/usr/share/gap/lib/schursym.gd is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | #############################################################################
##
#W schursym.gd GAP library Lukas Maas
#W & Jack Schmidt
##
#Y Copyright (C) 2009, The GAP group
##
#############################################################################
##
## <#GAPDoc Label="{SchurCoversOfSymmetricGroup}">
##
## <Subsection><Heading>Covering groups of symmetric groups</Heading>
##
## The covering groups of symmetric groups were classified in <Cite
## Key="Schur1911"/>; an inductive procedure to construct faithful,
## irreducible representations of minimal degree over all fields was presented
## in <Cite Key="Maas2010"/>. Methods for <Ref Func="EpimorphismSchurCover"/> are
## provided for natural symmetric groups which use these representations. For
## alternating groups, the restriction of these representations are provided,
## but they may not be irreducible. In the case of degree <M>6</M> and
## <M>7</M>, they are not the full covering groups and so matrix
## representations are just stored explicitly for the six-fold covers.
##
## <Example><![CDATA[
## gap> EpimorphismSchurCover(SymmetricGroup(15));
## [ < immutable compressed matrix 64x64 over GF(9) >,
## < immutable compressed matrix 64x64 over GF(9) > ] ->
## [ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), (1,2) ]
## gap> EpimorphismSchurCover(AlternatingGroup(15));
## [ < immutable compressed matrix 64x64 over GF(9) >,
## < immutable compressed matrix 64x64 over GF(9) > ] ->
## [ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), (13,14,15) ]
## gap> SchurCoverOfSymmetricGroup(12);
## <matrix group of size 958003200 with 2 generators>
## gap> DoubleCoverOfAlternatingGroup(12);
## <matrix group of size 479001600 with 2 generators>
## gap> BasicSpinRepresentationOfSymmetricGroup( 10, 3, -1 );
## [ < immutable compressed matrix 16x16 over GF(9) >,
## < immutable compressed matrix 16x16 over GF(9) >,
## < immutable compressed matrix 16x16 over GF(9) >,
## < immutable compressed matrix 16x16 over GF(9) >,
## < immutable compressed matrix 16x16 over GF(9) >,
## < immutable compressed matrix 16x16 over GF(9) >,
## < immutable compressed matrix 16x16 over GF(9) >,
## < immutable compressed matrix 16x16 over GF(9) >,
## < immutable compressed matrix 16x16 over GF(9) > ]
## ]]></Example>
##
## </Subsection>
##
## <#Include Label="BasicSpinRepresentationOfSymmetricGroup">
##
## <#Include Label="SchurCoverOfSymmetricGroup">
##
## <#Include Label="DoubleCoverOfAlternatingGroup">
##
## <#/GAPDoc>
#############################################################################
##
#F BasicSpinRepresentationOfSymmetricGroup
##
## <#GAPDoc Label="BasicSpinRepresentationOfSymmetricGroup">
##
## <ManSection>
##
## <Func Name="BasicSpinRepresentationOfSymmetricGroup" Arg="n, p, sign"/>
##
## <Description> Constructs the image of the Coxeter generators in the basic
## spin (projective) representation of the symmetric group of degree <A>n</A>
## over a field of characteristic <M><A>p</A> \geq 0</M>. There are two such
## representations and <A>sign</A> controls which is returned: +1 gives a
## group where the preimage of an adjacent transposition <M>(i,i+1)</M> has
## order 4, -1 gives a group where the preimage of an adjacent transposition
## <M>(i,i+1)</M> has order 2. If no <A>sign</A> is specified, +1 is used by
## default. If no <A>p</A> is specified, 3 is used by default.
## (Note that the convention of which cover is labelled as +1 is
## inconsistent in the literature.)</Description>
##
## </ManSection>
##
## <#/GAPDoc>
DeclareGlobalFunction( "BasicSpinRepresentationOfSymmetricGroup" );
#############################################################################
##
#O SchurCoverOfSymmetricGroup( <n>, <p>, <sign> )
##
## <#GAPDoc Label="SchurCoverOfSymmetricGroup">
##
## <ManSection> <Oper Name="SchurCoverOfSymmetricGroup" Arg='n, p, sign'/>
##
## <Description> Constructs a Schur cover of <C>SymmetricGroup(<A>n</A>)</C>
## as a faithful, irreducible matrix group in characteristic <A>p</A>
## (<M><A>p</A> \neq 2</M>). For <M><A>n</A> \geq 4</M>, there are two such
## covers, and <A>sign</A> determines which is returned: +1 gives a group
## where the preimage of an adjacent transposition <M>(i,i+1)</M> has order 4,
## -1 gives a group where the preimage of an adjacent transposition
## <M>(i,i+1)</M> has order 2. If no <A>sign</A> is specified, +1 is used by
## default. If no <A>p</A> is specified, 3 is used by default.
## (Note that the convention of which cover is labelled as +1 is
## inconsistent in the literature.)
##
## For <M><A>n</A> \leq 3</M>, the symmetric group is its own Schur cover and
## <A>sign</A> is ignored. For <M><A>p</A> = 2</M>, there is no faithful,
## irreducible representation of the Schur cover unless <M><A>n</A> = 1</M> or
## <M><A>n</A> = 3</M>, so <K>fail</K> is returned if <M><A>p</A> = 2</M>. For
## <M><A>p</A> = 3</M>, <M><A>n</A> = 3</M>, the representation is
## indecomposable, but reducible.
##
## The field of the matrix group is generally <C>GF(<A>p</A>^2)</C> if
## <M><A>p</A> > 0</M>, and an abelian number field if <M><A>p</A> = 0</M>.
##
## </Description> </ManSection>
##
## <#/GAPDoc>
##
DeclareOperation("SchurCoverOfSymmetricGroup",[IsPosInt,IsInt,IsInt]);
#############################################################################
##
#O DoubleCoverOfAlternatingGroup( <n>, <p> )
##
## <#GAPDoc Label="DoubleCoverOfAlternatingGroup">
##
## <ManSection> <Oper Name="DoubleCoverOfAlternatingGroup" Arg='n, p'/>
##
## <Description>
##
## Constructs a double cover of <C>AlternatingGroup(<A>n</A>)</C> as a
## faithful, completely reducible matrix group in characteristic <A>p</A>
## (<M>p \neq 2</M>) for <M>n \geq 4</M>.
##
## For <M>n \leq 3</M>, the alternating group is its own Schur cover, and
## <K>fail</K> is returned. For <M>p = 2</M>, there is no faithful, completely
## reducible representation of the double cover, so <K>fail</K> is returned.
##
## The field of the matrix group is generally <C>GF(p^2)</C> if <M>p>0</M>,
## and an abelian number field if <M>p=0</M>. If <A>p</A> is omitted, the
## default is 3.
##
## </Description> </ManSection>
##
## <#/GAPDoc>
##
DeclareOperation("DoubleCoverOfAlternatingGroup",[IsPosInt,IsInt]);
#############################################################################
##
#E
|