This file is indexed.

/usr/share/gap/lib/modulmat.gi is in gap-libs 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#############################################################################
##
#W  modulmat.gi                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for *matrix modules*, that is,
##  free left modules consisting of matrices.
##
##  Especially methods for *full matrix modules* $R^[m,n]$ are contained.
##
##  (See the file `modulrow.gi' for the methods for row modules.
##  Note that we do not need methods for enumerator and iterator of full
##  matrix modules because the standard delegation to full row modules
##  suffices.)
##


#############################################################################
##
#F  FullMatrixModule( <R>, <m>, <n> )
##
##  Let $E_{i,j}$ be the matrix with value 1 in row $i$ and $column $j$, and
##  zero otherwise.
##  Clearly the full matrix space is generated by all $E_{i,j}$, $i$ and
##  $j$ ranging from 1 to <m> and <n>, respectively.
##
##  `FullMatrixModule' returns a module of ordinary matrices
##  (not of Lie matrices, see~"IsOrdinaryMatrix").
##
InstallGlobalFunction( FullMatrixModule, function( R, m, n )

    local M;   # the free module record, result

    if not ( IsRing( R ) and IsInt( m ) and 0 <= m
                         and IsInt( n ) and 0 <= n ) then
      Error( "usage: FullMatrixModule( <R>, <m>, <n> ) for ring <R>" );
    elif m = n then
      return FullMatrixFLMLOR( R, m );
    fi;

    if IsDivisionRing( R ) then
      M:= Objectify( NewType( CollectionsFamily( CollectionsFamily(
                                                     FamilyObj( R ) ) ),
                                  IsFreeLeftModule
                              and IsGaussianSpace
                              and IsFullMatrixModule
                              and IsAttributeStoringRep ),
                     rec() );
    else
      M:= Objectify( NewType( CollectionsFamily( CollectionsFamily(
                                                     FamilyObj( R ) ) ),
                                  IsFreeLeftModule
                              and IsFullMatrixModule
                              and IsAttributeStoringRep ),
                     rec() );
    fi;
    SetLeftActingDomain( M, R );
    SetDimensionOfVectors( M, [ m, n ] );

    return M;
end );


#############################################################################
##
#M  \^( <M>, [ <m>, <n> ] ) . . . . . . . . .  full matrix module over a ring
##
InstallOtherMethod( \^,
    "for ring and list of integers (delegate to `FullMatrixModule')",
    [ IsRing, IsCyclotomicCollection and IsList ],
    function( R, n )
    if     Length( n ) = 2
       and IsInt( n[1] ) and 0 <= n[1]
       and IsInt( n[2] ) and 0 <= n[2] then
      return FullMatrixModule( R, n[1], n[2] );
    fi;
    TryNextMethod();
    end );


#############################################################################
##
#M  IsMatrixModule( <M> )
##
InstallMethod( IsMatrixModule,
    "for a free left module",
    [ IsFreeLeftModule and HasGeneratorsOfLeftModule ],
    function( M )
    local gens;
    gens:= GeneratorsOfLeftModule( M );
    if IsEmpty( gens ) then
      return IsMatrix( Zero( M ) );
    else
      return ForAll( gens, IsMatrix );
    fi;
    end );

InstallMethod( IsMatrixModule,
    "for a free left module without generators",
    [ IsFreeLeftModule ],
    M -> IsMatrix(Representative(M)));

#############################################################################
##
#M  IsMatrixModule .  return `false' for objects which are not free left modules 
##
InstallOtherMethod( IsMatrixModule,
    "return `false' for objects which are not free left modules",
    true, [ IsObject ], 0,
    function ( obj )
    if not IsFreeLeftModule(obj) then
        return false;
    else
        TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  IsFullMatrixModule( M )
##
InstallMethod( IsFullMatrixModule,
    "for matrix module",
    [ IsFreeLeftModule ],
    M ->     IsMatrixModule( M )
         and Dimension( M ) = Product( DimensionOfVectors( M ) )
         and ForAll( GeneratorsOfLeftModule( M ),
                     v -> IsSubset( LeftActingDomain( M ), v ) ) );


#############################################################################
##
#M  Dimension( <M> )
##
InstallMethod( Dimension,
    "for full matrix module",
    [ IsFreeLeftModule and IsFullMatrixModule ],
    M -> Product( DimensionOfVectors( M ) ) );


#############################################################################
##
#M  Random( <M> )
##
InstallMethod( Random,
    "for full matrix module",
    [ IsFreeLeftModule and IsFullMatrixModule ],
    function( M )
    local random;
    random:= DimensionOfVectors( M );
    random:= RandomMat( random[1], random[2],
                        LeftActingDomain( M ) );
    if IsLieObjectCollection( M ) then
      random:= LieObject( random );
    fi;
    return random;
    end );


#############################################################################
##
#M  Representative( <M> )
##
InstallMethod( Representative,
    "for full matrix module",
    [ IsFreeLeftModule and IsFullMatrixModule ],
    function( M )
    local random;
    random:= DimensionOfVectors( M );
    return NullMat( random[1], random[2], LeftActingDomain( M ) );
    end );


#############################################################################
##
#F  StandardGeneratorsOfFullMatrixModule( <M> )
##
InstallGlobalFunction( StandardGeneratorsOfFullMatrixModule, function( M )
    local R, one, dims, m, n, zeromat, gens, i, j, gen;
    R:= LeftActingDomain( M );
    one:= One( R );
    dims:= DimensionOfVectors( M );
    m:= dims[1];
    n:= dims[2];
    zeromat:= NullMat( m, n, R );
    gens:= [];
    for i in [ 1 .. m ] do
      for j in [ 1 .. n ] do
        gen:= List( zeromat, ShallowCopy );
        gen[i][j]:= one;
        Add( gens, gen );
      od;
    od;

    if IsLieObjectCollection( M ) then
      gens:= List( gens, LieObject );
    fi;

    return gens;
end );


#############################################################################
##
#M  GeneratorsOfLeftModule( <V> )
##
InstallMethod( GeneratorsOfLeftModule,
    "for full matrix module",
    [ IsFreeLeftModule and IsFullMatrixModule ],
    StandardGeneratorsOfFullMatrixModule );


#############################################################################
##
#M  ViewObj( <M> )
##
InstallMethod( ViewObj,
    "for full matrix module",
    [ IsFreeLeftModule and IsFullMatrixModule ],
    function( M )
    if IsLieObjectCollection( M ) then
      TryNextMethod();
    fi;
    Print( "( " );
    View( LeftActingDomain( M ) );
    Print( "^", DimensionOfVectors( M ), " )" );
    end );


#############################################################################
##
#M  PrintObj( <M> )
##
InstallMethod( PrintObj,
    "for full matrix module",
    [ IsFreeLeftModule and IsFullMatrixModule ],
    function( M )
    if IsLieObjectCollection( M ) then
      TryNextMethod();
    fi;
    Print( "( ", LeftActingDomain( M ), "^", DimensionOfVectors( M ), " )" );
    end );


#############################################################################
##
#M  \in( <v>, <V> )
##
InstallMethod( \in,
    "for full matrix module",
    IsElmsColls,
    [ IsObject,
      IsFreeLeftModule and IsFullMatrixModule ],
    function( mat, M )
    return     IsMatrix( mat )
           and IsRectangularTable( mat )
           and DimensionsMat( mat ) = DimensionOfVectors( M )
           and ForAll( mat, row -> IsSubset( LeftActingDomain( M ), row ) );
    end );


#############################################################################
##
#M  BasisVectors( <B> ) . . . . for a canonical basis of a full matrix module
##
InstallMethod( BasisVectors,
    "for canonical basis of a full matrix module",
    [ IsBasis and IsCanonicalBasis and IsCanonicalBasisFullMatrixModule ],
    B -> StandardGeneratorsOfFullMatrixModule( UnderlyingLeftModule( B ) ) );


#############################################################################
##
#M  CanonicalBasis( <V> )
##
InstallMethod( CanonicalBasis,
    [ IsFreeLeftModule and IsFullMatrixModule ],
    function( V )
    local B;
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsCanonicalBasis
                            and IsCanonicalBasisFullMatrixModule
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    return B;
    end );


#############################################################################
##
#M  Basis( <M> )  . . . . . . . . . . . . . . . . . .  for full matrix module
##
InstallMethod( Basis,
    "for full matrix module (delegate to `CanonicalBasis')",
    [ IsFreeLeftModule and IsFullMatrixModule ], CANONICAL_BASIS_FLAGS,
    CanonicalBasis );


#############################################################################
##
#M  Coefficients( <B>, <m> )  . for a canonical basis of a full matrix module
##
InstallMethod( Coefficients,
    "for canonical basis of a full matrix module",
    IsCollsElms,
    [ IsBasis and IsCanonicalBasisFullMatrixModule, IsMatrix ],
    function( B, mat )
    local V, R;
    V:= UnderlyingLeftModule( B );
    R:= LeftActingDomain( V );
    if     DimensionsMat( mat ) = DimensionOfVectors( V )
       and ForAll( mat, row -> IsSubset( R, row ) ) then
      return Concatenation( mat );
    else
      return fail;
    fi;
    end );


#############################################################################
##
#M  IsCanonicalBasisFullMatrixModule( <B> ) . . . . . . . . . . . for a basis
##
InstallMethod( IsCanonicalBasisFullMatrixModule,
    "for a basis",
    [ IsBasis ],
    B ->     IsFullMatrixModule( UnderlyingLeftModule( B ) )
         and IsCanonicalBasis( B ) );


#############################################################################
##
#E