/usr/share/gap/lib/stbcrand.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 | #############################################################################
##
#W stbcrand.gi GAP library Ákos Seress
##
##
#Y Copyright (C) 1994, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the functions for a random Schreier-Sims algorithm
## with verification.
##
#############################################################################
##
#F StabChainRandomPermGroup( <gens>, <id>, <opts> ) . random Schreier-Sims
##
## The method consists of 2 phases: a heuristic construction and
## either a deterministic or two random checking phases.
## In the random checking phases, we take random elements of
## created set, multiply by random subproduct of generators, and sift down
## by dividing with the appropriate coset representatives. The stabchain is
## correct when all siftees are (). In the first checking phase, all
## computations are carried out with words in strong generators and siftees
## are checked by plugging in random points in words; in the second checking
## phase, permutations are multiplied.
##
## During the construction, we create new records for stabilizers:
## S.aux = set of strong generators for S, temporarily created during the
## construction. On the other hand, S.generators contains a strong
## generating set for S which would have been created by the
## deterministic method
## S.treegen = elements of S.aux used in S.transversal
## S.treegeninv = inverses of S.treegen; also used in S.transversal,
## and they are also elements of S.aux
## S.treedepth = depth of Schreier tree of S
## S.diam = sum of treedepths in stabilizer chain of S
##
## After the stabilizer chain is ready, the extra records are deleted.
## Transversals are rebuilt using the generators in the .generators records.
##
InstallGlobalFunction( StabChainRandomPermGroup, function( gens, id, options)
local S, # stabilizer chain
degree, # degree of S
givenbase,# list of points from which first base points should come
correct, # boolean; true if a correct base is given
size, # size of <G> as constructed
order, # size of G if given in input
limit, # upper bound on Size(G) given in input
orbits, # list of orbits of G
orbits2, # list of orbits of G
k, # number of pairs of generators checked
param, # list of parameters guiding number of repetitions
# in random constructions
where, # list indicating which orbit contains points in domain
basesize, # list; i^th entry = number of base points in orbits[i]
i,j,
ready, # boolean; true if stabilizer chain ready
warning, # used at warning if given and computed size differ
new, # list of permutations to be added to stab. chain
result, # output of checking phase; nontrivial if stabilizer
# chain is incorrect
base, # ordering of domain from which base points are taken
missing, # if a correct base was provided by input, missing
# contains those points of it which are not in
# constructed base
T; # a stabilizer chain containing the usual records
S:= rec( generators := ShallowCopy( gens ), identity := id );
if options.random = 1000 then
#case of deterministic computation with known size
k := 1;
else
k:=First([1..14],x->(3/5)^x<1-options.random/1000);
fi;
degree := LargestMovedPoint( S.generators );
if IsBound( options.knownBase) and
Length(options.knownBase)<4+LogInt(degree,10) then
param:=[k,4,0,0,0,0];
else
param:=[QuoInt(k,2),4,QuoInt(k+1,2),4,50,5];
options:=ShallowCopy(options);
Unbind(options.knownBase);
fi;
if options.random <= 200 then
param[2] := 2;
param[4] := 2;
fi;
#param[1] = number of pairs of random subproducts from generators in
# first checking phase
#param[2] = (number of random elements from created set)/S.diam
# in first checking phase
#param[3] = number of pairs of random subproducts from generators in
# second checking phase
#param[4] = (number of random elements from created set)/S.diam
# in second checking phase
#param[5] = maximum size of orbits in which we evaluate words on all
# points of orbit
#param[6] = minimum number of random points from orbit to plug in to check
# whether given word is identity on orbit
# prepare input of construction
if IsBound(options.base) then
givenbase := options.base;
else
givenbase := [];
fi;
if IsBound(options.size) then
order := options.size;
warning := 0;
limit := 0;
else
order := 0;
if IsBound(options.limit) then
limit := options.limit;
else
limit := 0;
fi;
fi;
if IsBound( options.knownBase ) then
correct := true;
else
correct := false;
fi;
if correct then
# if correct base was given as input, no need for orbit information
base:=Concatenation(givenbase,Difference(options.knownBase,givenbase));
missing := Set(options.knownBase);
basesize := [];
where := [];
orbits := [];
else
# create ordering of domain used in choosing base points and
# compute orbit information
base:=Concatenation(givenbase,Difference([1..degree],givenbase));
missing:=[];
orbits2:=OrbitsPerms(S.generators,[1..degree]);
#throw away one-element orbits
orbits:=[];
j:=0;
for i in [1..Length(orbits2)] do
if Length(orbits2[i]) >1 then
j:=j+1; orbits[j]:= orbits2[i];
fi;
od;
basesize:=[];
where:=[];
for i in [1..Length(orbits)] do
basesize[i]:=0;
for j in [1..Length(orbits[i])] do
where[orbits[i][j]]:=i;
od;
od;
# temporary solution to speed up of handling of lots of small orbits
# until compiler
if Length(orbits) > degree/40 then
param[1] := 0;
param[3] := k;
fi;
fi;
ready:=false;
new:=S.generators;
while not ready do
SCRMakeStabStrong
(S,new,param,orbits,where,basesize,base,correct,missing,true);
# last parameter of input is true if function called for original G
# in recursive calls on stabilizers, it is false
# reason: on top level,
# we do not want to add anything to generating set
# start checking
size := 1; T := S;
while Length( T.generators ) <> 0 do
size := size * Length( T.orbit );
T := T.stabilizer;
od;
if size = order or size = limit then
ready := true;
elif size < order then
# we have an incorrect stabilizer chain
# repeat checking until a new element is discovered
result := id;
if options.random = 1000 then
if correct then
result := SCRStrongGenTest(S,[1,10/S.diam,0,0,0,0],orbits,
basesize,base,correct,missing);
else
result := SCRStrongGenTest2(S,[0,0,1,10/S.diam,0,0]);
fi;
if result = id then
T := SCRRestoredRecord(S);
result := VerifySGS(T,missing,correct);
fi;
if result = id then
Print("Warning, computed and given size differ","\n");
ready := true;
S := T;
else
if not IsPerm(result) then
repeat
result := SCRStrongGenTest2(S,[0,0,1,10/S.diam,0,0]);
until result <> id;
fi;
new := [result];
fi;
else
warning := 0;
if correct then
# if correct base was provided, it is enough to check
# images of base points to check whether a word is trivial
# no need for second checking phase
while result = id do
warning := warning + 1;
if warning > 5 then
Print("Warning, computed and given size differ","\n");
fi;
result := SCRStrongGenTest(S,param,orbits,
basesize,base,correct,missing);
od;
else
while result = id do
warning := warning + 1;
if warning > 5 then
Print("Warning, computed and given size differ","\n");
fi;
result:=SCRStrongGenTest(S,param,orbits,
basesize,base,correct,missing);
if result = id then
# Print("entering SGT2","\n");
result:=SCRStrongGenTest2(S,param);
fi;
od;
fi; # correct or not
new:=[result];
fi; # end of random checking or not, when size is known
else
#no information or only upper bound about Size(S)
if options.random = 1000 then
if correct then
result := SCRStrongGenTest(S,[1,10/S.diam,0,0,0,0],orbits,
basesize,base,correct,missing);
else
result := SCRStrongGenTest2(S,[0,0,1,10/S.diam,0,0]);
fi;
if result = id then
T := SCRRestoredRecord(S);
result := VerifySGS(T,missing,correct);
fi;
if result = id then
S := T;
ready := true;
else
if not IsPerm(result) then
repeat
result := SCRStrongGenTest2(S,[0,0,1,10/S.diam,0,0]);
until result <> id;
fi;
new := [result];
fi;
else
# Print("entering SGT", "\n");
result:=SCRStrongGenTest(S,param,orbits,basesize,
base,correct,missing);
if result <> id then
new:=[result];
elif correct then
# no need for second checking phase
ready:=true;
else
# Print("entering SGT2","\n");
result:=SCRStrongGenTest2(S,param);
if result = id then
ready:=true;
else
new:=[result];
fi;
fi;
fi; # random checking or not, when size is not known
fi; # size known
od;
#restore usual record elements
if not IsBound(S.labels) then
S := SCRRestoredRecord(S);
fi;
return S;
end );
#############################################################################
##
#F SCRMakeStabStrong( ... ) . . . . . . . . . . . . . . . . . . . . . local
##
## heuristic stabilizer chain construction, with one random subproduct on
## each level, and one or two (defined by mlimit) random cosets to make
## Schreier generators
##
InstallGlobalFunction( SCRMakeStabStrong,
function ( S, new, param, orbits, where, basesize, base,
correct, missing, top )
local x,m,j,l, # loop variables
ran1, # random permutation
string, # random 0-1 string
w, # random subproduct of generators
len, # number of generators of S
mlimit, # number of random elements to be tested
coset, # word representing coset of S
residue, # first component: remainder of Schreier generator
# after factorization; second component > 0
# if factorization unsuccesful
jlimit, # number of random points to plug into residue[1]
ran, # index of random point in an orbit of S
g, # permutation to be added to S.stabilizer
gen, # permutations used in S.transversal
inv, # their inverses
firstmove; # first point of base moved by an element of new
if new <> [] then
firstmove := First( base, x->ForAny( new, gen->x^gen<>x ) );
# if necessary add a new stabilizer to the stabchain
if not IsBound(S.stabilizer) then
S.orbit := [firstmove];
S.transversal := [];
S.transversal[S.orbit[1]] := S.identity;
S.generators := [];
S.treegen := [];
S.treegeninv := [];
S.stabilizer := rec();
S.stabilizer.identity := S.identity;
S.stabilizer.aux := [];
S.stabilizer.generators := [];
S.stabilizer.diam := 0;
if not correct then
basesize[where[S.orbit[1]]]
:= basesize[where[S.orbit[1]]] + 1;
fi;
missing := Difference( missing, [ firstmove ] );
else
if Position(base,firstmove) < Position(base,S.orbit[1]) then
S.stabilizer := ShallowCopy(S);
S.orbit := [firstmove];
S.transversal := [];
S.transversal[S.orbit[1]] := S.identity;
S.generators := ShallowCopy(S.stabilizer.generators);
S.treegen := [];
S.treegeninv := [];
if not correct then
basesize[where[S.orbit[1]]]
:= basesize[where[S.orbit[1]]] + 1;
fi;
missing := Difference( missing, [ firstmove ] );
fi;
fi;
# on top level, we want to keep the original generators
if not top or Length(S.generators) = 0 then
for j in new do
StretchImportantSLPElement(j);
od;
Append(S.generators,new);
fi;
#construct orbit of basepoint
SCRSchTree(S,new);
#check whether new elements are really new in the system
while new <> [] do
g := SCRSift( S, new[Length(new)] );
Unbind( new[Length(new)] );
if g <> S.identity then
SCRMakeStabStrong(S.stabilizer,[g],param,orbits,
where,basesize,base,correct,missing,false);
S.diam:=S.treedepth+S.stabilizer.diam;
S.aux:=Concatenation(S.treegen,
S.treegeninv,S.stabilizer.aux);
fi;
od;
fi;
#check random Schreier generators
gen := Concatenation(S.treegen,S.treegeninv,[S.identity]);
inv := Concatenation(S.treegeninv,S.treegen,[S.identity]);
len := Length(S.aux);
#in case of more than one generator for S, form a random subproduct
#otherwise, use the generator
if len > 1 then
ran1 := SCRRandomPerm(len);
string := SCRRandomString(len);
w := S.identity;
for x in [1..len] do
w := w*(S.aux[x^ran1]^string[x]);
od;
else
w:=S.aux[1];
fi;
# take random coset(s)
mlimit:=1;
m:=0;
while m < mlimit do
m := m+1;
ran := Random([1..Length(S.orbit)]);
coset := CosetRepAsWord(S.orbit[1],S.orbit[ran],S.transversal);
coset := InverseAsWord(coset,gen,inv);
if w <> S.identity then
# form Schreier generator and factorize
Add(coset,w);
residue := SiftAsWord(S,coset);
# check whether factorization is succesful
if residue[2] > 0 then
# factorization is unsuccesful; use remainder for
# construction in stabilizer
g := Product(residue[1]);
SCRMakeStabStrong(S.stabilizer,[g],param,orbits,where,
basesize,base,correct,missing,false);
S.diam := S.treedepth+S.stabilizer.diam;
S.aux := Concatenation(S.treegen,S.treegeninv,
S.stabilizer.aux);
# get out of current loop
m := 0;
elif correct then
# enough to check images of points in given base
l := 0;
while l < Length(missing) do
l := l+1;
if ImageInWord(missing[l],residue[1]) <> missing[l] then
# factorization is unsuccesful;
# use remainder for construction in stabilizer
g := Product(residue[1]);
SCRMakeStabStrong(S.stabilizer,[g],param,
orbits,where,basesize,
base,correct,missing,false);
S.diam := S.treedepth+S.stabilizer.diam;
S.aux := Concatenation(S.treegen,
S.treegeninv,S.stabilizer.aux);
# get out of current loop
m := 0;
l := Length(missing);
fi;
od;
else
l:=0;
while l < Length(orbits) do
l:=l+1;
if Length(orbits[l]) > param[5] then
# in large orbits, plug in random points
j:=0;
jlimit:=Maximum(param[6],basesize[l]);
while j < jlimit do
j:=j+1;
ran:=Random([1..Length(orbits[l])]);
if ImageInWord(orbits[l][ran],residue[1])
<> orbits[l][ran]
then
# factorization is unsuccesful;
# use remainder for construction in stabilizer
g := Product(residue[1]);
SCRMakeStabStrong(S.stabilizer,[g],param,
orbits,where,basesize,
base,correct,missing,false);
S.diam := S.treedepth+S.stabilizer.diam;
S.aux := Concatenation(S.treegen,S.treegeninv,
S.stabilizer.aux);
# get out of current loop
m := 0;
j := jlimit;
l := Length(orbits);
fi;
od; #j loop
else
# in small orbits, check images of all points
j := 0;
while j < Length(orbits[l]) do
j := j+1;
if ImageInWord(orbits[l][j],residue[1])
<> orbits[l][j]
then
# factorization is unsuccesful;
# use remainder for construction in stabilizer
g := Product(residue[1]);
SCRMakeStabStrong(S.stabilizer,[g],param,
orbits,where,basesize,
base,correct,missing,false);
S.diam := S.treedepth+S.stabilizer.diam;
S.aux := Concatenation(S.treegen,S.treegeninv,
S.stabilizer.aux);
# get out of current loop
m := 0;
j := Length(orbits[l]);
l := Length(orbits);
fi;
od; #j loop
fi;
od; #l loop
fi;
fi;
od; #m loop
end );
#############################################################################
##
#F SCRStrongGenTest( ... ) . . . . . . . . . . . . . . . . . . . . . . local
##
## tests whether product of a random element of S and a random subproduct of
## the strong generators of S is in S. Computations are carried out with
## words in generators representing group elements; random points are
## plugged in to test whether a word represents the identity. If SGS for S
## not complete, returns a permutation not in S.
##
InstallGlobalFunction( SCRStrongGenTest,
function ( S, param, orbits, basesize,
base, correct, missing)
local x,i,k,m,j,l, # loop variables
ran1,ran2, # random permutations
string, # random 0-1 string
w, # list containing random subproducts of generators
len, # number of generators of S
len2, # length of short random subproduct
mlimit, # number of random elements to be tested
ranword, # random element of S as a word in generators
residue, # first component: remainder of ranword
# after factorization; second component > 0
# if factorization unsuccesful
jlimit, # number of random points to plug into residue[1]
ran, # index of random point in an orbit of S
g; # product of residue[1]
k := 0;
while k < param[1] do
k := k+1;
len := Length(S.aux);
#in case of large S.aux, form random subproducts
#otherwise, try all of them
if len > 2*param[3] then
ran1 := SCRRandomPerm(len);
ran2 := SCRRandomPerm(len);
len2 := Random([1 .. QuoInt(len,2)]);
string := SCRRandomString(len+len2);
# we form two random subproducts:
# w[1] in a random ordering of all generators
# w[2] in a random ordering of a random subset of them
w:=[];
w[1] := S.identity;
for x in [1 .. len] do
w[1] := w[1]*(S.aux[x^ran1]^string[x]);
od;
w[2] := S.identity;
for x in [1 .. len2] do
w[2] := w[2]*(S.aux[x^ran2]^string[x+len]);
od;
else
# take next two generators of S (unless only one is left)
w := [];
w[1] := S.aux[2*k-1];
if len > 2*k-1 then
w[2] := S.aux[2*k];
else
w[2] := S.identity;
fi;
fi;
# take random elements of S as words
m := 0;
mlimit := param[2]*S.diam;
while m < mlimit do
m:=m+1;
ranword := RandomElmAsWord(S);
i := 0;
while i < 2 do
i := i+1;
if w[i] <> S.identity then
Append(ranword,[w[i]]);
residue := SiftAsWord(S,ranword);
if residue[2]>0 then
# factorization is unsuccesful;
# remainder is witness that SGS for S is not complete
g := Product(residue[1]);
# Print("k=",k," i=",i," m=",m," mlimit=",mlimit,"\n");
return g;
elif correct then
# enough to check whether base points are fixed
l:=0;
while l < Length(missing) do
l:=l+1;
if ImageInWord(missing[l],residue[1])
<> missing[l]
then
# remainder is not in S
g := Product(residue[1]);
return g;
fi;
od;
else
# plug in points from each orbit to check whether
# action on orbit is trivial
l:=0;
while l < Length(orbits) do
l:=l+1;
if Length(orbits[l]) > param[5] then
# on large orbits, plug in random points
j := 0;
jlimit := Maximum(param[6],basesize[l]);
while j < jlimit do
j := j+1;
ran := Random([1..Length(orbits[l])]);
if ImageInWord(orbits[l][ran],residue[1])
<> orbits[l][ran]
then
#remainder is not in S
g := Product(residue[1]);
return g;
fi;
od; #j loop
else
# on small orbits, plug in all points
j := 0;
while j < Length(orbits[l]) do
j := j+1;
if ImageInWord( orbits[l][j],residue[1] )
<> orbits[l][j]
then
# remainder is not in S
g:=Product(residue[1]);
return g;
fi;
od; #j loop
fi;
od; #l loop
fi;
fi;
od; #i loop
od; #m loop
if len <= 2*k then
#finished making Schr. generators with all in S.aux
k := param[1];
fi;
od; #k loop
return S.identity;
end );
#############################################################################
##
#F SCRSift( <S>, <g> ) . . . . . . . . . . . . . . . . . . . . . . . . local
##
## tries to factor g as product of cosetreps in S; returns remainder
##
InstallGlobalFunction( SCRSift, function ( S, g )
local stb, # the stabilizer of S we currently work with
bpt; # first point of stb.orbit
stb := S;
while IsBound( stb.stabilizer ) do
bpt := stb.orbit[1];
if IsBound( stb.transversal[bpt^g] ) then
while bpt <> bpt^g do
g := g*stb.transversal[bpt^g];
od;
stb := stb.stabilizer;
else
#current g witnesses that input was not in S
return g;
fi;
od;
return g;
end );
#############################################################################
##
#F SCRStrongGenTest2( <S>, <param> ) . . . . . . . . . . . . . . . . . local
##
## tests whether product of a random element of S and a random subproduct of
## the strong generators of S is in S. Computations are carried out with
## complete permutations.
##
InstallGlobalFunction( SCRStrongGenTest2, function ( S, param )
local x,i,k,m, # loop variables
ran1,ran2, # random permutations
string, # random 0-1 string
w, # list containing random subproducts of generators
len, # number of generators of S
len2, # length of short random subproduct
mlimit, # number of random elements to be tested
ranelement, # random element of S
T, p,
residue; # remainder of ranelement after factorization
k := 0;
while k < param[3] do
k := k+1;
len := Length(S.aux);
#in case of large S.aux, form random subproducts
#otherwise, try all of them
if len > 2*param[3] then
ran1 := SCRRandomPerm(len);
ran2 := SCRRandomPerm(len);
len2 := Random([1 .. QuoInt(len,2)]);
string := SCRRandomString(len+len2);
# we form two random subproducts:
# w[1] in a random ordering of all generators
# w[2] in a random ordering of a random subset of them
w:=[];
w[1] := S.identity;
for x in [1 .. len] do
w[1] := w[1]*(S.aux[x^ran1]^string[x]);
od;
w[2] := S.identity;
for x in [1 .. len2] do
w[2] := w[2]*(S.aux[x^ran2]^string[x+len]);
od;
else
# take next two generators of S (unless only one is left)
w := [];
w[1] := S.aux[2*k-1];
if len > 2*k-1 then
w[2] := S.aux[2*k];
else
w[2] := S.identity;
fi;
fi;
# take random elements of S
m := 0;
mlimit := param[4]*S.diam;
while m < mlimit do
m:=m+1;
ranelement := S.identity;
T := S;
while Length( T.generators ) <> 0 do
p := Random( T.orbit );
while p <> T.orbit[ 1 ] do
ranelement := LeftQuotient( T.transversal[ p ],
ranelement );
p := p ^ T.transversal[ p ];
od;
T := T.stabilizer;
od;
i := 0;
while i < 2 do
i := i+1;
if w[i] <> S.identity then
# test whether product of ranelement and w[i] in S
ranelement := ranelement*w[i];
residue := SCRSift(S,ranelement);
if residue <> S.identity then
return residue;
fi;
fi;
od; #i loop
od; #m loop
if len <= 2*k then
#finished checking all in S.aux
k := param[3];
fi;
od; #k loop
return S.identity;
end );
#############################################################################
##
#F SCRNotice( <orb>, <transversal>, <genlist> ) . . . . . . . . . . . local
##
## checks whether orbit is closed for the action of permutations in
## genlist. If not, returns orbit point and generator witnessing.
##
InstallGlobalFunction( SCRNotice,
function ( orb, transversal, genlist )
local flag, #first component of output; true if orb is closed for
#action of genlist
i, #second component of output, index of point in orb moving out
j ; #third component, index of permutation in genlist moving orb[i]
i := 0;
flag := true;
while i < Length(orb) and flag do
i := i+1;
j := 0;
while j < Length(genlist) and flag do
j := j+1;
if not IsBound(transversal[orb[i]^genlist[j]]) then
flag := false;
fi;
od;
od;
return [flag,i,j];
end );
#############################################################################
##
#F SCRExtend( <list> ) . . . . . . . . . . . . . . . . . . . . . . . . local
##
## given a partial Schreier tree of depth d,
## SCRExtends the partial Schreier tree to depth d+1
## input, output coded in list of length 5
##
InstallGlobalFunction( SCRExtend, function ( list )
local orb, #partial orbit
transversal, #partial transversal
treegen, #list of generators
treegeninv, #inverses of elements of treegen
#both treegen, treegeninv are used in transversal
i, j, #loop variables
previous, #index, showing end of level d-1 in orb
len; #length of orb at entering routine
orb:=list[1];
transversal:=list[2];
treegen:=list[3];
treegeninv:=list[4];
previous:=list[5];
len:=Length(orb);
# for each point on level d, check whether one of the generators or
# inverses moves it out of orb. If yes, add image to orb
for i in [previous+1..len] do
for j in [1..Length(treegen)] do
if not IsBound(transversal[orb[i]^treegen[j]]) then
transversal[orb[i]^treegen[j]] := treegeninv[j];
Add(orb, orb[i]^treegen[j]);
fi;
if not IsBound(transversal[orb[i]^treegeninv[j]]) then
transversal[orb[i]^treegeninv[j]] := treegen[j];
Add(orb, orb[i]^treegeninv[j]);
fi;
od;
od;
# return Schreier tree of depth one larger
return [orb,transversal,treegen,treegeninv,len];
end );
#############################################################################
##
#F SCRSchTree( <S>, <new> ) . . . . . . . . . . . . . . . . . . . . . local
##
## creates Schreier tree for the group generated by S.generators \cup new
##
InstallGlobalFunction( SCRSchTree, function ( S, new )
local l, #output of notice
flag, #first component of output
i, #second component of output
j, #third component of output
word, #list of permutations coding a coset representative
g, #the coset representative coded by word
witness, #a permutation moving a point out of S.orbit
list; #list coding input and output of 'extend'
l := SCRNotice(S.orbit,S.transversal,new);
flag := l[1];
if flag then
#do nothing; the orbit did not change
return;
else
i := l[2];
j := l[3];
witness := new[j];
fi;
while not flag do
word := CosetRepAsWord(S.orbit[1],S.orbit[i],S.transversal);
g := Product(word);
#add a new generator to treegen which moves S.orbit[1] out of S.orbit
Add(S.treegen, g^(-1)*witness);
Add(S.treegeninv, witness^(-1)*g);
#recompute Schreier tree to new depth
S.orbit := [S.orbit[1]];
S.transversal := [];
S.transversal[S.orbit[1]] := S.identity;
S.treedepth := 0;
list := [S.orbit,S.transversal,S.treegen,S.treegeninv,0];
flag := false;
#with k generators, we build only a tree of depth 2k
while not flag and S.treedepth < 2*Length(S.treegen) do
list := SCRExtend(list);
S.orbit := list[1];
S.transversal := list[2];
if Length(S.orbit) = list[5] then
#the tree did not extend; orbit is closed for treegen
flag := true;
else
S.treedepth := S.treedepth + 1;
fi;
od;
#increased S.orbit may not be closed for all generators of S
l := SCRNotice(S.orbit,S.transversal,S.generators);
flag := l[1];
if not flag then
i := l[2];
j := l[3];
witness := S.generators[j];
fi;
od;
#update record components aux, diam
S.aux := Concatenation(S.treegen,S.treegeninv,S.stabilizer.aux);
S.diam := S.treedepth+S.stabilizer.diam;
end );
#############################################################################
##
#F SCRRandomPerm( <d> ) . . . . . . . . . . . . . . . . . . . . . . . local
##
## constructs random permutation in Sym(d)
## without creating group record of Sym(d)
##
InstallGlobalFunction( SCRRandomPerm, function ( d )
local rnd, # random permutation, result
tmp, # temporary variable for swapping
i, k; # loop variables
# use Floyd\'s algorithm
rnd := [ 1 .. d ];
for i in [ 1 .. d-1 ] do
k := Random( [ 1 .. d+1-i ] );
tmp := rnd[d+1-i];
rnd[d+1-i] := rnd[k];
rnd[k] := tmp;
od;
# return the permutation
return PermList( rnd );
end );
#############################################################################
##
#F SCRRandomString( <n> ) . . . . . . . . . . . . . . . . . . . . . . local
##
## constructs random 0-1 string of length n
## same steps as Random, but uses created random number for 28 bits
##
InstallGlobalFunction( SCRRandomString, function ( n )
local i, j, # loop variables
k, # number of 28 long substrings
rnd, # the random number which would be created by Random
string; # the random string constructed
string:=[];
k:=QuoInt(n-1,28);
for i in [0..k-1] do
# follow steps in Random to create a random number < 2^28
R_N := R_N mod 55 + 1;
R_X[R_N] := (R_X[R_N] + R_X[(R_N+30) mod 55+1]) mod 2^28;
rnd:=R_X[R_N];
# use each bit of rnd
for j in [1 .. 28] do
string[28*i+j] := rnd mod 2;
rnd := QuoInt(rnd,2);
od;
od;
# construct last <= 28 bits of string
R_N := R_N mod 55 + 1;
R_X[R_N] := (R_X[R_N] + R_X[(R_N+30) mod 55+1]) mod 2^28;
rnd:=R_X[R_N];
for j in [28*k+1 .. n] do
string[j] := rnd mod 2;
rnd := QuoInt(rnd,2);
od;
return string;
end );
#############################################################################
##
#F SCRRandomSubproduct( <list>, <id> ) . random subproduct of perms in list
##
InstallGlobalFunction( SCRRandomSubproduct, function( list, id )
local string, # 0-1 string containing the exponents of elements of list
random, # the random subproduct
i; # loop variable
string := SCRRandomString(Length(list));
random := id;
for i in [1 .. Length(list)] do
if string[i] = 1 then
random := random*list[i];
fi;
od;
return random;
end );
#############################################################################
##
#F SCRExtendRecord( <G> ) . . . . . . . . . . . . . . . . . . . . . . local
##
## defines record elements used at random stabilizer chain construction
##
InstallGlobalFunction( SCRExtendRecord, function(G)
local list, # list of stabilizer subgroups
len, # length of list
i; # loop variable
list := ListStabChain(G);
len := Length(list);
list[len].diam := 0;
list[len].aux := [];
for i in [1 .. len - 1] do
# list[len - i].real := list[len - i].generators;
if Length(list[len - i].orbit) = 1 then
# in this case, SCRSchTree will not do anything;
# we have to define records treedepth, aux, and diameter
list[len - i].treedepth := 0;
list[len - i].aux := list[len - i + 1].aux;
list[len - i].diam := list[len - i + 1].diam;
fi;
list[len - i].orbit := [ list[len - i].orbit[1] ];
list[len - i].transversal := [];
list[len - i].transversal[list[len - i].orbit[1]]
:= list[len - i].identity;
list[len - i].treegen := [];
list[len - i].treegeninv := [];
SCRSchTree( list[len - i], list[len - i].generators );
od;
end );
#############################################################################
##
#F SCRRestoredRecord( <G> ) . . . . . . . . . . . . . . . . . . . . . local
##
## restores usual group records after random stabilizer chain construction
##
InstallGlobalFunction( SCRRestoredRecord, function( G )
local sgs, T, S, l, lab, pnt,o,ind;
S := G;
sgs := [ S.identity ];
while IsBound( S.stabilizer ) do
UniteSet( sgs, S.treegen );
UniteSet( sgs, S.treegeninv );
S := S.stabilizer;
od;
T := EmptyStabChain( sgs, G.identity );
sgs := [ 2 .. Length( sgs ) ];
S := T;
while IsBound( G.stabilizer ) do
InsertTrivialStabilizer( S, G.orbit[ 1 ] );
S.genlabels := sgs;
S.generators := G.generators;
S.orbit := G.orbit;
S.transversal := G.transversal;
o:=ShallowCopy(S.orbit);
# check identity of transversal elements first: Most are
# identical and thus element comparisons are relatively
# infrequent
while Length(o)>0 do
ind:=S.transversal[o[1]];
ind:=Filtered([1..Length(o)],
i->IsIdenticalObj(S.transversal[o[i]],ind));
for l in sgs do
if S.transversal[o[1]]=S.labels[l] then
for pnt in o{ind} do # all these transv. elements are same
S.translabels[ pnt ] := l;
od;
fi;
od;
o:=o{Difference([1..Length(o)],ind)}; # the rest
od;
#was:
# (The element comparisons could be expensive)
#for pnt in S.orbit do
# if S.transversal[ pnt ] = lab then
# S.translabels[ pnt ] := l;
# fi;
#od;
sgs := Filtered( sgs, l ->
S.orbit[ 1 ] ^ S.labels[ l ] = S.orbit[ 1 ] );
S := S.stabilizer;
G := G.stabilizer;
od;
return T;
end );
#############################################################################
##
#F VerifyStabilizer( <S>, <z>, <missing>, <correct> ) . . . . verification
##
InstallGlobalFunction( VerifyStabilizer, function(S,z,missing,correct)
#z is an involution, moving first base point
# correct is boolean telling whether a base is known
# if yes, missing contains the base points which do not occur in the base of S
local pt1, # the first base point
zinv, # inverse of z
pt2, # pt1^zinv
flag, # Boolean; true if z exchanges pt1 and pt2
stab, # the stabilizer of pt1 in S
chain, # stab after base change, to bring pt2 first
stabpt2, # stabilizer of pt2 in chain
result, # output, witness perm if something is wrong
g, # generator of stabpt2
where1, # stores which orbit of stab pts of S.orbit belong to
orbit1count, # index running through orbits of stab
leaders, # list of orbit representatives of stab
i, j, l, # loop variables
residue, # result of sifting as word
where2, # boolean list to mark orbits of stabpt2 as processed
k, # point of an orbit of stab
gen, # a generator of stab
transversal, # transversal of stab, on all of its orbits
orb, # an orbit of stabpt2
img, # image of a point at computation of orb
pnt, # a point from orb
w1, w2, w3, w4, # words/permutations coding coset representatives
w1inv, # inverse of w1
schgen; # Schreier generator
pt1 := S.orbit[1];
zinv := z^(-1);
pt2 := pt1^zinv;
result := S.identity;
stab := S.stabilizer;
if pt2^zinv = pt1 then
flag := true;
result := SCRSift(stab, z^2);
else
flag := false;
fi;
# store which orbit of stab the pts of S.orbit belong to
# in each orbit, compute transversals from a representative
where1 := []; # orbits of stab
leaders := [pt2];
orbit1count := 1;
transversal := [];
transversal[pt2] := S.identity;
where1[pt2] := 1;
orb := [pt2];
j := 1;
while j <= Length( orb ) do
for gen in stab.generators do
k := orb[j] / gen;
if not IsBound( transversal[k] ) then
transversal[k] := gen;
Add( orb, k );
where1[k] := orbit1count;
fi;
od;
j := j + 1;
od;
for i in S.orbit do
if not IsBound(where1[i]) then
orbit1count := orbit1count + 1;
Add(leaders, i);
orb := [i];
where1[i] := orbit1count;
transversal[i] := S.identity;
j := 1;
while j <= Length( orb ) do
for gen in stab.generators do
k := orb[j] / gen;
if not IsBound( transversal[k] ) then
transversal[k] := gen;
Add( orb, k );
where1[k] := orbit1count;
fi;
od;
j := j + 1;
od;
fi;
od;
# check that conjugates of point stabilizers of stab are subgroups of stab
chain:=StructuralCopy(stab);
for j in [1..Length(leaders)] do
if result = S.identity then
i := leaders[Length(leaders)+1-j];
ChangeStabChain( chain, [i], false );
if i = pt2 then
w1 := z;
w1inv := zinv;
else
w1 := CosetRepAsWord(pt1, i, S.transversal);
w1 := Product(w1);
w1inv := w1^(-1);
fi;
for g in chain.stabilizer.generators do
if result = S.identity then
if correct then
residue := SiftAsWord(stab, [w1inv,g,w1]);
if residue[2] <> 0 then
result := Product(residue[1]);
else
l := 0;
while ( l < Length(missing) ) and ( result = S.identity ) do
l:=l+1;
if ImageInWord(missing[l],residue[1])
<> missing[l] then
# remainder is not in S
result := Product(residue[1]);
fi;
od;
fi;
else
result := SCRSift(stab, w1inv*g*w1);
fi;
fi;
od;
fi;
od;
if result = S.identity then
stabpt2 := chain.stabilizer;
# process orbits of stabpt2
where2:= BlistList( [1..Length(where1)],[] ) ;
for i in S.orbit do
if result = S.identity and (not where2[i]) then
orb := [i];
where2[i] := true;
for pnt in orb do
for gen in stabpt2.generators do
img := pnt^gen;
if not where2[img] then
Add( orb, img );
where2[img] := true;
fi;
od;
od;
# if we hit a new orbit of stabpt2
# and if z exchanges pt1 and pt2 then
# mark the orbit
if flag and not where2[i^z] then
orb := [i^z];
where2[i^z] := true;
for pnt in orb do
for gen in stabpt2.generators do
img := pnt^gen;
if not where2[img] then
Add( orb, img );
where2[img] := true;
fi;
od;
od;
fi;
# compute Schreier generator either as a word or perm
# if i is not a fixed point of z,
# we have to compute a Schreier generator
w1 := CosetRepAsWord(pt1, leaders[where1[i]], S.transversal);
w2 := CosetRepAsWord(leaders[where1[i]], i, transversal);
w3 := CosetRepAsWord(leaders[where1[i^z]], i^z, transversal);
if where1[i] <> where1[i^z] then
w4 := CosetRepAsWord(pt1,leaders[where1[i^z]], S.transversal);
else
w4 := w1;
fi;
schgen := (Product(w1))^(-1)*(Product(w2))^(-1);
if correct then
schgen := Concatenation([schgen,z],w3,w4);
else
schgen := schgen*z*Product(w3)*Product(w4);
fi;
# sift Schreier generator either as a word or perm
if correct then
residue := SiftAsWord(stab, schgen);
if residue[2] <> 0 then
result := Product(residue[1]);
else
l := 0;
while ( l < Length(missing) ) and ( result = S.identity ) do
l:=l+1;
if ImageInWord(missing[l],residue[1])
<> missing[l] then
# remainder is not in S
result := Product(residue[1]);
fi;
od;
fi;
else
result := SCRSift(stab, schgen);
fi;
fi; # result = S.identity and not where2[i]
od;
fi;
return result;
end );
#############################################################################
##
#F VerifySGS( <S>, <missing>, <correct> ) . . . . . . . . . . verification
##
InstallGlobalFunction( VerifySGS, function(S,missing,correct)
# correct is boolean telling whether a base is known
# if yes, missing contains the base points which do not occur in the base of S
local n, # degree of S
list, # list of subgroups in stabchain
result, # result of the test
len, # length of list
i,l, # loop variables
residue, # result of sifting as word
temp, # subgroup of S we currently work with
temp2, # temp, with possible extension on blocks
gen, # the generator whose addition we verify
longer, # generator list of temp, after gen is added
gencount, # counts the generators to be verified
set, # set of orbit of temp
orbit, # orbit of temp after adding gen
blks, # images of block when gen is added
extension, # list of length 2; first coord. is temp2, extended by
# the action on blks, second coord. is newgen
newgen, # the extension of gen
leader, # first point in orbit of temp2
block, # block containing leader
point, # another point from block
pos; # position of set in blks
n := LargestMovedPoint(S.generators);
list := ListStabChain(S);
len := Length(list);
result := S.identity;
# verify the subgroup chain from bottom up
i := 1;
while i < len and result = S.identity do
temp := ShallowCopy(list[len - i + 1]);
InsertTrivialStabilizer(temp, list[len -i].orbit[1]);
gencount := 0;
# add one generator a time
while (gencount < Length(list[len - i].generators)) and (result= S.identity ) do
gencount := gencount + 1;
gen := list[len - i].generators[gencount];
set := Set( temp.orbit );
# if adding gen did not change the fundamental orbit, just sift gen
if set = OnSets(set,gen) then
if correct then
residue := SiftAsWord(temp, [gen]);
if residue[2] <> 0 then
result := Product(residue[1]);
else
l := 0;
while ( l < Length(missing) ) and ( result = S.identity ) do
l:=l+1;
if ImageInWord(missing[l],residue[1])
<> missing[l] then
# remainder is not in S
result := Product(residue[1]);
fi;
od;
fi;
else
result := SCRSift(temp, gen);
fi;
# if the fundamental orbit increased, compute block system
# obtained when adding gen
else
if Length(set) =1 then
temp2 := temp;
newgen := gen;
# otherwise, compute the action on blocks
else
longer := Concatenation(temp.generators, [gen]);
orbit := OrbitPerms( longer, temp.orbit[ 1 ] );
blks := Blocks( GroupByGenerators( longer ), orbit, set );
if Length(blks) * Length(set) <> Length(orbit) then
result := "false0";
else
pos := Position( blks, set );
extension := ExtensionOnBlocks( temp, n, blks, [gen] );
temp2 := extension[1];
newgen := extension[2][1];
InsertTrivialStabilizer(temp2, n + pos);
fi;
fi;
# first generator in first group can be verified easily
if i=1 and Length(set) =1 then
result := newgen^(CycleLengthOp(newgen,temp2.orbit[1]));
AddGeneratorsExtendSchreierTree(temp2, [newgen]);
elif result = S.identity then
AddGeneratorsExtendSchreierTree( temp2, [ newgen ] );
blks := Blocks( GroupByGenerators(temp2.generators),
temp2.orbit);
if Length(blks) > 1 then
leader := temp2.orbit[1];
block := First(blks, x -> leader in x);
point := First(block, x -> x <> leader);
newgen := Product(CosetRepAsWord(leader ,point,
temp2.transversal));
temp2 := temp2.stabilizer;
InsertTrivialStabilizer(temp2, leader);
AddGeneratorsExtendSchreierTree(temp2, [newgen]);
result := VerifyStabilizer(temp2,newgen,missing,correct);
if leader > n then
AddGeneratorsExtendSchreierTree(temp,[RestrictedPermNC
(newgen, [1..n])]);
else
temp := temp2;
fi;
gencount := gencount - 1;
else
result := VerifyStabilizer(temp2,newgen,missing,correct);
if temp2.orbit[1] > n then
AddGeneratorsExtendSchreierTree(temp,[gen]);
fi;
fi;
if result <> S.identity and temp2.orbit[1] > n then
result := RestrictedPermNC(result, [1..n]);
fi;
fi;
fi;
od;
i := i + 1;
od;
return result;
end );
#############################################################################
##
#F ExtensionOnBlocks( <S>, <n>, <blks>, <elms> ) . . . . . . . . . extension
##
InstallGlobalFunction( ExtensionOnBlocks, function( S, n, blks, elms )
local where, j, k, hom, T, newelms;
# list which block the elements of the orbit belong to
where := [];
for j in [1..Length(blks)] do
for k in blks[j] do
where[k] := j;
od;
od;
hom := function( g )
local perm, j;
perm := [1..n];
for j in [1..Length(blks)] do
perm[n+j] := n+where[blks[j][1]^g];
od;
perm := PermList(perm);
return g * perm;
end;
T := EmptyStabChain( [ ], S.identity );
ConjugateStabChain( S, T, hom, S.identity );
# construct extensions of permutations in elms
newelms := List( elms, hom );
return [ T, newelms ];
end );
#############################################################################
##
#F ClosureRandomPermGroup( <G>, <genlist>, <options> ) make closure randomly
##
InstallGlobalFunction( ClosureRandomPermGroup,
function( G, genlist, options )
local k, # number of pairs of subproducts of generators in
# testing result
givenbase, # ordering from which initial base points should
# be chosen
gens, # generators in genlist that are not in <G>
g, # element of gens
degree, # degree of closure
orbits, # list of orbits of closure
orbits2, # list of orbits of closure
i,j, # loop variables
param, # list of parameters guiding number of repetitions
# in random constructions
where, # list indicating which orbit contains points in domain
basesize, # list; i^th entry = number of base points in orbits[i]
ready, # boolean; true if stabilizer chain ready
new, # list of permutations to be added to stab. chain
result, # output of checking phase; nontrivial if stabilizer
# chain is incorrect
base, # ordering of domain from which base points are taken
missing, # if a correct base was provided by input, missing
# contains those points of it which are not in
# constructed base
correct; # boolean; true if a correct base is given
# warning: options.base should be compatible with BaseOfGroup(G)
gens := Filtered( genlist, gen -> not(IsOne(SCRSift(G,gen))) );
if Length(gens) > 0 then
G.identity := One(gens[1]) ;
if options.random = 1000 then
#case of deterministic computation with known size
k := 1;
else
k:=First([1..14],x->(3/5)^x<1-options.random/1000);
fi;
if IsBound(options.knownBase) then
param := [k,4,0,0,0,0];
else
param := [QuoInt(k,2),4,QuoInt(k+1,2),4,50,5];
fi;
if options.random <= 200 then
param[2] := 2;
param[4] := 2;
fi;
#param[1] = number of pairs of random subproducts from generators in
# first checking phase
#param[2] = (number of random elements from created set)/S.diam
# in first checking phase
#param[3] = number of pairs of random subproducts from generators in
# second checking phase
#param[4] = (number of random elements from created set)/S.diam
# in second checking phase
#param[5] = maximum size of orbits in which we evaluate words on all
# points of orbit
#param[6] = minimum number of random points from orbit to plug in to check
# whether given word is identity on orbit
degree := LargestMovedPoint( Union( G.generators, gens ) );
# prepare input of construction
if IsBound(options.base) then
givenbase := options.base;
else
givenbase := [];
fi;
if IsBound(options.knownBase) then
correct := true;
else
correct := false;
fi;
if correct then
# if correct base was given as input,
# no need for orbit information
base := Set( givenbase );
for i in BaseStabChain(G) do
if not i in base then
Add( givenbase, i );
fi;
od;
base := Concatenation(givenbase,Difference(options.knownBase,
givenbase));
missing := Difference(options.knownBase,BaseStabChain(G));
basesize := [];
where := [];
orbits := [];
else
# create ordering of domain used in choosing base points and
# compute orbit information
base := Set( givenbase );
for i in BaseStabChain(G) do
if not i in base then
Add( givenbase, i );
fi;
od;
base := Concatenation(givenbase,Difference([1..degree],givenbase));
missing := [];
orbits2 := OrbitsPerms( Union( G.generators, gens ), [1..degree] );
#throw away one-element orbits
orbits:=[];
j:=0;
for i in [1..Length(orbits2)] do
if Length(orbits2[i]) >1 then
j:=j+1; orbits[j]:= orbits2[i];
fi;
od;
basesize:=[];
where:=[];
for i in [1..Length(orbits)] do
basesize[i]:=0;
for j in [1..Length(orbits[i])] do
where[orbits[i][j]]:=i;
od;
od;
# temporary solution to speed up of handling
# of lots of small orbits until compiler
if Length(orbits) > degree/40 then
param[1] := 0;
param[3] := k;
fi;
fi;
if not IsBound(G.aux) then
SCRExtendRecord(G);
fi;
new := gens;
#the first call of SCRMakeStabStrong has top:=false
#in order to add gens to the generating set of G;
#further calls have top:=true, in order not to add
#output of SCRStrongGenTest to generating set.
#remark: adding gens to the generating set of G before
#calling SCRMakeStabStrong gives a nasty error if first base
#point changes
for g in gens do
if not(IsOne(SCRSift(G,g))) then
SCRMakeStabStrong (G,[g],param,orbits,
where,basesize,base,correct,missing,false);
fi;
od;
ready := false;
while not ready do
if IsBound(options.limit)
and SizeStabChain(G)=options.limit
then
ready := true;
else
# we do a little random testing, to ensure heuristically a
# correct result
if correct then
result := SCRStrongGenTest(G,[1,10/G.diam,0,0,0,0],orbits,
basesize,base,correct,missing);
else
result := SCRStrongGenTest2(G,[0,0,1,10/G.diam,0,0]);
fi;
if not(IsPerm(result) and IsOne(result)) then
new := [result];
ready := false;
elif options.random = 1000 then
G.restored := SCRRestoredRecord(G);
result := VerifySGS( G.restored, missing, correct );
elif options.random > 0 then
result := SCRStrongGenTest
(G,param,orbits,basesize,base,correct,missing);
fi;
if not(IsPerm(result) and IsOne(result)) then
if not IsPerm(result) then
repeat
result := SCRStrongGenTest2(G,[0,0,1,10/G.diam,0,0]);
until not(IsPerm(result) and IsOne(result));
fi;
new := [result];
ready := false;
elif correct or options.random = 0 or options.random = 1000 then
ready := true;
else
result := SCRStrongGenTest2(G,param);
if IsPerm(result) and IsOne(result) then
ready := true;
else
new := [result];
ready := false;
fi;
fi;
if not ready then
Unbind(G.restored);
SCRMakeStabStrong (G,new,param,orbits,
where,basesize,base,correct,missing,true);
fi;
fi;
od;
if not IsBound(options.temp) or options.temp = false then
if IsBound( G.restored ) then
G := G.restored;
else
G := SCRRestoredRecord(G);
fi;
else
G.basesize := basesize;
G.correct := correct;
G.orbits := orbits;
G.missing := missing;
G.base := base;
fi;
fi; # if Length(gens) > 0
# return the closure
return G;
end );
#############################################################################
|