gens</A> is known to
## be linearly independent over <A>F</A>, in particular the dimension of the
## vector space is immediately set;
## note that <Ref Func="Basis"/> need <E>not</E> return the basis formed by
## <A>gens</A> if the string <C>"basis"</C> is given as an argument.
## <!-- crossref. to <C>FreeLeftModule</C> as soon as the modules chapter
## is reliable!-->
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );
## <vector space over Rationals, with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "VectorSpace" );
#############################################################################
##
#F Subspace( <V>, <gens>[, "basis"] ) . subspace of <V> generated by <gens>
#F SubspaceNC( <V>, <gens>[, "basis"] )
##
## <#GAPDoc Label="Subspace">
## <ManSection>
## <Func Name="Subspace" Arg='V, gens[, "basis"]'/>
## <Func Name="SubspaceNC" Arg='V, gens[, "basis"]'/>
##
## <Description>
## For an <M>F</M>-vector space <A>V</A> and a list or collection
## <A>gens</A> that is a subset of <A>V</A>,
## <Ref Func="Subspace"/> returns the <M>F</M>-vector space spanned by
## <A>gens</A>; if <A>gens</A> is empty then the trivial subspace
## (see <Ref Func="TrivialSubspace"/>) of <A>V</A> is returned.
## The parent (see <Ref Sect="Parents"/>) of the returned vector space
## is set to <A>V</A>.
## <P/>
## <Ref Func="SubspaceNC"/> does the same as <Ref Func="Subspace"/>,
## except that it omits the check whether <A>gens</A> is a subset of
## <A>V</A>.
## <P/>
## The optional string <A>"basis"</A> indicates that <A>gens</A> is known to
## be linearly independent over <M>F</M>.
## In this case the dimension of the subspace is immediately set,
## and both <Ref Func="Subspace"/> and <Ref Func="SubspaceNC"/> do
## <E>not</E> check whether <A>gens</A> really is linearly independent and
## whether <A>gens</A> is a subset of <A>V</A>.
## <!-- crossref. to <C>Submodule</C> as soon as the modules chapter
## is reliable!-->
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );;
## gap> W:= Subspace( V, [ [ 0, 1, 2 ] ] );
## <vector space over Rationals, with 1 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "Subspace", Submodule );
DeclareSynonym( "SubspaceNC", SubmoduleNC );
#############################################################################
##
#O AsVectorSpace( <F>, <D> ) . . . . . . . . . view <D> as <F>-vector space
##
## <#GAPDoc Label="AsVectorSpace">
## <ManSection>
## <Oper Name="AsVectorSpace" Arg='F, D'/>
##
## <Description>
## Let <A>F</A> be a division ring and <A>D</A> a domain.
## If the elements in <A>D</A> form an <A>F</A>-vector space then
## <Ref Oper="AsVectorSpace"/> returns this <A>F</A>-vector space,
## otherwise <K>fail</K> is returned.
## <P/>
## <Ref Oper="AsVectorSpace"/> can be used for example to view a given
## vector space as a vector space over a smaller or larger division ring.
## <Example><![CDATA[
## gap> V:= FullRowSpace( GF( 27 ), 3 );
## ( GF(3^3)^3 )
## gap> Dimension( V ); LeftActingDomain( V );
## 3
## GF(3^3)
## gap> W:= AsVectorSpace( GF( 3 ), V );
## <vector space over GF(3), with 9 generators>
## gap> Dimension( W ); LeftActingDomain( W );
## 9
## GF(3)
## gap> AsVectorSpace( GF( 9 ), V );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "AsVectorSpace", AsLeftModule );
#############################################################################
##
#O AsSubspace( <V>, <U> ) . . . . . . . . . . . view <U> as subspace of <V>
##
## <#GAPDoc Label="AsSubspace">
## <ManSection>
## <Oper Name="AsSubspace" Arg='V, U'/>
##
## <Description>
## Let <A>V</A> be an <M>F</M>-vector space, and <A>U</A> a collection.
## If <A>U</A> is a subset of <A>V</A> such that the elements of <A>U</A>
## form an <M>F</M>-vector space then <Ref Oper="AsSubspace"/> returns this
## vector space, with parent set to <A>V</A>
## (see <Ref Func="AsVectorSpace"/>).
## Otherwise <K>fail</K> is returned.
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 3 ], [ 1, 1, 1 ] ] );;
## gap> W:= VectorSpace( Rationals, [ [ 1/2, 1/2, 1/2 ] ] );;
## gap> U:= AsSubspace( V, W );
## <vector space over Rationals, with 1 generators>
## gap> Parent( U ) = V;
## true
## gap> AsSubspace( V, [ [ 1, 1, 1 ] ] );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsSubspace", [ IsVectorSpace, IsCollection ] );
#############################################################################
##
#F Intersection2Spaces( <AsStruct>, <Substruct>, <Struct> )
##
## <ManSection>
## <Func Name="Intersection2Spaces" Arg='AsStruct, Substruct, Struct'/>
##
## <Description>
## is a function that takes two arguments <A>V</A> and <A>W</A> which must
## be finite dimensional vector spaces,
## and returns the intersection of <A>V</A> and <A>W</A>.
## <P/>
## If the left acting domains are different then let <M>F</M> be their
## intersection.
## The intersection of <A>V</A> and <A>W</A> is computed as intersection of
## <C><A>AsStruct</A>( <A>F</A>, <A>V</A> )</C> and
## <C><A>AsStruct</A>( <A>F</A>, <A>V</A> )</C>.
## <P/>
## If the left acting domains are equal to <M>F</M> then the intersection of
## <A>V</A> and <A>W</A> is returned either as <M>F</M>-<A>Substruct</A>
## with the common parent of <A>V</A> and <A>W</A> or as
## <M>F</M>-<A>Struct</A>, in both cases with known basis.
## <P/>
## This function is used to handle the intersections of two vector spaces,
## two algebras, two algebras-with-one, two left ideals, two right ideals,
## two two-sided ideals.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "Intersection2Spaces" );
#############################################################################
##
#F FullRowSpace( <F>, <n> )
##
## <#GAPDoc Label="FullRowSpace">
## <ManSection>
## <Func Name="FullRowSpace" Arg='F, n'/>
## <Meth Name="\^" Arg='F, n' Label="for a field and an integer"/>
##
## <Description>
## For a field <A>F</A> and a nonnegative integer <A>n</A>,
## <Ref Func="FullRowSpace"/> returns the <A>F</A>-vector space that
## consists of all row vectors (see <Ref Func="IsRowVector"/>) of
## length <A>n</A> with entries in <A>F</A>.
## <P/>
## An alternative to construct this vector space is via
## <A>F</A><C>^</C><A>n</A>.
## <Example><![CDATA[
## gap> FullRowSpace( GF( 9 ), 3 );
## ( GF(3^2)^3 )
## gap> GF(9)^3; # the same as above
## ( GF(3^2)^3 )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "FullRowSpace", FullRowModule );
DeclareSynonym( "RowSpace", FullRowModule );
#############################################################################
##
#F FullMatrixSpace( <F>, <m>, <n> )
##
## <#GAPDoc Label="FullMatrixSpace">
## <ManSection>
## <Func Name="FullMatrixSpace" Arg='F, m, n'/>
## <Meth Name="\^" Arg='F, dims'
## Label="for a field and a pair of integers"/>
##
## <Description>
## For a field <A>F</A> and two positive integers <A>m</A> and <A>n</A>,
## <Ref Func="FullMatrixSpace"/> returns the <A>F</A>-vector space that
## consists of all <A>m</A> by <A>n</A> matrices
## (see <Ref Func="IsMatrix"/>) with entries in <A>F</A>.
## <P/>
## If <A>m</A><C> = </C><A>n</A> then the result is in fact an algebra
## (see <Ref Func="FullMatrixAlgebra"/>).
## <P/>
## An alternative to construct this vector space is via
## <A>F</A><C>^[</C><A>m</A>,<A>n</A><C>]</C>.
## <Example><![CDATA[
## gap> FullMatrixSpace( GF(2), 4, 5 );
## ( GF(2)^[ 4, 5 ] )
## gap> GF(2)^[ 4, 5 ]; # the same as above
## ( GF(2)^[ 4, 5 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "FullMatrixSpace", FullMatrixModule );
DeclareSynonym( "MatrixSpace", FullMatrixModule );
DeclareSynonym( "MatSpace", FullMatrixModule );
#############################################################################
##
#C IsSubspacesVectorSpace( <D> )
##
## <#GAPDoc Label="IsSubspacesVectorSpace">
## <ManSection>
## <Filt Name="IsSubspacesVectorSpace" Arg='D' Type='Category'/>
##
## <Description>
## The domain of all subspaces of a (finite) vector space or of all
## subspaces of fixed dimension, as returned by <Ref Func="Subspaces"/>
## (see <Ref Func="Subspaces"/>) lies in the category
## <Ref Filt="IsSubspacesVectorSpace"/>.
## <Example><![CDATA[
## gap> D:= Subspaces( GF(3)^3 );
## Subspaces( ( GF(3)^3 ) )
## gap> Size( D );
## 28
## gap> iter:= Iterator( D );;
## gap> NextIterator( iter );
## <vector space over GF(3), with 0 generators>
## gap> NextIterator( iter );
## <vector space of dimension 1 over GF(3)>
## gap> IsSubspacesVectorSpace( D );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsSubspacesVectorSpace", IsDomain );
#############################################################################
##
#M IsFinite( <D> ) . . . . . . . . . . . . . . . . . for a subspaces domain
##
## Returns `true' if <D> is finite.
## We allow subspaces domains in `IsSubspacesVectorSpace' only for finite
## vector spaces.
##
InstallTrueMethod( IsFinite, IsSubspacesVectorSpace );
#############################################################################
##
#A Subspaces( <V>[, <k>] )
##
## <#GAPDoc Label="Subspaces">
## <ManSection>
## <Attr Name="Subspaces" Arg='V[, k]'/>
##
## <Description>
## Called with a finite vector space <A>v</A>,
## <Ref Oper="Subspaces"/> returns the domain of all subspaces of <A>V</A>.
## <P/>
## Called with <A>V</A> and a nonnegative integer <A>k</A>,
## <Ref Oper="Subspaces"/> returns the domain of all <A>k</A>-dimensional
## subspaces of <A>V</A>.
## <P/>
## Special <Ref Attr="Size"/> and <Ref Oper="Iterator"/> methods are
## provided for these domains.
## <!-- <C>Enumerator</C> would also be good ...
## (special treatment for full row spaces,
## other spaces delegate to this)-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Subspaces", IsLeftModule );
DeclareOperation( "Subspaces", [ IsLeftModule, IsInt ] );
#############################################################################
##
#F IsSubspace( <V>, <U> )
##
## <ManSection>
## <Func Name="IsSubspace" Arg='V, U'/>
##
## <Description>
## check that <A>U</A> is a vector space that is contained in <A>V</A>
## <!-- Must also <A>V</A> be a vector space?
## If yes then must <A>V</A> and <A>U</A> have same left acting domain?
## (Is this function useful at all?) -->
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "IsSubspace" );
#############################################################################
##
#A OrthogonalSpaceInFullRowSpace( <U> )
##
## <ManSection>
## <Attr Name="OrthogonalSpaceInFullRowSpace" Arg='U'/>
##
## <Description>
## For a Gaussian row space <A>U</A> over <M>F</M>,
## <Ref Attr="OrthogonalSpaceInFullRowSpace"/>
## returns a complement of <A>U</A> in the full row space of same vector
## dimension as <A>U</A> over <M>F</M>.
## </Description>
## </ManSection>
##
DeclareAttribute( "OrthogonalSpaceInFullRowSpace", IsGaussianSpace );
#############################################################################
##
#P IsVectorSpaceHomomorphism( <map> )
##
## <ManSection>
## <Prop Name="IsVectorSpaceHomomorphism" Arg='map'/>
##
## <Description>
## A mapping <M>f</M> is a vector space homomorphism (or linear mapping)
## if the source and range are vector spaces
## (see <Ref Func="IsVectorSpace"/>)
## over the same division ring <M>D</M>
## (see <Ref Func="LeftActingDomain"/>),
## and if <M>f( a + b ) = f(a) + f(b)</M> and <M>f( s * a ) = s * f(a)</M>
## hold for all elements <M>a</M>, <M>b</M> in the source of <M>f</M> and
## <M>s \in D</M>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsVectorSpaceHomomorphism", IsGeneralMapping );
#############################################################################
##
#E
|