This file is indexed.

/usr/share/gap/lib/pperm.gi is in gap-libs 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
#############################################################################
##
#W  pperm.gi
##Y  Copyright (C) 2011-13                                James D. Mitchell
##
###  Licensing information can be found in the README file of this package.
##
#############################################################################
##

InstallMethod(IsGeneratorsOfMagmaWithInverses,
 "for a partial perm collection",
[IsPartialPermCollection],
coll-> ForAll(coll, x-> DomainOfPartialPerm(x)=DomainOfPartialPerm(coll[1]) and
ImageSetOfPartialPerm(x)=DomainOfPartialPerm(coll[1])));

# attributes

InstallMethod(DomainOfPartialPerm, "for a partial perm",
[IsPartialPerm], DOMAIN_PPERM);

InstallMethod(ImageListOfPartialPerm, "for a partial perm",
[IsPartialPerm], IMAGE_PPERM);

InstallMethod(ImageSetOfPartialPerm, "for a partial perm",
[IsPartialPerm], IMAGE_SET_PPERM);

InstallMethod(IndexPeriodOfPartialPerm, "for a partial perm",
[IsPartialPerm], INDEX_PERIOD_PPERM);

InstallMethod(SmallestIdempotentPower, "for a partial perm",
[IsPartialPerm], SMALLEST_IDEM_POW_PPERM);

InstallMethod(ComponentRepsOfPartialPerm, "for a partial perm",
[IsPartialPerm], COMPONENT_REPS_PPERM);

InstallMethod(NrComponentsOfPartialPerm, "for a partial perm",
[IsPartialPerm], NR_COMPONENTS_PPERM);

InstallMethod(ComponentsOfPartialPerm, "for a partial perm",
[IsPartialPerm], COMPONENTS_PPERM);

InstallMethod(IsIdempotent, "for a partial perm", 
[IsPartialPerm], IS_IDEM_PPERM);

InstallMethod(IsOne, "for a partial perm", 
[IsPartialPerm], IS_IDEM_PPERM);

InstallMethod(FixedPointsOfPartialPerm, "for a partial perm", 
[IsPartialPerm], FIXED_PTS_PPERM);

InstallMethod(NrFixedPoints, "for a partial perm", 
[IsPartialPerm], NR_FIXED_PTS_PPERM);

InstallMethod(MovedPoints, "for a partial perm", 
[IsPartialPerm], MOVED_PTS_PPERM);

InstallMethod(NrMovedPoints, "for a partial perm", 
[IsPartialPerm], NR_MOVED_PTS_PPERM);

InstallMethod(LargestMovedPoint, "for a partial perm", 
[IsPartialPerm], LARGEST_MOVED_PT_PPERM);

InstallMethod(LargestImageOfMovedPoint, "for a partial perm",
[IsPartialPerm],
function(f)
  local max, i;
  
  if IsOne(f) then 
    return 0;
  fi;
  
  max:=0;
  for i in [SmallestMovedPoint(f)..LargestMovedPoint(f)] do 
    if i^f>max then max:=i^f; fi;
  od;
  return max;
end);

InstallMethod(SmallestMovedPoint, "for a partial perm", 
[IsPartialPerm], 
function(f)
  if IsOne(f) then
    return infinity;
  fi;
  return SMALLEST_MOVED_PT_PPERM(f);
end);

InstallMethod(SmallestImageOfMovedPoint, "for a partial perm",
[IsPartialPerm],
function(f)
  local min, j, i;
 
  if IsOne(f) then 
    return infinity;
  fi;

  min:=CoDegreeOfPartialPerm(f);
  for i in [SmallestMovedPoint(f)..LargestMovedPoint(f)] do
    j:=i^f;
    if j>0 and j<min then min:=j; fi;
  od;
  return min;
end);

InstallMethod(LeftOne, "for a partial perm", 
[IsPartialPerm], LEFT_ONE_PPERM);

InstallMethod(RightOne, "for a partial perm", 
[IsPartialPerm], RIGHT_ONE_PPERM);

# operations

InstallMethod(PreImagePartialPerm,
"for a partial perm and positive integer",
[IsPartialPerm, IsPosInt], PREIMAGE_PPERM_INT);

#

InstallMethod(ComponentPartialPermInt,
"for a partial perm and positive integer",
[IsPartialPerm, IsPosInt], COMPONENT_PPERM_INT);

#

InstallGlobalFunction(JoinOfPartialPerms, 
function(arg)
  local join, i;

  if IsPartialPermCollection(arg[1]) then 
    return CallFuncList(JoinOfPartialPerms, arg[1]);
  elif not IsPartialPermCollection(arg) then 
    Error("usage: the argument should be a collection of partial perms,");
    return;
  fi;

  join:=arg[1]; i:=1;
  while i<Length(arg) and join<>fail do
    i:=i+1;
    join:=JOIN_PPERMS(join, arg[i]);
   od; 
  return join;
end);

#

InstallGlobalFunction(JoinOfIdempotentPartialPermsNC, 
function(arg)
  local join, i;

  if IsPartialPermCollection(arg[1]) then 
    return CallFuncList(JoinOfIdempotentPartialPermsNC, arg[1]);
  elif not IsPartialPermCollection(arg) then 
    Error("usage: the argument should be a collection of partial perms,");
    return;
  fi;

  join:=arg[1]; i:=1;
  while i<Length(arg) do
    i:=i+1;
    join:=JOIN_IDEM_PPERMS(join, arg[i]);
   od; 
  return join;
end);

#

InstallGlobalFunction(MeetOfPartialPerms, 
function(arg)
  local meet, i;

  if IsPartialPermCollection(arg[1]) then 
    return CallFuncList(MeetOfPartialPerms, AsList(arg[1]));
  elif not IsPartialPermCollection(arg) then 
    Error("usage: the argument should be a collection of partial perms,");
    return;
  fi;

  meet:=arg[1]; i:=1;
  repeat
    i:=i+1;
    meet:=MEET_PPERMS(meet, arg[i]);
  until i=Length(arg) or meet=EmptyPartialPerm();
    
  return meet;
end);

#

InstallMethod(AsPartialPerm, "for a perm and a list", 
[IsPerm, IsList], 
function(p, list)
  
  if not IsSSortedList(list) or not ForAll(list, IsPosInt) then 
    Error("usage: the second argument must be a set of positive integers,");
    return;
  fi;

  return AS_PPERM_PERM(p, list);
end);

#

InstallMethod(AsPartialPerm, "for a perm",
[IsPerm], p-> AS_PPERM_PERM(p, [1..LargestMovedPoint(p)]));

#

InstallMethod(AsPartialPerm, "for a perm and pos int",
[IsPerm, IsPosInt], 
function(p, n)
  return AS_PPERM_PERM(p, [1..n]);
end);

#

InstallMethod(AsPartialPerm, "for a perm and zero",
[IsPerm, IsZeroCyc], 
function(p, n)
  return PartialPerm([]);
end);

# c method? JDM

InstallMethod(AsPartialPerm, "for a transformation and list",
[IsTransformation, IsList], 
function(f, list)
  
  if not IsSSortedList(list) or not ForAll(list, IsPosInt) 
    or not ForAll(list, i-> i<=DegreeOfTransformation(f)) then 
    Error("usage: the second argument must be a set of positive integers ", 
    "not greater than the degree of the first argument,");
    return;
  elif not IsInjectiveListTrans(list, f) then 
    Error("usage: the first argument must be injective on the second,");
    return fail;
  fi;
  return PartialPermNC(list, OnTuples(list, f)); 
end);

#

InstallMethod(AsPartialPerm, "for a transformation and positive int",
[IsTransformation, IsPosInt], 
function(f, n)
  return AsPartialPerm(f, [1..n]);
end);

# c method? JDM

InstallMethod(AsPartialPerm, "for a transformation", 
[IsTransformation],
function(f)
  local img, n;
  n:=DegreeOfTransformation(f);
  if not n^f=n then 
    return fail; 
  fi;
  return PartialPerm(List([1..n], function(i) 
    local j;
    j:=i^f;
    if j=n then 
      return 0; 
    else 
      return j; 
    fi;
  end));
end);

# n is image of undefined points 
InstallMethod(AsTransformation, "for a partial perm and positive integer",
[IsPartialPerm, IsPosInt],
function(f, n)
  local deg, out, i;
  
  if n<DegreeOfPartialPerm(f) and n^f<>0 and n^f<>n then 
    Error("usage: the 2nd argument must not be a moved point of the 1st ", 
    "argument,");
    return;
  fi;
  deg:=Maximum(n, LargestMovedPoint(f)+1, LargestImageOfMovedPoint(f)+1); 
  out:=ListWithIdenticalEntries(deg, n);
  for i in DomainOfPartialPerm(f) do
    out[i]:=i^f;
  od;

  return Transformation(out);
end);

# c method? JDM

InstallMethod(AsTransformation, "for a partial perm",
[IsPartialPerm],
function(f)
  return AsTransformation(f, Maximum(LargestImageOfMovedPoint(f),
   LargestMovedPoint(f))+1);
end);

#

InstallMethod(RestrictedPartialPerm, "for a partial perm",
[IsPartialPerm, IsList],
function(f, list)

  if not IsSSortedList(list) or not ForAll(list, IsPosInt) then 
    Error("usage: the second argument must be a set of positive integers,");
    return;
  fi;

  return RESTRICTED_PPERM(f, list);
end);

#

InstallMethod(AsPermutation, "for a partial perm",
[IsPartialPerm], AS_PERM_PPERM);

#

InstallMethod(PermLeftQuoPartialPermNC, "for a partial perm and partial perm",
[IsPartialPerm, IsPartialPerm], PERM_LEFT_QUO_PPERM_NC);

#

InstallMethod(PermLeftQuoPartialPerm, "for a partial perm and partial perm",
[IsPartialPerm, IsPartialPerm], 
function(f, g)
  
  if ImageSetOfPartialPerm(f)<>ImageSetOfPartialPerm(g) then 
    Error("usage: the arguments must be partial perms with equal image sets,");
    return;
  fi;

  return PERM_LEFT_QUO_PPERM_NC(f, g);
end);

#

InstallMethod(TrimPartialPerm, "for a partial perm",
[IsPartialPerm], TRIM_PPERM);

#

InstallMethod(PartialPermOp, "for object, list, function",
[IsObject, IsList, IsFunction],
function(f, D, act)
  local perm, out, seen, i, j, pnt, new;

  perm:=(); 

  if IsPlistRep(D) and Length(D)>2 and CanEasilySortElements(D[1]) then 
    if not IsSSortedList(D) then 
      D:=ShallowCopy(D);
      perm:=Sortex(D);
      D:=Immutable(D);
      SetIsSSortedList(D, true);
    fi;
  fi;
  
  out:=EmptyPlist(Length(D));
  seen:=EmptyPlist(Length(D));
  i:=0; j:=Length(D);
  
  for pnt in D do 
    pnt:=act(pnt, f);
    new:=PositionCanonical(D, pnt);
    if not pnt in seen then 
      AddSet(seen, pnt);
      if new<>fail then 
        i:=i+1;
        out[i]:=new;
      else
        i:=i+1;
        j:=j+1;
        out[i]:=j;
      fi;
    else 
      return fail;
    fi;
  od;

  out:=PartialPerm([1..Length(D)], out);
  
  if not IsOne(perm) then 
    out:=out^perm;
  fi;

  return out;
end);

#

InstallMethod(PartialPermOp, "for an obj and list",
[IsObject, IsList], 
function(obj, list) 
  return PartialPermOp(obj, list, OnPoints);
end);

#

InstallMethod(PartialPermOp, "for an obj and domain",
[IsObject, IsDomain], 
function(obj, D) 
  return PartialPermOp(obj, Enumerator(D), OnPoints);
end);

#

InstallMethod(PartialPermOp, "for an obj, domain, and function",
[IsObject, IsDomain, IsFunction], 
function(obj, D, func) 
  return PartialPermOp(obj, Enumerator(D), func);
end);

#

InstallMethod(PartialPermOpNC, "for object, list, function",
[IsObject, IsList, IsFunction],
function(f, D, act)
  local perm, out, i, j, pnt, new;

  perm:=(); 

  if IsPlistRep(D) and Length(D)>2 and CanEasilySortElements(D[1]) then 
    if not IsSSortedList(D) then 
      D:=ShallowCopy(D);
      perm:=Sortex(D);
      D:=Immutable(D);
      SetIsSSortedList(D, true);
    fi;
  fi;
  
  out:=EmptyPlist(Length(D));
  i:=0; j:=Length(D);
  
  for pnt in D do 
    pnt:=act(pnt, f);
    new:=PositionCanonical(D, pnt);
    if new<>fail then 
      i:=i+1;
      out[i]:=new;
    else
      i:=i+1;
      j:=j+1;
      out[i]:=j;
    fi;
  od;

  out:=PartialPermNC([1..Length(D)], out);
  
  if not IsOne(perm) then 
    out:=out^perm;
  fi;

  return out;
end);

#

InstallMethod(PartialPermOpNC, "for an obj and list",
[IsObject, IsList], 
function(obj, list) 
  return PartialPermOpNC(obj, list, OnPoints);
end);

#

InstallMethod(PartialPermOpNC, "for an obj and domain",
[IsObject, IsDomain], 
function(obj, D) 
  return PartialPermOpNC(obj, Enumerator(D), OnPoints);
end);

#

InstallMethod(PartialPermOpNC, "for an obj, domain, and function",
[IsObject, IsDomain, IsFunction], 
function(obj, D, func) 
  return PartialPermOpNC(obj, Enumerator(D), func);
end);


#

# creating partial perms

InstallGlobalFunction(RandomPartialPerm,
function(arg)
  local source, min, max, n, out, seen, j, dom, img, out1, out2, i;

  if Length(arg)=1 then 
    if IsPosInt(arg[1]) then 
      source:=[1..arg[1]];
      min:=0;
      max:=arg[1];
    elif IsCyclotomicCollection(arg[1]) and IsSSortedList(arg[1]) and
     ForAll(arg[1], IsPosInt) then 
      source:=arg[1];
      n:=Length(source);
      min:=Minimum(source)-1;
      max:=Maximum(source);
    else
      Error("usage: the argument must be a positive integer, a set, ",
      "or 2 sets, of positive integers,");
      return;
    fi;

    out:=List([1..max], x-> 0);
    seen:=BlistList([1..max], []);

    for i in source do
      j:=Random(source);
      if not seen[j-min] then
        seen[j-min]:=true;
        out[i]:=j;
      fi;
    od;
    return DensePartialPermNC(out);
  # for a domain and image
  elif Length(arg)=2 and IsCyclotomicCollColl(arg) 
   and ForAll(arg, IsSSortedList) and ForAll(arg[1], IsPosInt) 
   and ForAll(arg[2], IsPosInt) then 
    
    dom:=arg[1]; img:=arg[2];
    out1:=EmptyPlist(Length(dom));
    out2:=EmptyPlist(Length(dom));
    seen:=BlistList([1..Maximum(img)], []);
    
    for i in dom do 
      j:=Random(img);
      if not seen[j] then 
        seen[j]:=true;
        Add(out1, i);
        Add(out2, j);
      fi;
      ShrinkAllocationPlist(out1);
      ShrinkAllocationPlist(out2);
    od;
    return SparsePartialPermNC(out1, out2);
  else 
    Error("usage: the argument must be a positive integer, a set, ",
     "or 2 sets, of positive integers,");
    return;
  fi;

end);

#

InstallGlobalFunction(PartialPermNC,
function(arg) 
   
  if Length(arg)=1 then  
    return DensePartialPermNC(arg[1]); 
  elif Length(arg)=2 then  
    return SparsePartialPermNC(arg[1], arg[2]); 
  fi; 
 
  Error("usage: there should be one or two arguments,"); 
  return; 
end); 

#

InstallGlobalFunction(PartialPerm,
function(arg) 
   
  if Length(arg)=1 then  
    if ForAll(arg[1], i-> i=0 or IsPosInt(i)) and 
      IsDuplicateFreeList(Filtered(arg[1], x-> x<>0)) then 
      return DensePartialPermNC(arg[1]); 
    else
      Error("usage: the argument must be a list of non-negative integers ", 
      "and the non-zero elements must be duplicate-free,");
      return;
    fi;
  elif Length(arg)=2 then  
    if IsSSortedList(arg[1]) and ForAll(arg[1], IsPosInt) and
     IsDuplicateFreeList(arg[2]) and ForAll(arg[2], IsPosInt) then 
      return SparsePartialPermNC(arg[1], arg[2]); 
    else
      Error("usage: the 1st argument must be a set of positive integers ",
      "and the 2nd argument must be a duplicate-free list of positive ",
      "integers");
      return;
    fi;
  fi; 
 
  Error("usage: there should be one or two arguments,"); 
  return; 
end); 

# printing, viewing, displaying...

InstallMethod(String, "for a partial perm", 
[IsPartialPerm], 
function(f)
  return STRINGIFY("PartialPermNC( ", DomainOfPartialPerm(f), ", ",
   ImageListOfPartialPerm(f), " )");
  return;
end);

#

InstallMethod(PrintString, "for a partial perm",
[IsPartialPerm], 
function(f)
  return PRINT_STRINGIFY("PartialPermNC( ",
    Concatenation(PrintString(DomainOfPartialPerm(f)), ", "),
     ImageListOfPartialPerm(f), " )");
  return;
end);

#

InstallMethod(PrintObj, "for a partial perm",
[IsPartialPerm], 
function(f)
  Print("PartialPerm(\>\> ", DomainOfPartialPerm(f), "\<, \>",
     ImageListOfPartialPerm(f), "\<\< )");
  return;
end);

#

InstallMethod(ViewString, "for a partial perm",
[IsPartialPerm],
function(f)

  if DegreeOfPartialPerm(f)=0 then
    return "<empty partial perm>";
  fi;

  if RankOfPartialPerm(f)<UserPreference("PartialPermDisplayLimit") then 
    if UserPreference("NotationForPartialPerms")="component" then 
      if DomainOfPartialPerm(f)<>ImageListOfPartialPerm(f) then 
        return ComponentStringOfPartialPerm(f);
      else
        return PRINT_STRINGIFY("<identity partial perm on ", 
         DomainOfPartialPerm(f), ">");
      fi;
    elif UserPreference("NotationForPartialPerms")="domainimage" then 
      if DomainOfPartialPerm(f)<>ImageListOfPartialPerm(f) then 
        return PRINT_STRINGIFY(DomainOfPartialPerm(f), " -> ",
         ImageListOfPartialPerm(f));
      else
        return PRINT_STRINGIFY("<identity partial perm on ", 
         DomainOfPartialPerm(f), ">");
      fi;
      return;
    elif UserPreference("NotationForPartialPerms")="input" then 
      return PrintString(f);
    fi;
  fi;
  
  return STRINGIFY("<partial perm on ", RankOfPartialPerm(f), 
   " pts with degree ", DegreeOfPartialPerm(f), ", codegree ",
   CoDegreeOfPartialPerm(f), ">");
end);

#

InstallGlobalFunction(ComponentStringOfPartialPerm, 
function(f)
  local n, seen, str, i, j;

  n:=Maximum(DegreeOfPartialPerm(f), CoDegreeOfPartialPerm(f));
  seen:=List([1..n], x-> 0);
  
  #find the image 
  for i in ImageSetOfPartialPerm(f) do 
    seen[i]:=1;
  od;
  
  str:="";

  #find chains
  for i in DomainOfPartialPerm(f) do
    if seen[i]=0 then 
      Append(str, "\>[\>");
      Append(str, String(i));
      Append(str, "\<");
      seen[i]:=2; 
      i:=i^f;
      while i<>0 do 
        Append(str, ",\>");
        Append(str, String(i));
        Append(str, "\<");
        seen[i]:=2;
        i:=i^f;
      od;
      Append(str, "\<]");
    fi;
  od;

  #find cycles
  for i in DomainOfPartialPerm(f) do 
    if seen[i]=1 then 
      Append(str, "\>(\>");
      Append(str, String(i));
      Append(str, "\<"); 
      j:=i^f;
      while j<>i do 
        Append(str, ",\>");
        Append(str, String(j));
        Append(str, "\<");
        seen[j]:=2;
        j:=j^f;
      od;
      Append(str, "\<)");
    fi;
  od;
  return str;
end);

#collections

InstallMethod(DegreeOfPartialPermCollection, 
"for a partial perm collection",
[IsPartialPermCollection], coll-> Maximum(List(coll, DegreeOfPartialPerm)));

InstallMethod(CodegreeOfPartialPermCollection, 
"for a partial perm collection",
[IsPartialPermCollection], coll-> Maximum(List(coll, CodegreeOfPartialPerm)));

InstallMethod(RankOfPartialPermCollection,
"for a partial perm collection",
[IsPartialPermCollection], coll-> Length(DomainOfPartialPermCollection(coll)));

InstallMethod(DomainOfPartialPermCollection, "for a partial perm coll",
[IsPartialPermCollection], coll-> Union(List(coll, DomainOfPartialPerm)));

InstallMethod(ImageOfPartialPermCollection, "for a partial perm coll",
[IsPartialPermCollection], coll-> Union(List(coll, ImageSetOfPartialPerm)));

InstallMethod(FixedPointsOfPartialPerm, "for a partial perm coll",
[IsPartialPermCollection], coll-> Union(List(coll, FixedPointsOfPartialPerm)));

InstallMethod(MovedPoints, "for a partial perm coll",
[IsPartialPermCollection], coll-> Union(List(coll, MovedPoints)));

InstallMethod(NrFixedPoints, "for a partial perm coll",
[IsPartialPermCollection], coll-> Length(MovedPoints(coll)));

InstallMethod(NrMovedPoints, "for a partial perm coll",
[IsPartialPermCollection], coll-> Length(MovedPoints(coll)));

InstallMethod(LargestMovedPoint, "for a partial perm collection",
[IsPartialPermCollection], coll-> Maximum(List(coll, LargestMovedPoint)));

InstallMethod(LargestImageOfMovedPoint, "for a partial perm collection",
[IsPartialPermCollection], 
coll-> Maximum(List(coll, LargestImageOfMovedPoint)));

InstallMethod(SmallestMovedPoint, "for a partial perm collection",
[IsPartialPermCollection], coll-> Minimum(List(coll, SmallestMovedPoint)));

InstallMethod(SmallestImageOfMovedPoint, "for a partial perm collection",
[IsPartialPermCollection], 
coll-> Minimum(List(coll, SmallestImageOfMovedPoint)));

InstallOtherMethod(One, "for a partial perm coll", 
[IsPartialPermCollection], 
function(x)
  return JoinOfIdempotentPartialPermsNC(List(x, One)); 
end);

InstallOtherMethod(OneMutable, "for a partial perm coll", 
[IsPartialPermCollection], 
function(x)
  return JoinOfIdempotentPartialPermsNC(List(x, One)); 
end);

#

InstallOtherMethod(ZeroMutable, "for a partial perm coll",
[IsPartialPermCollection], MeetOfPartialPerms);

#EOF