/usr/share/gap/lib/oprtperm.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 | #############################################################################
##
#W oprtperm.gi GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#M Orbit( <G>, <pnt>, <gens>, <acts>, <OnPoints> ) . . . . . . . on integers
##
InstallOtherMethod( OrbitOp,
"G, int, gens, perms, act = `OnPoints'", true,
[ IsPermGroup, IsInt,
IsList,
IsList,
IsFunction ], 0,
function( G, pnt, gens, acts, act )
if gens <> acts or act <> OnPoints then
TryNextMethod();
fi;
if HasStabChainMutable( G )
and IsInBasicOrbit( StabChainMutable( G ), pnt ) then
return Immutable(StabChainMutable( G ).orbit);
else
return Immutable( OrbitPerms( acts, pnt ) );
fi;
end );
#############################################################################
##
#M OrbitStabilizer( <G>, <pnt>, <gens>, <acts>, <OnPoints> ) . . on integers
##
InstallOtherMethod( OrbitStabilizerOp, "permgroup", true,
[ IsPermGroup, IsInt,
IsList,
IsList,
IsFunction ], 0,
function( G, pnt, gens, acts, act )
local S;
if gens <> acts or act <> OnPoints then
TryNextMethod();
fi;
S := StabChainOp( G, [ pnt ] );
if BasePoint( S ) = pnt then
return Immutable( rec( orbit := S.orbit,
stabilizer := GroupStabChain
( G, S.stabilizer, true ) ) );
else
return Immutable( rec( orbit := [ pnt ],
stabilizer := G ) );
fi;
end );
#############################################################################
##
#M Orbits( <G>, <D>, <gens>, <acts>, <OnPoints> ) . . . . . . . on integers
##
ORBS_PERMGP_PTS:=function( G, D, gens, acts, act )
if act <> OnPoints then
TryNextMethod();
fi;
return Immutable( OrbitsPerms( acts, D ) );
end;
InstallMethod( Orbits, "permgroup on points", true,
[ IsGroup, IsList and IsCyclotomicCollection, IsList,
IsList and IsPermCollection, IsFunction ], 0,ORBS_PERMGP_PTS);
InstallMethod( OrbitsDomain, "permgroup on points", true,
[ IsGroup, IsList and IsCyclotomicCollection, IsList,
IsList and IsPermCollection, IsFunction ], 0,ORBS_PERMGP_PTS);
#############################################################################
##
#M Cycle( <g>, <pnt>, <OnPoints> ) . . . . . . . . . . . . . . . on integers
##
InstallOtherMethod( CycleOp,"perm, int, act", true,
[ IsPerm, IsInt, IsFunction ], 0,
function( g, pnt, act )
if act <> OnPoints then
TryNextMethod();
fi;
return CycleOp( g, pnt );
end );
InstallOtherMethod( CycleOp,"perm, int", true,
[ IsPerm and IsInternalRep, IsInt ], 0,
function( g, pnt )
return Immutable( CYCLE_PERM_INT( g, pnt ) );
end );
#############################################################################
##
#M CycleLength( <g>, <pnt>, <OnPoints> ) . . . . . . . . . . . . on integers
##
InstallOtherMethod( CycleLengthOp, "perm, int, act", true,
[ IsPerm, IsInt, IsFunction ], 0,
function( g, pnt, act )
if act <> OnPoints then
TryNextMethod();
fi;
return CycleLengthOp( g, pnt );
end );
InstallOtherMethod( CycleLengthOp, "perm, int", true,
[ IsPerm and IsInternalRep, IsInt ],0, CYCLE_LENGTH_PERM_INT);
#############################################################################
##
#M Blocks( <G>, <D>, <gens>, <acts>, <OnPoints> ) . . . . find block system
##
InstallMethod( BlocksOp, "permgroup on integers",
[ IsGroup, IsList and IsCyclotomicCollection, IsList and IsEmpty,
IsList,
IsList and IsPermCollection,
IsFunction ],
function( G, D, noseed, gens, acts, act )
local one, # identity of `G'
blocks, # block system of <G>, result
orbit, # orbit of 1 under <G>
trans, # factored inverse transversal for <orbit>
eql, # '<i> = <eql>[<k>]' means $\beta(i) = \beta(k)$,
next, # the points that are equivalent are linked
last, # last point on the list linked through 'next'
leq, # '<i> = <leq>[<k>]' means $\beta(i) <= \beta(k)$
gen, # one generator of <G> or 'Stab(<G>,1)'
rnd, # random element of <G>
pnt, # one point in an orbit
img, # the image of <pnt> under <gen>
cur, # the current representative of an orbit
rep, # the representative of a block in the block system
block, # the block, result
changed, # number of random Schreier generators
nrorbs, # number of orbits of subgroup $H$ of $G_1$
d1g, # D[1]^gen
tr, # transversal element
i; # loop variable
if act <> OnPoints then
TryNextMethod();
fi;
# handle trivial group
if Length( acts ) = 0 and Length(D)>1 then
Error("<G> must operate transitively on <D>");
fi;
# handle trivial domain
if Length( D ) = 1 or IsPrimeInt( Length( D ) ) then
return Immutable( [ D ] );
fi;
# compute the orbit of $G$ and a factored transversal
one:= One( G );
orbit := [ D[1] ];
trans := [];
trans[ D[1] ] := one;
for pnt in orbit do
for gen in acts do
if not IsBound( trans[ pnt / gen ] ) then
Add( orbit, pnt / gen );
trans[ pnt / gen ] := gen;
fi;
od;
od;
# check that the group is transitive
if Length( orbit ) <> Length( D ) then
Error("<G> must operate transitively on <D>");
fi;
Info( InfoAction, 1, "BlocksNoSeed transversal computed" );
nrorbs := Length( orbit );
# since $i \in k^{G_1}$ implies $\beta(i)=\beta(k)$, we initialize <eql>
# so that the connected components are orbits of some subgroup $H < G_1$
eql := [];
leq := [];
next := [];
last := [];
for pnt in orbit do
eql[pnt] := pnt;
leq[pnt] := pnt;
next[pnt] := 0;
last[pnt] := pnt;
od;
# repeat until we have a block system
changed := 0;
cur := orbit[2];
rnd := one;
repeat
# compute such an $H$ by taking random Schreier generators of $G_1$
# and stop if 2 successive generators dont change the orbits any more
while changed < 2 do
# compute a random Schreier generator of $G_1$
i := Length( orbit );
while 1 <= i do
rnd := rnd * Random( acts );
i := QuoInt( i, 2 );
od;
gen := rnd;
d1g:=D[1]^gen;
while d1g <> D[1] do
tr:=trans[ d1g ];
gen := gen * tr;
d1g:=d1g^tr;
od;
changed := changed + 1;
Info( InfoAction, 3, "Changed: ",changed );
# compute the image of every point under <gen>
for pnt in orbit do
img := pnt ^ gen;
# find the representative of the orbit of <pnt>
while eql[pnt] <> pnt do
pnt := eql[pnt];
od;
# find the representative of the orbit of <img>
while eql[img] <> img do
img := eql[img];
od;
# if the don't agree merge their orbits
if pnt < img then
eql[img] := pnt;
next[ last[pnt] ] := img;
last[pnt] := last[img];
nrorbs := nrorbs - 1;
changed := 0;
elif img < pnt then
eql[pnt] := img;
next[ last[img] ] := pnt;
last[img] := last[pnt];
nrorbs := nrorbs - 1;
changed := 0;
fi;
od;
od;
Info( InfoAction, 1, "BlocksNoSeed ",
"number of orbits of <H> < <G>_1 is ",nrorbs );
# take arbitrary point <cur>, and an element <gen> taking 1 to <cur>
while eql[cur] <> cur do
cur := eql[cur];
od;
gen := [];
img := cur;
while img <> D[1] do
Add( gen, trans[img] );
img := img ^ trans[img];
od;
gen := Reversed( gen );
# compute an alleged block as orbit of 1 under $< H, gen >$
pnt := cur;
while pnt <> 0 do
# compute the representative of the block containing the image
img := pnt;
for i in gen do
img := img / i;
od;
while eql[img] <> img do
img := eql[img];
od;
# if its not our current block but a minimal block
if img <> D[1] and img <> cur and leq[img] = img then
# then try <img> as a new start
leq[cur] := img;
cur := img;
gen := [];
img := cur;
while img <> D[1] do
Add( gen, trans[img] );
img := img ^ trans[img];
od;
gen := Reversed( gen );
pnt := cur;
# otherwise if its not our current block but contains it
# by construction a nonminimal block contains the current block
elif img <> D[1] and img <> cur and leq[img] <> img then
# then merge all blocks it contains with <cur>
while img <> cur do
eql[img] := cur;
next[ last[cur] ] := img;
last[ cur ] := last[ img ];
img := leq[img];
while img <> eql[img] do
img := eql[img];
od;
od;
pnt := next[pnt];
# go on to the next point in the orbit
else
pnt := next[pnt];
fi;
od;
# make the alleged block
block := [ D[1] ];
pnt := cur;
while pnt <> 0 do
Add( block, pnt );
pnt := next[pnt];
od;
block := Set( block );
blocks := [ block ];
Info( InfoAction, 1, "BlocksNoSeed ",
"length of alleged block is ",Length(block) );
# quick test to see if the group is primitive
if Length( block ) = Length( orbit ) then
Info( InfoAction, 1, "BlocksNoSeed <G> is primitive" );
return Immutable( [ D ] );
fi;
# quick test to see if the orbit can be a block
if Length( orbit ) mod Length( block ) <> 0 then
Info( InfoAction, 1, "BlocksNoSeed ",
"alleged block is clearly not a block" );
changed := -1000;
fi;
# '<rep>[<i>]' is the representative of the block containing <i>
rep := [];
for pnt in orbit do
rep[pnt] := 0;
od;
for pnt in block do
rep[pnt] := 1;
od;
# compute the block system with an orbit algorithm
i := 1;
while 0 <= changed and i <= Length( blocks ) do
# loop over the generators
for gen in acts do
# compute the image of the block under the generator
img := OnSets( blocks[i], gen );
# if this block is new
if rep[ img[1] ] = 0 then
# add the new block to the list of blocks
Add( blocks, img );
# check that all points in the image are new
for pnt in img do
if rep[pnt] <> 0 then
Info( InfoAction, 1, "BlocksNoSeed ",
"alleged block is not a block" );
changed := -1000;
fi;
rep[pnt] := img[1];
od;
# if this block is old
else
# check that all points in the image lie in the block
for pnt in img do
if rep[pnt] <> rep[img[1]] then
Info( InfoAction, 1, "BlocksNoSeed ",
"alleged block is not a block" );
changed := -1000;
fi;
od;
fi;
od;
# on to the next block in the orbit
i := i + 1;
od;
until 0 <= changed;
# force sortedness
if Length(blocks[1])>0 and CanEasilySortElements(blocks[1][1]) then
blocks:=AsSSortedList(List(blocks,i->Immutable(Set(i))));
IsSSortedList(blocks);
fi;
# return the block system
return Immutable( blocks );
end );
#############################################################################
##
#M Blocks( <G>, <D>, <seed>, <gens>, <acts>, <OnPoints> ) blocks with seed
##
InstallMethod( BlocksOp, "integers, with seed", true,
[ IsGroup, IsList and IsCyclotomicCollection,
IsList and IsCyclotomicCollection,
IsList,
IsList and IsPermCollection,
IsFunction ], 0,
function( G, D, seed, gens, acts, act )
local blks, # list of blocks, result
rep, # representative of a point
siz, # siz[a] of the size of the block with rep <a>
fst, # first point still to be merged into another block
nxt, # next point still to be merged into another block
lst, # last point still to be merged into another block
gen, # generator of the group <G>
nrb, # number of blocks so far
a, b, c, d; # loop variables for points
if act <> OnPoints then
TryNextMethod();
fi;
nrb := Length(D) - Length(seed) + 1;
# in the beginning each point <d> is in a block by itself
rep := [];
siz := [];
for d in D do
rep[d] := d;
siz[d] := 1;
od;
# except the points in <seed>, which form one block with rep <seed>[1]
fst := 0;
nxt := siz;
lst := 0;
c := seed[1];
for d in seed do
if d <> c then
rep[d] := c;
siz[c] := siz[c] + siz[d];
if fst = 0 then
fst := d;
else
nxt[lst] := d;
fi;
lst := d;
nxt[lst] := 0;
fi;
od;
# while there are points still to be merged into another block
while fst <> 0 do
# get this point <a> and its repesentative <b>
a := fst;
b := rep[fst];
# for each generator <gen> merge the blocks of <a>^<gen>, <b>^<gen>
for gen in acts do
c := a^gen;
while rep[c] <> c do
c := rep[c];
od;
d := b^gen;
while rep[d] <> d do
d := rep[d];
od;
if c <> d then
if Length(D) < 2*(siz[c] + siz[d]) then
return Immutable( [ D ] );
fi;
nrb := nrb - 1;
if siz[d] <= siz[c] then
rep[d] := c;
siz[c] := siz[c] + siz[d];
nxt[lst] := d;
lst := d;
nxt[lst] := 0;
else
rep[c] := d;
siz[d] := siz[d] + siz[c];
nxt[lst] := c;
lst := c;
nxt[lst] := 0;
fi;
fi;
od;
# on to the next point still to be merged into another block
fst := nxt[fst];
od;
# turn the list of representatives <rep> into a list of blocks <blks>
blks := [];
for d in D do
c := d;
while rep[c] <> c do
c := rep[c];
od;
if IsInt( nxt[c] ) then
nxt[c] := [ d ];
Add( blks, nxt[c] );
else
AddSet( nxt[c], d );
fi;
od;
# return the set of blocks <blks>
# force sortedness
if Length(blks[1])>0 and CanEasilySortElements(blks[1][1]) then
blks:=AsSSortedList(List(blks,i->Immutable(Set(i))));
IsSSortedList(blks);
fi;
return Immutable( Set( blks ) );
end );
#############################################################################
##
#M RepresentativesMinimalBlocks( <G>, <D>, <gens>, <acts>, <OnPoints> )
## Adaptation of the code for BlocksNoSeed to return _all_ minimal blocks
## containing D[1].
## By Graham Sharp (Oxford), August 1997
##
InstallOtherMethod( RepresentativesMinimalBlocksOp,
"permgrp on points", true,
[ IsGroup, IsList and IsCyclotomicCollection,
IsList,
IsList and IsPermCollection,
IsFunction ], 0,
function( G, D, gens, acts, act )
local blocks, # block system of <G>, result
orbit, # orbit of 1 under <G>
trans, # factored inverse transversal for <orbit>
eql, # '<i> = <eql>[<k>]' means $\beta(i) = \beta(k)$,
next, # the points that are equivalent are linked
last, # last point on the list linked through 'next'
leq, # '<i> = <leq>[<k>]' means $\beta(i) <= \beta(k)$
gen, # one generator of <G> or 'Stab(<G>,1)'
rnd, # random element of <G>
pnt, # one point in an orbit
img, # the image of <pnt> under <gen>
cur, # the current representative of an orbit
rep, # the representative of a block in the block system
block, # the block, result
changed, # number of random Schreier generators
nrorbs, # number of orbits of subgroup $H$ of $G_1$
i, # loop variable
minblocks, # set of minimal blocks, result
poss, # flag to indicate whether we might have a block
iter, # which points we've checked when
start; # index of first cur for this iteration (non-dec)
if act<>OnPoints then
TryNextMethod();
fi;
# handle trivial domain
if Length( D ) = 1 or IsPrime( Length( D ) ) then
return Immutable([ D ]);
fi;
# handle trivial group
if Length( acts )=0 then
Error( "<G> must act transitively on <D>" );
fi;
# compute the orbit of $G$ and a factored transversal
orbit := [ D[1] ];
trans := [];
trans[ D[1] ] := One( acts[1] ); # note that `acts' is nonempty
for pnt in orbit do
for gen in acts do
if not IsBound( trans[ pnt / gen ] ) then
Add( orbit, pnt / gen );
trans[ pnt / gen ] := gen;
fi;
od;
od;
# check that the group is transitive
if Length( orbit ) <> Length( D ) then
Error( "<G> must act transitively on <D>" );
fi;
Info(InfoAction,1,"RepresentativesMinimalBlocks transversal computed");
nrorbs := Length( orbit );
# since $i \in k^{G_1}$ implies $\beta(i)=\beta(k)$, we initialize <eql>
# so that the connected components are orbits of some subgroup $H < G_1$
eql := [];
leq := [];
next := [];
last := [];
iter := [];
for pnt in orbit do
eql[pnt] := pnt;
leq[pnt] := pnt;
next[pnt] := 0;
last[pnt] := pnt;
iter[pnt] := 0;
od;
# repeat until we run out of points
minblocks := [];
changed := 0;
rnd := One( acts[1] );
for start in orbit{[2..Length(D)]} do
# repeat until we have a block system
cur := start;
# unless this is a new point, ignore and go on to the next
# -we could do this by a linked list to avoid these checks but the
# O(n) overheads involved in setting it up are greater than those saved
if iter[cur] = 0 then
repeat
# compute such an $H$ by taking random Schreier generators of $G_1$
# and stop if 2 successive generators dont change the orbits any
# more
while changed < 2 do
# compute a random Schreier generator of $G_1$
i := Length( orbit );
while 1 <= i do
rnd := rnd * Random( acts );
i := QuoInt( i, 2 );
od;
gen := rnd;
while D[1] ^ gen <> D[1] do
gen := gen * trans[ D[1] ^ gen ];
od;
changed := changed + 1;
# compute the image of every point under <gen>
for pnt in orbit do
img := pnt ^ gen;
# find the representative of the orbit of <pnt>
while eql[pnt] <> pnt do
pnt := eql[pnt];
od;
# find the representative of the orbit of <img>
while eql[img] <> img do
img := eql[img];
od;
# if the don't agree merge their orbits
if pnt < img then
eql[img] := pnt;
next[ last[pnt] ] := img;
last[pnt] := last[img];
nrorbs := nrorbs - 1;
changed := 0;
elif img < pnt then
eql[pnt] := img;
next[ last[img] ] := pnt;
last[img] := last[pnt];
nrorbs := nrorbs - 1;
changed := 0;
fi;
od;
od;
Info(InfoAction,1,"RepresentativesMinimalBlocks ",
"number of orbits of <H> < <G>_1 is ",nrorbs);
# take arbitrary point <cur>, and an element <gen> taking 1 to <cur>
while eql[cur] <> cur do
cur := eql[cur];
od;
# Mark the points in this new H-orbit as visited
if iter[cur] <> start then
img := cur;
while img <> 0 do
iter[img] := start;
img := next[img];
od;
fi;
gen := [];
img := cur;
while img <> D[1] do
Add( gen, trans[img] );
img := img ^ trans[img];
od;
gen := Reversed( gen );
# compute an alleged block as orbit of 1 under $< H, gen >$
pnt := cur;
poss := true;
while pnt <> 0 do
# compute the representative of the block containing the image
img := pnt;
for i in gen do
img := img / i;
od;
while eql[img] <> img do
img := eql[img];
od;
# if its not our current block but a new block
if img <> D[1] and img <> cur and leq[img] = img
and (iter[img] = 0 or iter[img] = start) then
# then try <img> as a new start
leq[cur] := img;
cur := img;
if iter[cur] <> start then
img := cur;
while img <> 0 do
iter[img] := start;
img := next[img];
od;
fi;
gen := [];
img := cur;
while img <> D[1] do
Add( gen, trans[img] );
img := img ^ trans[img];
od;
gen := Reversed( gen );
pnt := cur;
# otherwise if its not our current block but contains it
# by construction a nonminimal block contains the current block
# - not any more it doesn't! Now we also have to check whether
# the block appeared this time or earlier.
elif img <> D[1] and img <> cur
and leq[img] <> img and iter[img] = start then
# then merge all blocks it contains with <cur>
while img <> cur do
eql[img] := cur;
next[ last[cur] ] := img;
last[ cur ] := last[ img ];
img := leq[img];
while img <> eql[img] do
img := eql[img];
od;
od;
pnt := next[pnt];
# else if the block appeared in a previous iteration
elif iter[img] <> start and iter[img] <> 0 then
# then end this iteration as this is not a minimal block
pnt := 0;
poss := false;
# otherwise go on to the next point in the orbit
else
pnt := next[pnt];
fi;
od;
# Skip this bit if we know we haven't got a block
if poss = true then
# make the alleged block
block := [ D[1] ];
pnt := cur;
while pnt <> 0 do
Add( block, pnt );
pnt := next[pnt];
od;
block := Set( block );
blocks := [ block ];
Info(InfoAction,1,"RepresentativesMinimalBlocks ",
"length of alleged block is ",Length(block));
# quick test to see if the group is primitive
if Length( block ) = Length( orbit ) then
Info(InfoAction,1,"RepresentativesMinimalBlocks <G> is primitive");
return Immutable([ D ]);
fi;
# quick test to see if the orbit can be a block
if Length( orbit ) mod Length( block ) <> 0 then
Info(InfoAction,1,"RepresentativesMinimalBlocks ",
"alleged block is clearly not a block");
changed := -1000;
fi;
# '<rep>[<i>]' is the representative of the block containing <i>
rep := [];
for pnt in orbit do
rep[pnt] := 0;
od;
for pnt in block do
rep[pnt] := 1;
od;
# compute the block system with an orbit algorithm
i := 1;
while 0 <= changed and i <= Length( blocks ) do
# loop over the generators
for gen in acts do
# compute the image of the block under the generator
img := OnSets( blocks[i], gen );
# if this block is new
if rep[ img[1] ] = 0 then
# add the new block to the list of blocks
Add( blocks, img );
# check that all points in the image are new
for pnt in img do
if rep[pnt] <> 0 then
Info(InfoAction,1,
"RepresentativesMinimalBlocks, alleged block is not a block");
changed := -1000;
fi;
rep[pnt] := img[1];
od;
# if this block is old
else
# check that all points in the image lie in the block
for pnt in img do
if rep[pnt] <> rep[img[1]] then
Info(InfoAction,1,
"RepresentativesMinimalBlocks , alleged block is not a block");
changed := -1000;
fi;
od;
fi;
od;
# on to the next block in the orbit
i := i + 1;
od;
fi;
until 0 <= changed;
if poss = true then AddSet(minblocks, block); fi;
# loop back to get another minimal block
fi;
od;
# return the block system
return Immutable(minblocks);
end);
InstallOtherMethod( RepresentativesMinimalBlocksOp,
"G, domain, noseed, gens, perms, act", true,
[ IsGroup, IsList and IsCyclotomicCollection,IsEmpty,
IsList,
IsList and IsPermCollection,
IsFunction ], 0,
function(G,D,noseed,gens,acts,act)
return RepresentativesMinimalBlocksOp(G,D,gens,acts,act);
end);
InstallOtherMethod( RepresentativesMinimalBlocksOp,
"general case: translate", true,
[ IsGroup, IsList,
IsList,
IsList,
IsFunction ],
# lower ranked than perm method
-1,
function( G, D, gens, acts, act )
local hom,r;
hom:=ActionHomomorphism(G,D,gens,acts,act);
G:=Image(hom,G);
r:=RepresentativesMinimalBlocksOp(G,[1..Length(D)],
GeneratorsOfGroup(G),GeneratorsOfGroup(G),OnPoints);
return List(r,i->D{i});
end);
#############################################################################
##
#M Earns( <G>, <D> ) . . . . . . . . . . . . earns of affine primitive group
##
InstallMethod( Earns, "G, ints, gens, perms, act", true,
[ IsPermGroup, IsList,
IsList,
IsList,
IsFunction ], 0,
function( G, D, gens, acts, act )
local n, fac, p, d, alpha, beta, G1, G2, orb,
Gamma, M, C, f, P, Q, Q0, R, R0, pre, gen, g,
ord, pa, a, x, y, z;
if gens <> acts or act <> OnPoints then
TryNextMethod();
fi;
n := Length( D );
if not IsPrimePowerInt( n ) then
return fail;
elif not IsPrimitive( G, D ) then
TryNextMethod();
fi;
# # Try a shortcut for solvable groups (or if a solvable normal subgroup is
# # found).
# if DefaultStabChainOptions.tryPcgs then
# pcgs := TryPcgsPermGroup( G, false, false, true );
# if not IsPcgs( pcgs ) then
# pcgs := pcgs[ 1 ];
# fi;
#T why do we know, that this will give us the EARNS and not just a smaller
# one? AH
# if not IsEmpty( pcgs ) then
# return ElementaryAbelianSeries( pcgs )
# [ Length( ElementaryAbelianSeries( pcgs ) ) - 1 ];
# fi;
# fi;
fac := FactorsInt( n ); p := fac[ 1 ]; d := Length( fac );
alpha := BasePoint( StabChainMutable( G ) );
G1 := Stabilizer( G, alpha );
# If <G> is regular, it must be cyclic of prime order.
if IsTrivial( G1 ) then
return G;
fi;
# If <G> is not a Frobenius group ...
for orb in OrbitsDomain( G1, D ) do
beta := orb[ 1 ];
if beta <> alpha then
G2 := Stabilizer( G1, beta );
if not IsTrivial( G2 ) then
Gamma := Filtered( D, p -> ForAll( GeneratorsOfGroup( G2 ),
g -> p ^ g = p ) );
if Set( FactorsInt( Length( Gamma ) ) ) <> [ p ] then
return fail;
fi;
C := Centralizer( G, G2 );
f := ActionHomomorphism( C, Gamma,"surjective" );
P := PCore( ImagesSource( f ), p );
if not IsTransitive( P, [ 1 .. Length( Gamma ) ] ) then
return fail;
fi;
gens := [ ];
for gen in GeneratorsOfGroup( Centre( P ) ) do
pre := PreImagesRepresentative( f, gen );
ord := Order( pre ); pa := 1;
while ord mod p = 0 do
ord := ord / p;
pa := pa * p;
od;
pre := pre ^ ( ord * Gcdex( pa, ord ).coeff2 );
for g in GeneratorsOfGroup( C ) do
z := Comm( g, pre );
if z <> One( C ) then
M := SolvableNormalClosurePermGroup( G, [ z ] );
if M <> fail and Size( M ) = n then
return M;
else
return fail;
fi;
fi;
od;
Add( gens, pre );
od;
Q := SylowSubgroup( Centre( G2 ), p );
# This is unnecessary if you trust the classification of
# finite simple groups.
if Size( Q ) > p ^ ( d - 1 ) then
return fail;
fi;
R := ClosureGroup( Q, gens );
R0 := OmegaOp( R, p, 1 );
y := First( GeneratorsOfGroup( R0 ),
y -> not # y in Q = Centre(G2)_p
( alpha ^ y = alpha
and beta ^ y = beta
and ForAll( GeneratorsOfGroup( G2 ),
gen -> gen ^ y = gen ) ) );
Q0 := OmegaOp( Q, p, 1 );
for z in Q0 do
M := SolvableNormalClosurePermGroup( G, [ y * z ] );
if M <> fail and Size( M ) = n then
return M;
fi;
od;
return fail;
fi;
fi;
od;
# <G> is a Frobenius group.
a := GeneratorsOfGroup( Centre( G1 ) )[ 1 ];
x := First( GeneratorsOfGroup( G ), gen -> alpha ^ gen <> alpha );
z := Comm( a, a ^ x );
M := SolvableNormalClosurePermGroup( G, [ z ] );
return M;
end );
#############################################################################
##
#M Transitivity( <G>, <D>, <gens>, <acts>, <act> ) . . . . . . . on integers
##
InstallMethod( Transitivity, "permgroup on numbers", true,
[ IsPermGroup, IsList and IsCyclotomicCollection,
IsList,
IsList,
IsFunction ], 0,
function( G, D, gens, acts, act )
if gens <> acts or act <> OnPoints then
TryNextMethod();
elif not IsTransitive( G, D, gens, acts, act ) then
return 0;
else
G := Stabilizer( G, D[ 1 ], act );
gens := GeneratorsOfGroup( G );
return Transitivity( G, D{ [ 2 .. Length( D ) ] },
gens, gens, act ) + 1;
fi;
end );
#############################################################################
##
#M IsTransitive( <G> )
#M Transitivity( <G> )
##
## For a group with known order, we use that the number of moved points
## of a transitive permutation group divides the group order.
## If this is not the case then this check avoids computing an orbit or of
## a point stabilizer.
## Note that the GAP library defines transitivity also on partial orbits.
## (If this would be changed then also the five argument method that is
## installed in the call of `OrbitsishOperation' could take advantage of
## the divisibility criterion.)
##
InstallOtherMethod( IsTransitive,
"for a permutation group (use shortcuts)",
[ IsPermGroup ], 1,
function( G )
local n, gens;
n:= NrMovedPoints( G );
if n = 0 then
return true;
elif HasSize( G ) and Size( G ) mod n <> 0 then
# Avoid computing an orbit if the (known) group order
# is not divisible by the (known) number of points.
return false;
else
# Avoid the `IsSubset' test that occurs in the generic method,
# checking the orbit length suffices.
# (And do not call `Orbit'!)
gens:= GeneratorsOfGroup( G );
return n = Length( OrbitOp( G, SmallestMovedPoint( G ), gens, gens,
OnPoints ) );
fi;
end );
InstallOtherMethod( Transitivity,
"for a permutation group with known size",
[ IsPermGroup and HasSize ],
function( G )
local n, t, size;
n:= NrMovedPoints( G );
if n = 0 then
# The trivial group is transitive on the empty set,
# but has transitivity zero.
return 0;
fi;
t:= 0;
size:= Size( G );
while IsTransitive( G ) do
t:= t + 1;
size:= size / n;
n:= n-1;
if size mod n <> 0 then
break;
fi;
G:= Stabilizer( G, SmallestMovedPoint( G ) );
if NrMovedPoints( G ) <> n then
if n = 1 then
# The trivial group is transitive on a singleton set,
# with transitivity one.
t:= t + 1;
fi;
break;
fi;
od;
return t;
end );
#############################################################################
##
#M IsSemiRegular( <G>, <D>, <gens>, <acts>, <act> ) . . . . for perm groups
##
InstallMethod( IsSemiRegular, "permgroup on numbers", true,
[ IsGroup, IsList and IsCyclotomicCollection,
IsList,
IsList and IsPermCollection,
IsFunction ], 0,
function( G, D, gens, acts, act )
local used, #
perm, #
orbs, # orbits of <G> on <D>
gen, # one of the generators of <G>
orb, # orbit of '<D>[1]'
pnt, # one point in the orbit
new, # image of <pnt> under <gen>
img, # image of '<prm>[<i>][<pnt>]' under <gen>
p, n, # loop variables
i, l; # loop variables
if act <> OnPoints then
TryNextMethod();
fi;
# compute the orbits and check that they all have the same length
orbs := OrbitsDomain( G, D, gens, acts, OnPoints );
if Length( Set( List( orbs, Length ) ) ) <> 1 then
return false;
fi;
# initialize the permutations that act like the generators
used := [];
perm := [];
for i in [ 1 .. Length( acts ) ] do
used[i] := [];
perm[i] := [];
for pnt in orbs[1] do
used[i][pnt] := false;
od;
perm[i][ orbs[1][1] ] := orbs[1][1] ^ acts[i];
used[i][ orbs[1][1] ^ acts[i] ] := true;
od;
# initialize the permutation that permutes the orbits
l := Length( acts ) + 1;
used[l] := [];
perm[l] := [];
for orb in orbs do
for pnt in orb do
used[l][pnt] := false;
od;
od;
for i in [ 1 .. Length(orbs)-1 ] do
perm[l][orbs[i][1]] := orbs[i+1][1];
used[l][orbs[i+1][1]] := true;
od;
perm[l][orbs[Length(orbs)][1]] := orbs[1][1];
used[l][orbs[1][1]] := true;
# compute the orbit of the first representative
orb := [ orbs[1][1] ];
for pnt in orb do
for gen in acts do
# if the image is new
new := pnt ^ gen;
if not new in orb then
# add the new element to the orbit
Add( orb, new );
# extend the permutations that act like the generators
for i in [ 1 .. Length( acts ) ] do
img := perm[i][pnt] ^ gen;
if used[i][img] then
return false;
else
perm[i][new] := img;
used[i][img] := true;
fi;
od;
# extend the permutation that permutates the orbits
p := pnt;
n := new;
for i in [ 1 .. Length( orbs ) ] do
img := perm[l][p] ^ gen;
if used[l][img] then
return false;
else
perm[l][n] := img;
used[l][img] := true;
fi;
p := perm[l][p];
n := img;
od;
fi;
od;
od;
# check that the permutations commute with the generators
for i in [ 1 .. Length( acts ) ] do
for gen in acts do
for pnt in orb do
if perm[i][pnt] ^ gen <> perm[i][pnt ^ gen] then
return false;
fi;
od;
od;
od;
# check that the permutation commutes with the generators
for gen in acts do
for orb in orbs do
for pnt in orb do
if perm[l][pnt] ^ gen <> perm[l][pnt ^ gen] then
return false;
fi;
od;
od;
od;
# everything is ok, the representation is semiregular
return true;
end );
#############################################################################
##
#F IsRegular(permgp)
##
InstallOtherMethod( IsRegular,"permgroup",true,[IsPermGroup],0,
function(G)
if IsTransitive(G) and IsSemiRegular(G) then
SetSize(G,NrMovedPoints(G));
return true;
else
return false;
fi;
end);
InstallOtherMethod( IsRegular,"permgroup with known size",true,
[IsPermGroup and HasSize],0,
G->Size(G)=NrMovedPoints(G) and IsTransitive(G));
# implications with regularity for permgroups.
InstallTrueMethod(IsSemiRegular,IsPermGroup and IsRegular);
InstallTrueMethod(IsTransitive,IsPermGroup and IsRegular);
InstallTrueMethod(IsRegular,IsPermGroup and IsSemiRegular and IsTransitive);
#############################################################################
##
#M RepresentativeAction( <G>, <d>, <e>, <act> ) . . . . . for perm groups
##
InstallOtherMethod( RepresentativeActionOp, "permgrp",true, [ IsPermGroup,
IsObject, IsObject, IsFunction ],
# the objects might be group elements: rank up
2*RankFilter(IsMultiplicativeElementWithInverse),
function ( G, d, e, act )
local rep, # representative, result
S, # stabilizer of <G>
rep2, # representative in <S>
sel,
dp,ep, # point copies
i, f; # loop variables
# standard action on points, make a basechange and trace the rep
if act = OnPoints and IsInt( d ) and IsInt( e ) then
d := [ d ]; e := [ e ];
S := true;
elif ( act = OnPairs or act = OnTuples )
and IsPositionsList( d ) and IsPositionsList( e ) then
S := true;
fi;
if IsBound( S ) then
if d = e then
rep := One( G );
elif Length( d ) <> Length( e ) then
rep:= fail;
else
# can we use the current stab chain? (try to avoid rebuilding
# one if called frequently)
S:=StabChainMutable(G);
# move the points already in the base in front
sel:=List(BaseStabChain(S),i->Position(d,i));
sel:=Filtered(sel,i->i<>fail);
if Length(sel)>0 then
# rearrange
sel:=Concatenation(sel,Difference([1..Length(d)],sel));
dp:=d{sel};
ep:=e{sel};
rep := S.identity;
for i in [ 1 .. Length( dp ) ] do
if BasePoint( S ) = dp[ i ] then
f := ep[ i ] / rep;
if not IsInBasicOrbit( S, f ) then
rep := fail;
break;
else
rep := LeftQuotient( InverseRepresentative( S, f ),
rep );
fi;
S := S.stabilizer;
elif ep[ i ] <> dp[ i ] ^ rep then
rep := fail;
break;
fi;
od;
else
rep:=fail; # we did not yet get anything
fi;
if rep=fail then
# did not work with the existing stabchain - do again
S := StabChainOp( G, d );
rep := S.identity;
for i in [ 1 .. Length( d ) ] do
if BasePoint( S ) = d[ i ] then
f := e[ i ] / rep;
if not IsInBasicOrbit( S, f ) then
rep := fail;
break;
else
rep := LeftQuotient( InverseRepresentative( S, f ),
rep );
fi;
S := S.stabilizer;
elif e[ i ] <> d[ i ] ^ rep then
rep := fail;
break;
fi;
od;
fi;
fi;
# action on (lists of) permutations, use backtrack
elif act = OnPoints and IsPerm( d ) and IsPerm( e ) then
rep := RepOpElmTuplesPermGroup( true, G, [ d ], [ e ],
TrivialSubgroup( G ), TrivialSubgroup( G ) );
elif ( act = OnPairs or act = OnTuples )
and IsList( d ) and IsPermCollection( d )
and IsList( e ) and IsPermCollection( e ) then
rep := RepOpElmTuplesPermGroup( true, G, d, e,
TrivialSubgroup( G ), TrivialSubgroup( G ) );
# action on permgroups, use backtrack
elif act = OnPoints and IsPermGroup( d ) and IsPermGroup( e ) then
rep := ConjugatorPermGroup( G, d, e );
# action on pairs or tuples of other objects, iterate
elif act = OnPairs or act = OnTuples then
rep := One( G );
S := G;
i := 1;
while i <= Length(d) and rep <> fail do
if e[i] = fail then
rep := fail;
else
rep2 := RepresentativeActionOp( S, d[i], e[i]^(rep^-1),
OnPoints );
if rep2 <> fail then
rep := rep2 * rep;
S := Stabilizer( S, d[i], OnPoints );
else
rep := fail;
fi;
fi;
i := i + 1;
od;
# action on sets of points, use backtrack
elif act = OnSets and IsPositionsList( d ) and IsPositionsList( e ) then
if Length(d)<>Length(e) then
return fail;
fi;
if Length(d)=1 then
rep:=RepresentativeActionOp(G,d[1],e[1],OnPoints);
else
rep := RepOpSetsPermGroup( G, d, e );
fi;
# other action, fall back on default representative
else
TryNextMethod();
fi;
# return the representative
return rep;
end );
#############################################################################
##
#M Stabilizer( <G>, <d>, <gens>, <gens>, <act> ) . . . . . . for perm groups
##
PermGroupStabilizerOp:=function(arg)
local K, # stabilizer <K>, result
S, base,
G,d,gens,acts,act,dom;
# get arguments, ignoring a given domain
G:=arg[1];
K:=Length(arg);
act:=arg[K];
acts:=arg[K-1];
gens:=arg[K-2];
d:=arg[K-3];
if gens <> acts then
#TODO: Check whether acts is permutations and one could work in the
#permutation image (even if G is not permgroups)
TryNextMethod();
fi;
# standard action on points, make a stabchain beginning with <d>
if act = OnPoints and IsInt( d ) then
base := [ d ];
elif ( act = OnPairs or act = OnTuples )
and IsPositionsList( d ) then
base := d;
fi;
if IsBound( base ) then
K := StabChainOp( G, base );
S := K;
while IsBound( S.orbit ) and S.orbit[ 1 ] in base do
S := S.stabilizer;
od;
if IsIdenticalObj( S, K ) then K := G;
else K := GroupStabChain( G, S, true ); fi;
# standard action on (lists of) permutations, take the centralizer
elif act = OnPoints and IsPerm( d ) then
K := Centralizer( G, d );
elif ( act = OnPairs or act = OnTuples )
and IsList( d ) and IsPermCollection( d ) then
K := RepOpElmTuplesPermGroup( false, G, d, d,
TrivialSubgroup( G ), TrivialSubgroup( G ) );
# standard action on a permutation group, take the normalizer
elif act = OnPoints and IsPermGroup(d) then
K := Normalizer( G, d );
# action on sets of points, use a backtrack
elif act = OnSets and ForAll( d, IsInt ) then
if Length(d)=1 then
K:=Stabilizer(G,d[1]);
else
K := RepOpSetsPermGroup( G, d );
fi;
# action on sets of pairwise disjoint sets
elif act = OnSetsDisjointSets
and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
K := PartitionStabilizerPermGroup( G, d );
#T OnSetTuples?
# action on tuples of sets
elif act = OnTuplesSets
and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
K:=G;
for S in d do
K:=Stabilizer(K,S,OnSets);
od;
# action on tuples of tuples
elif act = OnTuplesTuples
and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
K:=G;
for S in d do
K:=Stabilizer(K,S,OnTuples);
od;
# other action
else
TryNextMethod();
fi;
# enforce size computation (unless the stabilizer did not cause a
# StabChain to be computed.
if HasStabChainMutable(K) then
Size(K);
fi;
# return the stabilizer
return K;
end;
InstallOtherMethod( StabilizerOp, "permutation group with generators list",
true,
[ IsPermGroup, IsObject,
IsList,
IsList,
IsFunction ],
# the objects might be a group element: rank up
RankFilter(IsMultiplicativeElementWithInverse)
# and we are better even if the group is solvable
+RankFilter(IsSolvableGroup),
PermGroupStabilizerOp);
InstallOtherMethod( StabilizerOp, "permutation group with domain",true,
[ IsPermGroup, IsObject,
IsObject,
IsList,
IsList,
IsFunction ],
# the objects might be a group element: rank up
RankFilter(IsMultiplicativeElementWithInverse)
# and we are better even if the group is solvable
+RankFilter(IsSolvableGroup),
PermGroupStabilizerOp);
#############################################################################
##
#F StabilizerOfBlockNC( <G>, <B> ) . . . . block stabilizer for perm groups
##
InstallGlobalFunction( StabilizerOfBlockNC, function(G,B)
local S,j;
S:=StabChainOp(G,rec(base:=[B[1]],reduced:=false));
S:=StructuralCopy(S);
# Make <S> the stabilizer of the block <B>.
InsertTrivialStabilizer(S.stabilizer,B[1]);
j := 1;
while j < Length( B )
and Length( S.stabilizer.orbit ) < Length( B ) do
j := j + 1;
if IsBound( S.translabels[ B[ j ] ] ) then
AddGeneratorsExtendSchreierTree( S.stabilizer,
[ InverseRepresentative( S, B[ j ] ) ] );
fi;
od;
return GroupStabChain(G,S.stabilizer,true);
end );
#############################################################################
##
#F OnSetsSets( <set>, <g> )
##
InstallGlobalFunction( OnSetsSets, function( e, g )
return Set( List( e, i -> OnSets( i, g ) ) );
end );
#############################################################################
##
#F OnSetsDisjointSets( <set>, <g> )
##
## `OnSetsDisjointSets' does the same as `OnSetsSets',
## but since this special case is treated in a special way for example by
## `StabilizerOp',
## the function must be an object different from `OnSetsSets'.
##
InstallGlobalFunction( OnSetsDisjointSets, function( e, g )
return Set( List( e, i -> OnSets( i, g ) ) );
end );
#############################################################################
##
#F OnSetsTuples( <set>, <g> )
##
InstallGlobalFunction( OnSetsTuples, function(e,g)
return Set(List(e,i->OnTuples(i,g)));
end );
#############################################################################
##
#F OnTuplesSets( <set>, <g> )
##
InstallGlobalFunction( OnTuplesSets, function(e,g)
return List(e,i->OnSets(i,g));
end );
#############################################################################
##
#F OnTuplesTuples( <set>, <g> )
##
InstallGlobalFunction( OnTuplesTuples, function(e,g)
return List(e,i->OnTuples(i,g));
end );
#############################################################################
##
#E
|