/usr/share/gap/lib/teaching.g is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 | #############################################################################
##
#W teaching.g GAP library Alexander Hulpke
##
##
#Y Copyright (C) 2008 The GAP Group
##
## This file contains routines that are primarily of interest in a teaching
## context. It is made part of the general system to ensure it will be
## always installed with GAP.
##
#############################################################################
##
#F RankQGroup( <G> )
##
## <#GAPDoc Label="RankQGroup">
## <ManSection>
## <Func Name="RankQGroup" Arg='G'/>
##
## <Description>
## For a <M>p</M>-group <A>G</A> (see <Ref Func="IsQGroup"/>),
## <Ref Func="RankQGroup"/> returns the <E>rank</E> of <A>G</A>,
## which is defined as the minimal size of a generating system of <A>G</A>.
## If <A>G</A> is not a <M>p</M>-group then an error is issued.
## <Example><![CDATA[
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#F ListOfDigits( <G> )
##
## <#GAPDoc Label="ListOfDigits">
## <ManSection>
## <Func Name="ListOfDigits" Arg='n'/>
##
## <Description>
## For a positive integer <A>n</A> this function returns a list <A>l</A>,
## consisting of the digits of <A>n</A> in decimal representation.
## <Example><![CDATA[
## gap> ListOfDigits(3142);
## [ 3, 1, 4, 2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("ListOfDigits");
#############################################################################
##
#F RootsOfPolynomial( <p> )
##
## <#GAPDoc Label="RootsOfPolynomial">
## <ManSection>
## <Func Name="RootsOfPolynomial" Arg='[R,],p'/>
##
## <Description>
## For a univariate polynomial <A>p</A>, this function returns all roots of
## <A>p</A> over the ring <A>R</A>. If the ring is not specified, it defaults
## to the ring specified by the coefficients of <A>p</A> via
## <Ref Func="DefaultRing" Label="for ring elements"/>).
## <Example><![CDATA[
## gap> x:=X(Rationals,"x");;p:=x^4-1;
## x^4-1
## gap> RootsOfPolynomial(p);
## [ 1, -1 ]
## gap> RootsOfPolynomial(CF(4),p);
## [ 1, -1, E(4), -E(4) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("RootsOfPolynomial");
#############################################################################
##
#F ShowGcd( <a>,<b> )
##
## <#GAPDoc Label="ShowGcd">
## <ManSection>
## <Func Name="ShowGcd" Arg='a,b'/>
##
## <Description>
## This function takes two elements <A>a</A> and <A>b</A> of an Euclidean
## ring and returns their
## greatest common divisor. It will print out the steps performed by the
## Euclidean algorithm, as well as the rearrangement of these steps to
## express the gcd as a ring combination of <A>a</A> and <A>b</A>.
## <Example><![CDATA[
## gap> ShowGcd(192,42);
## 192=4*42 + 24
## 42=1*24 + 18
## 24=1*18 + 6
## 18=3*6 + 0
## The Gcd is 6
## = 1*24 -1*18
## = -1*42 + 2*24
## = 2*192 -9*42
## 6
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("ShowGcd");
#############################################################################
##
#F ShowAdditionTable( <R> )
#F ShowMultiplicationTable( <M> )
##
## <#GAPDoc Label="ShowAdditionTable">
## <ManSection>
## <Func Name="ShowAdditionTable" Arg='R'/>
## <Func Name="ShowMultiplicationTable" Arg='M'/>
##
## <Description>
## For a structure <A>R</A> with an addition given by <C>+</C>,
## respectively a structure <A>M</A> with a multiplication given by <C>*</C>,
## this command displays the addition (multiplication) table of the structure
## in a pretty way.
## <Example><![CDATA[
## gap> ShowAdditionTable(GF(4));
## + | 0*Z(2) Z(2)^0 Z(2^2) Z(2^2)^2
## ---------+------------------------------------
## 0*Z(2) | 0*Z(2) Z(2)^0 Z(2^2) Z(2^2)^2
## Z(2)^0 | Z(2)^0 0*Z(2) Z(2^2)^2 Z(2^2)
## Z(2^2) | Z(2^2) Z(2^2)^2 0*Z(2) Z(2)^0
## Z(2^2)^2 | Z(2^2)^2 Z(2^2) Z(2)^0 0*Z(2)
##
##gap> ShowMultiplicationTable(GF(4));
##* | 0*Z(2) Z(2)^0 Z(2^2) Z(2^2)^2
##---------+------------------------------------
##0*Z(2) | 0*Z(2) 0*Z(2) 0*Z(2) 0*Z(2)
##Z(2)^0 | 0*Z(2) Z(2)^0 Z(2^2) Z(2^2)^2
##Z(2^2) | 0*Z(2) Z(2^2) Z(2^2)^2 Z(2)^0
##Z(2^2)^2 | 0*Z(2) Z(2^2)^2 Z(2)^0 Z(2^2)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("ShowMultiplicationTable");
DeclareGlobalFunction("ShowAdditionTable");
#############################################################################
##
#F CosetDecomposition( <G> )
##
## <#GAPDoc Label="CosetDecomposition">
## <ManSection>
## <Func Name="CosetDecomposition" Arg='G,S'/>
##
## <Description>
## For a finite group <A>G</A> and a subgroup <M><A>S</A>\le<A>G</A></M>
## this function returns a partition of the elements of <A>G</A> according to
## the (right) cosets of <A>S</A>. The result is a list of lists, each sublist
## corresponding to one coset. The first sublist is the elements list of the
## subgroup, the other lists are arranged accordingly.
## <Example><![CDATA[
## gap> CosetDecomposition(SymmetricGroup(4),SymmetricGroup(3));
## [ [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ],
## [ (1,4), (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4) ],
## [ (1,4,2), (1,4,2,3), (2,4), (2,3,4), (1,3)(2,4), (1,3,4,2) ],
## [ (1,4,3), (1,4,3,2), (1,2,4,3), (1,2)(3,4), (2,4,3), (3,4) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("CosetDecomposition");
#############################################################################
##
#F AllHomomorphismClasses( <G>,<H> )
##
## <#GAPDoc Label="AllHomomorphismClasses">
## <ManSection>
## <Func Name="AllHomomorphismClasses" Arg='G,H'/>
##
## <Description>
## For two groups <A>G</A> and <A>H</A>, this function returns
## representatives of all homomorphisms <M><A>G</A> to <A>H</A></M> up to
## <A>H</A>-conjugacy.
## <Example><![CDATA[
## gap> AllHomomorphismClasses(SymmetricGroup(4),SymmetricGroup(3));
## [ [ (1,3,4,2), (1,3,4) ] -> [ (), () ],
## [ (1,3,4,2), (1,3,4) ] -> [ (1,2), () ],
## [ (1,3,4,2), (1,3,4) ] -> [ (2,3), (1,2,3) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("AllHomomorphismClasses");
#############################################################################
##
#F AllHomomorphisms( <G>,<H> )
##
## <#GAPDoc Label="AllHomomorphisms">
## <ManSection>
## <Func Name="AllHomomorphisms" Arg='G,H'/>
## <Func Name="AllEndomorphisms" Arg='G'/>
## <Func Name="AllAutomorphisms" Arg='G'/>
##
## <Description>
## For two groups <A>G</A> and <A>H</A>, this function returns
## all homomorphisms <M><A>G</A> to <A>H</A></M>. Since this number will
## grow quickly, <Ref Func="AllHomomorphismClasses"/> should be used in most
## cases.
## <Ref Func="AllEndomorphisms"/> returns all homomorphisms from
## <A>G</A> to itself,
## <Ref Func="AllAutomorphisms"/> returns all bijective endomorphisms.
## <Example><![CDATA[
## gap> AllHomomorphisms(SymmetricGroup(3),SymmetricGroup(3));
## [ [ (1,2,3), (1,2) ] -> [ (), () ],
## [ (1,2,3), (1,2) ] -> [ (), (1,2) ],
## [ (1,2,3), (1,2) ] -> [ (), (2,3) ],
## [ (1,2,3), (1,2) ] -> [ (), (1,3) ],
## [ (1,2,3), (1,2) ] -> [ (1,2,3), (1,2) ],
## [ (1,2,3), (1,2) ] -> [ (1,2,3), (2,3) ],
## [ (1,2,3), (1,2) ] -> [ (1,3,2), (1,2) ],
## [ (1,2,3), (1,2) ] -> [ (1,2,3), (1,3) ],
## [ (1,2,3), (1,2) ] -> [ (1,3,2), (1,3) ],
## [ (1,2,3), (1,2) ] -> [ (1,3,2), (2,3) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("AllHomomorphisms");
#############################################################################
##
#F AllSubgroups( <G> )
##
## <#GAPDoc Label="AllSubgroups">
## <ManSection>
## <Func Name="AllSubgroups" Arg='G'/>
##
## <Description>
## For a finite group <A>G</A>
## <Ref Func="AllSubgroups"/> returns a list of all subgroups of <A>G</A>,
## intended primarily for use in class for small examples.
## This list will quickly get very long and in general use of
## <Ref Func="ConjugacyClassesSubgroups"/> is recommended.
## <Example><![CDATA[
## gap> AllSubgroups(SymmetricGroup(3));
## [ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]),
## Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal("AllSubgroups",
G->Concatenation(List(ConjugacyClassesSubgroups(G),Elements)));
#############################################################################
##
#F CheckDigitTestFunction( <l>,<m>,<f> )
##
## <#GAPDoc Label="CheckDigitTestFunction">
## <ManSection>
## <Func Name="CheckDigitTestFunction" Arg='l,m,f'/>
##
## <Description>
## This function creates check digit test functions such as
## <Ref Func="CheckDigitISBN"/> for check digit schemes that use the inner
## products with a fixed vector modulo a number. The scheme creates will use
## strings of <A>l</A> digits (including the check digits), the check consists
## of taking the standard product of the vector of digits with the fixed vector
## <A>f</A> modulo <A>m</A>; the result needs to be 0.
##
## The function returns a function that then can be used for testing or
## determining check digits.
## <Example><![CDATA[
## gap> isbntest:=CheckDigitTestFunction(10,11,[1,2,3,4,5,6,7,8,9,-1]);
## function( arg... ) ... end
## gap> isbntest("038794680");
## Check Digit is 2
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("CheckDigitTestFunction");
#############################################################################
##
#F CheckDigitISBN( <n> )
##
## <#GAPDoc Label="CheckDigitISBN">
## <ManSection>
## <Func Name="CheckDigitISBN" Arg='n'/>
## <Func Name="CheckDigitISBN13" Arg='n'/>
## <Func Name="CheckDigitPostalMoneyOrder" Arg='n'/>
## <Func Name="CheckDigitUPC" Arg='n'/>
##
## <Description>
## These functions can be used to compute, or check, check digits for some
## everyday items. In each case what is submitted as input is either the number
## with check digit (in which case the function returns <C>true</C> or
## <C>false</C>), or the number without check digit (in which case the function
## returns the missing check digit). The number can be specified as integer, as
## string (for example in case of leading zeros) or as a sequence of arguments,
## each representing a single digit.
##
## The check digits tested are the 10-digit ISBN (International Standard Book
## Number) using <Ref Func="CheckDigitISBN"/> (since arithmetic is module 11, a
## digit 11 is represented by an X);
## the newer 13-digit ISBN-13 using <Ref Func="CheckDigitISBN13"/>;
## the numbers of 11-digit US postal money orders using
## <Ref Func="CheckDigitPostalMoneyOrder"/>; and
## the 12-digit UPC bar code found on groceries using
## <Ref Func="CheckDigitUPC"/>.
## <Example><![CDATA[
## gap> CheckDigitISBN("052166103");
## Check Digit is 'X'
## 'X'
## gap> CheckDigitISBN("052166103X");
## Checksum test satisfied
## true
## gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,1);
## Checksum test failed
## false
## gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,'X'); # note single quotes!
## Checksum test satisfied
## true
## gap> CheckDigitISBN13("9781420094527");
## Checksum test satisfied
## true
## gap> CheckDigitUPC("07164183001");
## Check Digit is 1
## 1
## gap> CheckDigitPostalMoneyOrder(16786457155);
## Checksum test satisfied
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#F NumbersString( <S>,<m>[,<table>] )
##
## <#GAPDoc Label="NumbersString">
## <ManSection>
## <Func Name="NumbersString" Arg='s,m [,table]'/>
##
## <Description>
## <Ref Func="NumbersString"/> takes a string message <A>s</A> and
## returns a list of integers, each not exceeding the integer <A>m</A>
## that encode the
## message using the scheme <M>A=11</M>, <M>B=12</M> and so on (and
## converting lower case to upper case).
## If a list of characters is given in <A>table</A>,
## it is used instead for encoding).
## <Example><![CDATA[
## gap> l:=NumbersString("Twas brillig and the slithy toves",1000000);
## [ 303311, 291012, 281922, 221917, 101124, 141030, 181510, 292219,
## 301835, 103025, 321529 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NumbersString");
#############################################################################
##
#F StringNumbers( <l>,<m>[,<table>] )
##
## <#GAPDoc Label="StringNumbers">
## <ManSection>
## <Func Name="StringNumbers" Arg='l,m [,table]'/>
##
## <Description>
## <Ref Func="StringNumbers"/> takes a list <A>l</A> of integers that was
## encoded using <Ref Func="NumbersString"/> and the size integer <A>m</A>,
## and returns a
## message string, using the scheme <M>A=11</M>, <M>B=12</M> and so on.
## If a list of characters is given in <A>table</A>,
## it is used instead for decoding).
## <Example><![CDATA[
## gap> StringNumbers(l,1000000);
## "TWAS BRILLIG AND THE SLITHY TOVES"
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("StringNumbers");
#############################################################################
##
#F SetNameObject( <o>,<s> )
##
## <#GAPDoc Label="SetNameObject">
## <ManSection>
## <Func Name="SetNameObject" Arg='o,s'/>
##
## <Description>
## <Ref Func="SetNameObject"/>
## sets the string <A>s</A> as display name for object <A>o</A> in an
## interactive session. When applying <Ref Func="View"/> to
## object <A>o</A>, for example in the system's main loop,
## &GAP; will print the string <A>s</A>.
## Calling <Ref Func="SetNameObject"/> for the same object <A>o</A> with
## <A>s</A> set to <C>fail</C>
## deletes the special viewing setup.
## since use of this features potentially slows down the whole print
## process, this function should be used sparingly.
## <Example><![CDATA[
## gap> SetNameObject(3,"three");
## gap> Filtered([1..10],IsPrimeInt);
## [ 2, three, 5, 7 ]
## gap> SetNameObject(3,fail);
## gap> Filtered([1..10],IsPrimeInt);
## [ 2, 3, 5, 7 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SetNameObject");
## SetExecutionObject(<o>,<f>) sets a ``view execution'' for object <o>.
## When viewing <o>, function <f> will be called on <o>. This can be used
## to have elements display their action as symmetries of an object.
## SetExecutionObject(<o>,fail);
## deletes the special viewing setup.
DeclareGlobalFunction("SetExecutionObject");
InstallGlobalFunction(CosetDecomposition,function(G,S)
local i,l,e,t;
e:=Elements(S);
l:=[e];
for i in RightTransversal(G,S) do
if not i in S then
Add(l,List(e,x->x*i));
fi;
od;
return l;
end);
BindGlobal("StringLC",function(x,a,y,b)
local s;
x:=String(x);
if '+' in x or '-' in x then
if x[1]<>'-' or '+' in x{[2..Length(x)]} or '-' in x{[2..Length(x)]} then
x:=Concatenation("(",x,")");
fi;
fi;
a:=String(a);
if '+' in a or '-' in a then
a:=Concatenation("(",String(a),")");
fi;
s:=Concatenation(x,"*",a);
if IsOne(y) then
s:=Concatenation(s," + ",String(b));
return s;
fi;
y:=String(y);
if '+' in y or '-' in y then
if y[1]<>'-' or '+' in y{[2..Length(y)]} or '-' in y{[2..Length(y)]} then
y:=Concatenation("(",y,")");
fi;
fi;
if y[1]<>'-' then
s:=Concatenation(s," + ");
else
s:=Concatenation(s," ");
fi;
b:=String(b);
if '+' in b or '-' in b then
b:=Concatenation("(",String(b),")");
fi;
s:=Concatenation(s,y,"*",b);
return s;
end);
InstallGlobalFunction(ShowGcd,function(a,b)
local qrs, qr, oa, g, c, d, nd;
qrs:=[];
while not IsZero(b) do
qr:=QuotientRemainder(a,b);
if not IsZero(qr[1]) then
Add(qrs,qr); # avoid a first flipping step
fi;
Print(a,"=",StringLC(qr[1],b,1,qr[2]),"\n");
oa:=a;
a:=b;
b:=qr[2];
od;
Print("The Gcd is ",a,"\n");
g:=a;
qrs:=Reversed(qrs{[1..Length(qrs)-1]});
a:=oa;
c:=0;
d:=1;
for qr in qrs do
b:=a;
a:=qr[1]*b+qr[2];
nd:=c-d*qr[1];
c:=d;
d:=nd;
Print(" = ",StringLC(c,a,d,b),"\n");
od;
return g;
end);
InstallGlobalFunction(RootsOfPolynomial,function(arg)
local p, R;
p:=arg[Length(arg)];
if not IsUnivariatePolynomial(p) then
Error("<p> must be an univariate polynomial");
fi;
if IsRationalFunctionsFamilyElement(p) then # UFD
if Length(arg)>1 then
return RootsOfUPol(arg[1],p);
else
return RootsOfUPol(p);
fi;
else
if Length(arg)>1 then
R:=arg[1];
else
R:=DefaultRing(CoefficientsOfUnivariatePolynomial(p));
fi;
if Size(R)>10^7 then
Error("R is not an UFD and too large to test for roots");
fi;
return Filtered(Enumerator(R),x->Value(p,x)=Zero(R));
fi;
end);
InstallGlobalFunction(ListOfDigits,function(arg)
local a, l, b, i;
if Length(arg)=1 and IsString(arg[1]) then
l:=ShallowCopy(arg[1]);
l:=Filtered(l,i->not i in "([-)]");
for i in [1..Length(l)] do
if l[i] in CHARS_DIGITS then
l[i]:=Position(CHARS_DIGITS,l[i])-1;
fi;
od;
elif Length(arg)=1 and IsInt(arg[1]) then
a:=AbsInt(arg[1]);
l:=[];
while a<>0 do
b:=a mod 10;
Add(l,b);
a:=(a-b)/10;
od;
l:=Reversed(l);
elif Length(arg)=1 and IsList(arg[1])
and ForAll(arg[1],i->(IsInt(i) and 0<=i and 9>=i)
or (i in CHARS_UALPHA)) then
l:=ShallowCopy(arg[1]);
elif IsList(arg) and ForAll(arg,i->(IsInt(i) and 0<=i and 9>=i)
or (i in CHARS_UALPHA)) then
l:=ShallowCopy(arg);
else
Error("Number must be given as integer, as string or as list of digits");
fi;
return l;
end);
InstallGlobalFunction(CheckDigitTestFunction,function(len,modulo,scalars)
return function(arg)
local l, s, i;
l:=CallFuncList(ListOfDigits,arg);
if Length(l)=len or Length(l)=len-1 then
s:=0;
for i in [1..len-1] do
s:=s+scalars[i]*l[i] mod modulo;
od;
s:=s/(-scalars[len]) mod modulo;
if s=10 then
s:='X';
fi;
if Length(l)=len then
if s=l[len] then
Print("Checksum test satisfied\n");
else
Print("Checksum test failed\n");
fi;
return s=l[len];
else # length=l-1
Print("Check Digit is ",s,"\n");
return s;
fi;
fi;
Error("number is of wrong length");
end;
end);
BindGlobal("CheckDigitISBN",
CheckDigitTestFunction(10,11,[1,2,3,4,5,6,7,8,9,-1]));
BindGlobal("CheckDigitISBN13",
CheckDigitTestFunction(13,10,[1,3,1,3,1,3,1,3,1,3,1,3,1]));
BindGlobal("CheckDigitPostalMoneyOrder",
CheckDigitTestFunction(11,9,[1,1,1,1,1,1,1,1,1,1,-1]));
BindGlobal("CheckDigitUPC",
CheckDigitTestFunction(12,10,[3,1,3,1,3,1,3,1,3,1,3,1]));
# print tables
BindGlobal("DoPrintTable",function(elm,opstring,operation)
local l,str,m,i,j,p;
str:=[];
elm:=ShallowCopy(elm);
l:=Length(elm);
for i in [1..l] do
p:=String(elm[i]);
Add(str,p);
od;
# test closure
for i in [1..l] do
for j in [1..l] do
p:=operation(elm[i],elm[j]);
if not p in elm then
Add(elm,p);
Add(str,String(p));
fi;
od;
od;
for i in [1..Length(str)] do
p:=str[i];
# shorten
p:=ReplacedString(p,"ZmodnZObj","ZnZ");
p:=ReplacedString(p,"ZmodpZObj","ZnZ");
p:=ReplacedString(p,"identity ...","id");
str[i]:=p;
od;
# test closure, if necessary add further elements
m:=Maximum(List(str,Length));
m:=Maximum(m,Length(opstring));
while Length(opstring)<m do
opstring:=Concatenation(opstring," ");
od;
for i in [1..Length(str)] do
while Length(str[i])<m do
str[i]:=Concatenation(str[i]," ");
od;
od;
Print(opstring," |\c");
for i in [1..l] do
Print(" ",str[i],"\c");
od;
p:=ListWithIdenticalEntries((Length(elm)+1)*(m+1)+1,'-');
p[m+2]:='+';
Print("\n",p,"\n");
for i in [1..l] do
Print(str[i]," |\c");
for j in [1..l] do
p:=Position(elm,operation(elm[i],elm[j]));
p:=str[p];
Print(" ",p,"\c");
od;
Print("\n");
od;
Print("\n");
end);
InstallGlobalFunction(ShowMultiplicationTable,function(arg)
local obj,op;
obj:=arg[1];
if not IsList(obj) then
obj:=Elements(obj);
fi;
op:=\*;
if Length(arg)>1 and IsInt(arg[2]) then
op:=function(a,b) return a*b mod arg[2];end;
fi;
DoPrintTable(obj,"*",op);
end);
InstallGlobalFunction(ShowAdditionTable,function(arg)
local obj,op;
obj:=arg[1];
if not IsList(obj) then
obj:=Elements(obj);
fi;
op:=\+;
if Length(arg)>1 and IsInt(arg[2]) then
op:=function(a,b) return a+b mod arg[2];end;
fi;
DoPrintTable(obj,"+",op);
end);
#naming of objects
BindGlobal("SpecialViewSetupFunction",function(OBJLIST)
return function(o,n)
local p;
if not CanEasilyCompareElements(FamilyObj(o)) then
Error("Element is in family without efficient equality test.\n",
"This can cause problems");
fi;
p:=PositionProperty(OBJLIST,x->x[1]=o);
if p<>fail then
if n=fail then
# delete
OBJLIST[p]:=OBJLIST[Length(OBJLIST)];
Unbind(OBJLIST[Length(OBJLIST)]);
return;
else
OBJLIST[p][2]:=n;
fi;
elif n<>fail then
Add(OBJLIST,[o,n]);
p:=Length(OBJLIST);
fi;
end;
end);
NAMEDOBJECTS:=[];
EXECUTEOBJECTS:=[];
InstallGlobalFunction(SetNameObject,SpecialViewSetupFunction(NAMEDOBJECTS));
InstallGlobalFunction(SetExecutionObject,
SpecialViewSetupFunction(EXECUTEOBJECTS));
# special view method for ``named'' objects or objects that should execute
# something.
InstallMethod(ViewObj,true,[IsObject],SUM_FLAGS,
function(o)
local i;
if Length(NAMEDOBJECTS)=0 and Length(EXECUTEOBJECTS)=0 then
TryNextMethod();
fi;
for i in EXECUTEOBJECTS do
if i[1]=o then
i[2](o); # EXECUTE
fi;
od;
for i in NAMEDOBJECTS do
if i[1]=o then
Print(i[2]);
return;
fi;
od;
TryNextMethod();
end);
# special string method for ``named'' objects.
InstallMethod(String,true,[IsObject],SUM_FLAGS,
function(o)
local i;
if Length(NAMEDOBJECTS)=0 then
TryNextMethod();
fi;
for i in NAMEDOBJECTS do
if i[1]=o then
return String(i[2]);
fi;
od;
TryNextMethod();
end);
# string/number list encoding
InstallGlobalFunction(NumbersString,function(arg)
local message,modulus,table,tenpow,bound,l,m,i,p;
message:=arg[1];
modulus:=arg[2];
if Length(arg)>2 then
table:=arg[3];
else
table:=Concatenation(ListWithIdenticalEntries(9,0)," ",
CHARS_UALPHA,CHARS_DIGITS,CHARS_SYMBOLS);
message:=UppercaseString(message);
fi;
if modulus<Length(table) then
Error("modulus must be at least as large as the translation table");
fi;
tenpow:=10^(LogInt(Length(table),10)+1);
bound:=Int(modulus/tenpow);
l:=[];
m:=0;
for i in message do
p:=Position(table,i);
if p=fail then
Error("Symbol ",i,"is not encodable");
fi;
if m<bound then
m:=m*tenpow+p;
else
Add(l,m);
m:=p;
fi;
od;
Add(l,m);
return l;
end);
InstallGlobalFunction(StringNumbers,function(arg)
local message,modulus,table,tenpow,bound,l,m,i,p;
l:=arg[1];
modulus:=arg[2];
if Length(arg)>2 then
table:=arg[3];
else
table:=Concatenation(ListWithIdenticalEntries(9,0)," ",
CHARS_UALPHA,CHARS_DIGITS,CHARS_SYMBOLS);
fi;
if modulus<Length(table) then
Error("modulus must be at least as large as the translation table");
fi;
message:="";
tenpow:=10^(LogInt(Length(table),10)+1);
bound:=Int(modulus/tenpow);
l:=Concatenation(List(l,x->Reversed(CoefficientsQadic(x,tenpow))));
for i in l do
if not IsBound(table[i]) then
Error("message uses illegal symbol ",i);
fi;
Add(message,table[i]);
od;
return message;
end);
# functions specific to Gallians textbook
BindGlobal("GallianUlist",function(n)
local o;
o:=One(Integers mod n);
return List(Filtered([1..n-1],i->Gcd(i,n)=1),i->i*o);
end);
BindGlobal("GallianCyclic",function(n,a)
if Gcd(a,n)<>1 then
Error("a must be coprime to n");
fi;
return Elements(Group(a*One(Integers mod n)));
end);
BindGlobal("GallianOrderFrequency",function(G)
local c,l,i,p;
c:=ConjugacyClasses(G);
l:=[];
for i in c do
p:=First(l,x->x[1]=Order(Representative(i)));
if p<>fail then
p[2]:=p[2]+Size(i);
else
AddSet(l,[Order(Representative(i)),Size(i)]);
fi;
od;
Print("[Order of element, Number of that order]=");
return l;
end);
BindGlobal("GallianCstruc",function(G,s)
local c,l,i;
c:=ConjugacyClasses(G);
l:=[];
for i in c do
if CycleStructurePerm(Representative(i))=s then
l:=Union(l,Elements(i));
fi;
od;
return l;
end);
# up to G-conjugacy
InstallGlobalFunction(AllHomomorphismClasses,function(H,G)
local cl,cnt,bg,bw,bo,bi,k,gens,go,imgs,params,emb,clg,sg,vsu,c,i;
if IsAbelian(G) and not IsAbelian(H) then
k:=NaturalHomomorphismByNormalSubgroup(H,DerivedSubgroup(H));
return List(AllHomomorphismClasses(Image(k),G),x->k*x);
fi;
cl:=ConjugacyClasses(G);
if IsCyclic(H) then
if Size(H)=1 then
k:=One(H);
else
k:=MinimalGeneratingSet(H)[1];
fi;
c:=Order(k);
Assert(1,Order(k)=Order(H));
cl:=List(cl,Representative);
cl:=Filtered(cl,x->IsInt(c/Order(x)));
return List(cl,x->GroupHomomorphismByImagesNC(H,G,[k],[x]));
fi;
# find a suitable generating system
bw:=infinity;
bo:=[0,0];
cnt:=0;
if IsFinite(H) then
repeat
if cnt=0 then
# first the small gen syst.
gens:=SmallGeneratingSet(H);
sg:=Length(gens);
else
# then something random
repeat
if Length(gens)>2 and Random([1,2])=1 then
# try to get down to 2 gens
gens:=List([1,2],i->Random(H));
else
gens:=List([1..sg],i->Random(H));
fi;
# try to get small orders
for k in [1..Length(gens)] do
go:=Order(gens[k]);
# try a p-element
if Random([1..3*Length(gens)])=1 then
gens[k]:=gens[k]^(go/(Random(Factors(go))));
fi;
od;
until Index(H,SubgroupNC(H,gens))=1;
fi;
go:=List(gens,Order);
imgs:=List(go,i->Filtered(cl,j->IsInt(i/Order(Representative(j)))));
Info(InfoMorph,3,go,":",Product(imgs,i->Sum(i,Size)));
if Product(imgs,i->Sum(i,Size))<bw then
bg:=gens;
bo:=go;
bi:=imgs;
bw:=Product(imgs,i->Sum(i,Size));
elif Set(go)=Set(bo) then
# we hit the orders again -> sign that we can't be
# completely off track
cnt:=cnt+Int(bw/Size(G)*3);
fi;
cnt:=cnt+1;
until bw/Size(G)*3<cnt;
else
gens:=GeneratorsOfGroup(H);
bg:=gens;
imgs:=List(gens,x->cl);
bi:=imgs;
fi;
if bw=0 then
Error("trivial homomorphism not found");
fi;
# skipped verbal business
Info(InfoMorph,2,"find ",bw," from ",cnt);
if IsFinite(H) and Length(bg)>2 and cnt>Size(H)^2 and Size(G)<bw then
Info(InfoPerformance,1,
"The group tested requires many generators. `AllHomomorphismClasses' often\n",
"#I does not perform well for such groups -- see the documentation.");
fi;
params:=rec(gens:=bg,from:=H);
# find all embeddings
emb:=MorClassLoop(G,bi,params,
# all homs = 1+8
9);
Info(InfoMorph,2,Length(emb)," homomorphisms");
# skipped removal of duplicate images
return emb;
end);
InstallGlobalFunction(AllHomomorphisms,function(G,H)
local c,i,m,o,j;
c:=[];
for i in AllHomomorphismClasses(G,H) do
m:=MappingGeneratorsImages(i);
o:=Orbit(H,m[2],OnTuples);
for j in o do
Add(c,GroupHomomorphismByImages(G,H,m[1],j));
od;
od;
return c;
end);
BindGlobal("AllEndomorphisms",G->AllHomomorphisms(G,G));
BindGlobal("GallianHomoDn",AllEndomorphisms);
BindGlobal("AllAutomorphisms",G->Elements(AutomorphismGroup(G)));
BindGlobal("GallianAutoDn",AllAutomorphisms);
BindGlobal("GallianIntror2",n->RootsOfPolynomial(Indeterminate(Integers mod n)^2+1));
|