This file is indexed.

/usr/share/gap/lib/schursym.gd is in gap-libs 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#############################################################################
##
#W  schursym.gd              GAP library                           Lukas Maas
#W                                                             & Jack Schmidt
##
#Y  Copyright (C) 2009, The GAP group
##


#############################################################################
##
##  <#GAPDoc Label="{SchurCoversOfSymmetricGroup}">
##
##  <Subsection><Heading>Covering groups of symmetric groups</Heading>
##
##  The covering groups of symmetric groups were classified in <Cite
##  Key="Schur1911"/>; an inductive procedure to construct faithful,
##  irreducible representations of minimal degree over all fields was presented
##  in <Cite Key="Maas2010"/>. Methods for <Ref Func="EpimorphismSchurCover"/> are
##  provided for natural symmetric groups which use these representations. For
##  alternating groups, the restriction of these representations are provided,
##  but they may not be irreducible.  In the case of degree <M>6</M> and
##  <M>7</M>, they are not the full covering groups and so matrix
##  representations are just stored explicitly for the six-fold covers.
##
##  <Example><![CDATA[
##  gap> EpimorphismSchurCover(SymmetricGroup(15));
##  [ < immutable compressed matrix 64x64 over GF(9) >, 
##    < immutable compressed matrix 64x64 over GF(9) > ] -> 
##  [ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), (1,2) ]
##  gap> EpimorphismSchurCover(AlternatingGroup(15));
##  [ < immutable compressed matrix 64x64 over GF(9) >, 
##    < immutable compressed matrix 64x64 over GF(9) > ] -> 
##  [ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), (13,14,15) ]
##  gap> SchurCoverOfSymmetricGroup(12);
##  <matrix group of size 958003200 with 2 generators>
##  gap> DoubleCoverOfAlternatingGroup(12);
##  <matrix group of size 479001600 with 2 generators>
##  gap> BasicSpinRepresentationOfSymmetricGroup( 10, 3, -1 );
##  [ < immutable compressed matrix 16x16 over GF(9) >, 
##    < immutable compressed matrix 16x16 over GF(9) >, 
##    < immutable compressed matrix 16x16 over GF(9) >, 
##    < immutable compressed matrix 16x16 over GF(9) >, 
##    < immutable compressed matrix 16x16 over GF(9) >, 
##    < immutable compressed matrix 16x16 over GF(9) >, 
##    < immutable compressed matrix 16x16 over GF(9) >, 
##    < immutable compressed matrix 16x16 over GF(9) >, 
##    < immutable compressed matrix 16x16 over GF(9) > ]
##  ]]></Example>
##
##  </Subsection>
##
##  <#Include Label="BasicSpinRepresentationOfSymmetricGroup">
##
##  <#Include Label="SchurCoverOfSymmetricGroup">
##  
##  <#Include Label="DoubleCoverOfAlternatingGroup">
##
##  <#/GAPDoc>

#############################################################################
##
#F  BasicSpinRepresentationOfSymmetricGroup
##
##  <#GAPDoc Label="BasicSpinRepresentationOfSymmetricGroup">
##
##  <ManSection>
##
##  <Func Name="BasicSpinRepresentationOfSymmetricGroup" Arg="n, p, sign"/>
##
##  <Description> Constructs the image of the Coxeter generators in the basic
##  spin (projective) representation of the symmetric group of degree <A>n</A>
##  over a field of characteristic <M><A>p</A> \geq 0</M>. There are two such
##  representations and <A>sign</A> controls which is returned: +1 gives a
##  group where the preimage of an adjacent transposition <M>(i,i+1)</M> has
##  order 4, -1 gives a group where the preimage of an adjacent transposition
##  <M>(i,i+1)</M> has order 2.  If no <A>sign</A> is specified, +1 is used by
##  default.  If no <A>p</A> is specified, 3 is used by default.
##  (Note that the convention of which cover is labelled as +1 is
##  inconsistent in the literature.)</Description>
##
##  </ManSection>
##
##  <#/GAPDoc>

DeclareGlobalFunction( "BasicSpinRepresentationOfSymmetricGroup" );

#############################################################################
##
#O  SchurCoverOfSymmetricGroup( <n>, <p>, <sign> )
##
##  <#GAPDoc Label="SchurCoverOfSymmetricGroup">
##
##  <ManSection> <Oper Name="SchurCoverOfSymmetricGroup" Arg='n, p, sign'/>
##
##  <Description> Constructs a Schur cover of <C>SymmetricGroup(<A>n</A>)</C>
##  as a faithful, irreducible matrix group in characteristic <A>p</A>
##  (<M><A>p</A> \neq 2</M>).  For <M><A>n</A> \geq 4</M>, there are two such
##  covers, and <A>sign</A> determines which is returned: +1 gives a group
##  where the preimage of an adjacent transposition <M>(i,i+1)</M> has order 4,
##  -1 gives a group where the preimage of an adjacent transposition
##  <M>(i,i+1)</M> has order 2.  If no <A>sign</A> is specified, +1 is used by
##  default.  If no <A>p</A> is specified, 3 is used by default.
##  (Note that the convention of which cover is labelled as +1 is
##  inconsistent in the literature.)
##
##  For <M><A>n</A> \leq 3</M>, the symmetric group is its own Schur cover and
##  <A>sign</A> is ignored. For <M><A>p</A> = 2</M>, there is no faithful,
##  irreducible representation of the Schur cover unless <M><A>n</A> = 1</M> or
##  <M><A>n</A> = 3</M>, so <K>fail</K> is returned if <M><A>p</A> = 2</M>. For
##  <M><A>p</A> = 3</M>, <M><A>n</A> = 3</M>, the representation is
##  indecomposable, but reducible.
##
##  The field of the matrix group is generally <C>GF(<A>p</A>^2)</C> if
##  <M><A>p</A> &gt; 0</M>, and an abelian number field if <M><A>p</A> = 0</M>.
##
##  </Description> </ManSection>
##
##  <#/GAPDoc>
##
DeclareOperation("SchurCoverOfSymmetricGroup",[IsPosInt,IsInt,IsInt]);

#############################################################################
##
#O  DoubleCoverOfAlternatingGroup( <n>, <p> )
##
##  <#GAPDoc Label="DoubleCoverOfAlternatingGroup">
##
##  <ManSection> <Oper Name="DoubleCoverOfAlternatingGroup" Arg='n, p'/>
##
##  <Description> 
##
##  Constructs a double cover of <C>AlternatingGroup(<A>n</A>)</C> as a
##  faithful, completely reducible matrix group in characteristic <A>p</A>
##  (<M>p \neq 2</M>) for <M>n \geq 4</M>.
##
##  For <M>n \leq 3</M>, the alternating group is its own Schur cover, and
##  <K>fail</K> is returned. For <M>p = 2</M>, there is no faithful, completely
##  reducible representation of the double cover, so <K>fail</K> is returned.
##
##  The field of the matrix group is generally <C>GF(p^2)</C> if <M>p>0</M>,
##  and an abelian number field if <M>p=0</M>.  If <A>p</A> is omitted, the
##  default is 3.
##
##  </Description> </ManSection>
##
##  <#/GAPDoc>
##
DeclareOperation("DoubleCoverOfAlternatingGroup",[IsPosInt,IsInt]);

#############################################################################
##
#E