/usr/share/gap/lib/random.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | #############################################################################
##
#W random.gi GAP library Frank Lübeck
#W Max Neunhöffer
##
##
#Y Copyright (C) 2006 The GAP Group
##
## This file implements the basic operations for some types of random
## sources.
##
###########################################################################
## Generic methods for random sources.
##
# The generic initializer of a random source creates a dummy object of the
# right type and then calls 'Init'.
InstallMethod(RandomSource, [IsOperation, IsObject], function(rep, seed)
local res;
res := Objectify(NewType(RandomSourcesFamily, rep), rec());
return Init (res, seed);
end);
InstallMethod(RandomSource, [IsOperation], function(rep)
return RandomSource(rep, 1);
end);
# A generic Reset if no seed is given (then seed=1 is chosen).
InstallMethod(Reset, [IsRandomSource], function(rs)
return Reset(rs, 1);
end);
# Generic fallback methods, such that it is sufficient to install Random for
# lists or for pairs of integers.
InstallMethod(Random, [IsRandomSource, IsInt, IsInt], function(rs, a, b)
local d, x, r, y;
d := b - a;
if d < 0 then
return fail;
elif a = b then
return a;
else
x := LogInt( d, 2 ) + 1;
r := 0;
while 0 < x do
y := Minimum( 10, x );
x := x - y;
r := r * 2 ^ y + Random( rs, [ 0 .. (2 ^ y - 1) ] );
od;
if d < r then
return Random( rs, a, b );
else
return a + r;
fi;
fi;
end);
InstallMethod(Random, [IsRandomSource, IsList], function(rs, list)
return list[Random(rs, 1, Length(list))];
end);
# A print method.
InstallMethod(PrintObj, [IsRandomSource], function(rs)
local cat;
cat := Difference(CategoriesOfObject(rs), [ "IsRandomSource" ]);
Print("<RandomSource in ", JoinStringsWithSeparator(cat, " and "), ">");
end);
############################################################################
## We provide the "classical" GAP random generator via a random source.
##
InstallValue(GlobalRandomSource, Objectify(NewType(RandomSourcesFamily,
IsGlobalRandomSource),rec()));
InstallMethod(Init, [IsGlobalRandomSource, IsObject], function(rs, seed)
if IsInt(seed) then
RANDOM_SEED(seed);
else
R_N := seed[1];
R_X := ShallowCopy(seed[2]);
fi;
return GlobalRandomSource;
end);
Init(GlobalRandomSource, 1);
InstallMethod(State, [IsGlobalRandomSource], function(rs)
return [R_N, ShallowCopy(R_X)];
end);
InstallMethod(Reset, [IsGlobalRandomSource, IsObject], function(rs, seed)
local old;
old := State(GlobalRandomSource);
Init(rs, seed);
return old;
end);
InstallMethod(Random, [IsGlobalRandomSource, IsList], function(rs, l)
if Length(l) < 2^28 then
return RANDOM_LIST(l);
else
return l[Random(rs, 1, Length(l))];
fi;
end);
############################################################################
## The classical GAP random generator as independent random sources.
##
InstallMethod(Init, [IsGAPRandomSource, IsObject], function(rs, seed)
local old;
if seed = 1 then
rs!.R_N := 45;
rs!.R_X := [ 66318732, 86395905, 22233618, 21989103, 237245480,
264566285, 240037038, 264902875, 9274660, 180361945, 94688010, 24032135,
106293216, 27264613, 126456102, 243761907, 80312412, 2522186, 59575208,
70682510, 228947516, 173992210, 175178224, 250788150, 73030390, 210575942,
128491926, 194508966, 201311350, 63569414, 185485910, 62786150, 213986102,
88913350, 94904086, 252860454, 247700982, 233113990, 75685846, 196780518,
74570934, 7958751, 130274620, 247708693, 183364378, 82600777, 28385464,
184547675, 20423483, 75041763, 235736203, 54265107, 49075195, 100648387,
114539755 ];
elif IsInt(seed) then
old := Reset(GlobalRandomSource, seed);
rs!.R_N := R_N;
rs!.R_X := ShallowCopy(R_X);
Reset(GlobalRandomSource, old);
else
rs!.R_N := seed[1];
rs!.R_X := ShallowCopy(seed[2]);
fi;
return rs;
end);
InstallMethod(State, [IsGAPRandomSource], function(rs)
return [rs!.R_N, ShallowCopy(rs!.R_X)];
end);
InstallMethod(Reset, [IsGAPRandomSource, IsObject], function(rs, seed)
local old;
old := State(rs);
Init(rs, seed);
return old;
end);
InstallMethod(Random, [IsGAPRandomSource, IsList], function(rs, list)
local rx, rn;
if Length(list) < 2^28 then
# we need to repeat the code of RANDOM_LIST
rx := rs!.R_X;
rn := rs!.R_N mod 55 + 1;
rs!.R_N := rn;
rx[rn] := (rx[rn] + rx[(rn+30) mod 55+1]) mod R_228;
return list[ QUO_INT( rx[rn] * LEN_LIST(list), R_228 ) + 1 ];
else
return list[Random(rs, 1, Length(list))];
fi;
end);
##############################################################################
## Random source using the Mersenne twister kernel functions.
##
InstallMethod(Init, [IsMersenneTwister, IsObject], function(rs, seed)
local st, endianseed, endiansys, perm, tmp, i;
if IsPlistRep(seed) and IsString(seed[1]) and Length(seed[1]) = 2504 then
st := ShallowCopy(seed[1]);
# maybe adjust endianness if seed comes from different machine:
endianseed := st{[2501..2504]};
endiansys := GlobalMersenneTwister!.state{[2501..2504]};
if endianseed <> endiansys then
perm := List(endiansys, c-> Position(endianseed, c));
tmp := "";
for i in [0..625] do
tmp{[4*i+1..4*i+4]} := st{4*i+perm};
od;
st := tmp;
fi;
rs!.state := st;
else
if not IsString(seed) then
seed := ShallowCopy(String(seed));
# padding such that length is positive and divisible by 4
while Length(seed) = 0 or Length(seed) mod 4 <> 0 do
Add(seed, CHAR_INT(0));
od;
fi;
rs!.state := InitRandomMT(seed);
fi;
return rs;
end);
InstallMethod(State, [IsMersenneTwister], function(rs)
return [ShallowCopy(rs!.state)];
end);
InstallMethod(Reset, [IsMersenneTwister, IsObject], function(rs, seed)
local old;
old := State(rs);
Init(rs, seed);
return old;
end);
InstallMethod(Random, [IsMersenneTwister, IsList], function(rs, list)
return list[Random(rs, 1, Length(list))];
end);
InstallMethod(Random, [IsMersenneTwister, IsInt, IsInt], function(rs, a, b)
local d, nrbits, res;
d := b-a+1;
if d < 0 then
return fail;
elif d = 0 then
return a;
fi;
nrbits := Log2Int(d) + 1;
repeat
res := RandomIntegerMT(rs!.state, nrbits);
until res < d;
return res + a;
end);
# One global Mersenne twister random source, can be used to overwrite
# the library Random(list) and Random(a,b) methods.
InstallValue(GlobalMersenneTwister, RandomSource(IsMersenneTwister, "1"));
# default random method for lists and pairs of integers using the Mersenne
# twister
InstallMethod( Random, "for an internal list",
[ IsList and IsInternalRep ], 100, function(l)
return l[Random(GlobalMersenneTwister, 1, Length(l))];
end );
InstallMethod( Random,
"for two integers",
IsIdenticalObj,
[ IsInt,
IsInt ],
0,
function(low, high)
return Random(GlobalMersenneTwister, low, high);
end );
|