/usr/share/gap/lib/meataxe.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 | #############################################################################
##
#W meataxe.gi GAP Library Derek Holt
#W Sarah Rees
#W Alexander Hulpke
##
##
#Y Copyright 1994 -- School of Mathematical Sciences, ANU
#Y (C) 1998-2001 School Math. Sci., University of St Andrews, Scotland
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
##
## This file contains the 'Smash'-MeatAxe modified for GAP4 and using the
## standard MeatAxe interface. It defines the MeatAxe SMTX.
##
InstallGlobalFunction(GModuleByMats,function(arg)
local l,f,dim,m;
l:=arg[1];
if Length(arg)=1 then
Error("Usage: GModuleByMats(<mats>,[<id>,]<field>)");
fi;
f:=arg[Length(arg)];
if Length(l)>0 and Characteristic(l[1])<>Characteristic(f) then
Error("matrices and field do not fit together");
fi;
l:=List(l,i->ImmutableMatrix(f,i));
MakeImmutable(l);
if ForAny(l,i->Length(i)<>Length(i[1])) or
Length(Set(List(l,Length)))>1 then
Error("<l> must be a list of square matrices of the same dimension");
fi;
m:=rec(field:=f,
isMTXModule:=true);
if Length(l)>0 then
dim:=Length(l[1][1]);
elif Length(arg)=2 then
Error("if no generators are given the dimension must be given explicitly");
else
dim:=arg[2];
l:=[ ImmutableMatrix(f, IdentityMat(dim,f) ) ];
m.smashMeataxe:=rec(isZeroGens:=true);
fi;
m.dimension:=dim;
m.generators:=l;
m.IsOverFiniteField:= Size(f)<>infinity and IsFFECollCollColl(l);
return m;
end);
#############################################################################
##
#F TrivialGModule ( g, F ) . . . trivial G-module
##
## g is a finite group, F a field, trivial smash G-module computed.
InstallGlobalFunction(TrivialGModule,function (g, F)
local mats;
mats:=List(GeneratorsOfGroup(g),i->[[One(F)]]);
return GModuleByMats(mats,F);
end);
#############################################################################
##
#F InducedGModule ( g, h, m ) . . . calculate an induced G-module
##
## h should be a subgroup of a finite group g, and m a smash
## GModule for h.
## The induced module for g is calculated.
InstallGlobalFunction(InducedGModule,function (g, h, m)
local gensh, mats, ghom, gdim, hdim, F, index, gen, genim,
gensim, r, i, j, k, l, elt, im;
if IsGroup (g) = false then
return Error ("First argument is not a group.");
fi;
if SMTX.IsMTXModule (m) = false then
return Error ("Second argument is not a meataxe module.");
fi;
gensh:=GeneratorsOfGroup (h);
mats:=SMTX.Generators (m);
if Length (gensh) <> Length (mats) then
Error ("m does not have same number of generators as h = G1");
fi;
hdim:=SMTX.Dimension(m);
F:=SMTX.Field(m);
if Characteristic(F)=0 then
ghom:=GroupHomomorphismByImagesNC(h,Group(mats),gensh,mats);
else
ghom:=GroupHomomorphismByImages(h,GL(hdim,F),gensh,mats);
fi;
#set up transveral
r:=RightTransversal (g, h);
index:=Length (r);
gdim:=index*hdim;
#Now calculate images of generators.
gensim:=[];
for gen in GeneratorsOfGroup(g) do
genim:=NullMat (gdim, gdim, F);
for i in [1..index] do
j:=PositionCanonical (r, r[i]*gen);
elt:=r[i]*gen/r[j];
im:=Image (ghom, elt);
#Now insert hdim x hdim matrix im in the correct place in the genim.
for k in [1..hdim] do
for l in [1..hdim] do
genim[ (i-1)*hdim+k][ (j-1)*hdim+l]:=im[k][l];
od;
od;
od;
Add (gensim, genim);
od;
return GModuleByMats (gensim, F);
end);
#############################################################################
##
#F PermutationGModule ( g, F) . permutation module
##
## g is a permutation group, F a field.
## The corresponding permutation module is output.
InstallGlobalFunction(PermutationGModule,function (g, F)
local gens, deg;
gens:=GeneratorsOfGroup(g);
deg:=LargestMovedPoint(gens);
return GModuleByMats(List(gens,g->PermutationMat(g,deg,F)),F);
end);
###############################################################################
##
#F TensorProductGModule ( m1, m2 ) . . tensor product of two G-modules
##
## TensorProductGModule calculates the tensor product of smash
## modules m1 and m2.
## They are assumed to be modules over the same algebra so, in particular,
## they should have the same number of generators.
##
InstallGlobalFunction(TensorProductGModule,function ( m1, m2)
local mat1, mat2, F1, F2, gens, i, l;
mat1:=SMTX.Generators(m1); mat2:=SMTX.Generators(m2);
F1:=SMTX.Field(m1); F2:=SMTX.Field(m2);
if (F1 <> F2) then
Error ("GModules are defined over different fields.\n");
fi;
l:=Length (mat1);
if (l <> Length (mat2)) then
Error ("GModules have different numbers of generators.");
fi;
gens:=[];
for i in [1..l] do
gens[i]:=KroneckerProduct (mat1[i], mat2[i]);
od;
return GModuleByMats(gens, F1);
end);
###############################################################################
##
#F WedgeGModule ( module ) . . . . . wedge product of a G-module
##
## WedgeGModule calculates the wedge product of a G-module.
## That is the action on antisymmetrix tensors.
##
InstallGlobalFunction(WedgeGModule,function ( module)
local mats, mat, newmat, row, F, gens, dim, nmats, i, j, k, m, n, x;
mats:=SMTX.Generators(module);
F:=SMTX.Field(module);
nmats:=Length (mats);
dim:=SMTX.Dimension(module);
gens:=[];
for i in [1..nmats] do
mat:=mats[i];
newmat:=[];
for j in [1..dim] do
for k in [1..j - 1] do
row:=[];
for m in [1..dim] do
for n in [1..m - 1] do
x:=mat[j][m] * mat[k][n] - mat[j][n] * mat[k][m];
Add (row, x);
od;
od;
Add (newmat, row);
od;
od;
Add (gens, newmat);
od;
return GModuleByMats(gens, F);
end);
SMTX.Setter:=function(string)
return function(module,obj)
if not IsBound(module.smashMeataxe) then
module.smashMeataxe:=rec();
fi;
module.smashMeataxe.(string):=obj;
end;
end;
SMTX.IsMTXModule:=function(module)
return IsBound(module.isMTXModule) and
IsBound(module.field) and
IsBound(module.generators) and
IsBound(module.dimension);
end;
SMTX.IsZeroGens:=function(module)
return IsBound(module.smashMeataxe)
and IsBound(module.smashMeataxe.isZeroGens)
and module.smashMeataxe.isZeroGens=true;
end;
SMTX.Dimension:=function(module)
return module.dimension;
end;
SMTX.Field:=function(module)
return module.field;
end;
SMTX.Generators:=function(module)
if SMTX.IsZeroGens(module) then
return [];
else
return module.generators;
fi;
end;
SMTX.SetIsIrreducible:=function(module,b)
module.IsIrreducible:=b;
end;
SMTX.HasIsIrreducible:=function(module)
return IsBound(module.IsIrreducible);
end;
SMTX.IsAbsolutelyIrreducible:=function(module)
if not IsBound(module.IsAbsolutelyIrreducible) then
if not SMTX.IsIrreducible(module) then
return false;
fi;
module.IsAbsolutelyIrreducible:=SMTX.AbsoluteIrreducibilityTest(module);
fi;
return module.IsAbsolutelyIrreducible;
end;
SMTX.SetIsAbsolutelyIrreducible:=function(module,b)
module.IsAbsolutelyIrreducible:=b;
end;
SMTX.HasIsAbsolutelyIrreducible:=function(module)
return IsBound(module.IsAbsolutelyIrreducible);
end;
SMTX.SetSmashRecord:=SMTX.Setter("dummy");
SMTX.Subbasis:=SMTX.Getter("subbasis");
SMTX.SetSubbasis:=SMTX.Setter("subbasis");
SMTX.AlgEl:=SMTX.Getter("algebraElement");
SMTX.SetAlgEl:=SMTX.Setter("algebraElement");
SMTX.AlgElMat:=SMTX.Getter("algebraElementMatrix");
SMTX.SetAlgElMat:=SMTX.Setter("algebraElementMatrix");
SMTX.AlgElCharPol:=SMTX.Getter("characteristicPolynomial");
SMTX.SetAlgElCharPol:=SMTX.Setter("characteristicPolynomial");
SMTX.AlgElCharPolFac:=SMTX.Getter("charpolFactors");
SMTX.SetAlgElCharPolFac:=SMTX.Setter("charpolFactors");
SMTX.AlgElNullspaceVec:=SMTX.Getter("nullspaceVector");
SMTX.SetAlgElNullspaceVec:=SMTX.Setter("nullspaceVector");
SMTX.AlgElNullspaceDimension:=SMTX.Getter("ndimFlag");
SMTX.SetAlgElNullspaceDimension:=SMTX.Setter("ndimFlag");
SMTX.CentMat:=SMTX.Getter("centMat");
SMTX.SetCentMat:=SMTX.Setter("centMat");
SMTX.CentMatMinPoly:=SMTX.Getter("centMatMinPoly");
SMTX.SetCentMatMinPoly:=SMTX.Setter("centMatMinPoly");
SMTX.FGCentMat:=SMTX.Getter("fieldGenCentMat");
SMTX.SetFGCentMat:=SMTX.Setter("fieldGenCentMat");
SMTX.FGCentMatMinPoly:=SMTX.Getter("fieldGenCentMatMinPoly");
SMTX.SetFGCentMatMinPoly:=SMTX.Setter("fieldGenCentMatMinPoly");
SMTX.SetDegreeFieldExt:=SMTX.Setter("degreeFieldExt");
LinearCombinationVecs:=function(v,c)
local i,s;
s:=ShallowCopy(c[1]*v[1]);
for i in [2..Length(c)] do
if not IsZero(c[i]) then
AddRowVector(s,v[i],c[i]);
fi;
od;
return s;
end;
#############################################################################
##
#F SMTX.OrthogonalVector( subbasis ) single vector othogonal to a submodule,
## N.B. subbasis is assumed to consist of normed vectors,
## submodule is assumed proper.
##
SMTX_OrthogonalVector:=function ( subbasis )
local zero, one, v, i, j, k, x, dim, len;
subbasis:=ShallowCopy(subbasis);
Sort (subbasis);
subbasis:=Reversed (subbasis);
# Now subbasis is in order so that the vector whose leading coefficient
# comes furthest to the left comes first.
len:=Length (subbasis);
dim:=Length (subbasis[1]);
i:= 1;
v:=[];
one:=One(subbasis[1][1]);
zero:=Zero(one);
for i in [1..dim] do
v[i]:=zero;
od;
i:=1;
while i <= len and subbasis[i][i] = one do
i:= i + 1;
od;
v[i]:=one;
for j in Reversed ([1..i-1]) do
x:=zero;
for k in [j + 1..i] do
x:=x + v[k] * subbasis[j][k];
od;
v[j]:=-x;
od;
return v;
end;
SMTX.OrthogonalVector:=SMTX_OrthogonalVector;
SubGModLeadPos:=function(sub,dim,subdim,zero)
local leadpos,i,j,k;
## As in SpinnedBasis, leadpos[i] gives the position of the first nonzero
## entry (which will always be 1) of sub[i].
leadpos:=[];
for i in [1..subdim] do
j:=1;
while j <= dim and sub[i][j]=zero do j:=j + 1; od;
leadpos[i]:=j;
for k in [1..i - 1] do
if leadpos[k] = j then
Error ("Subbasis isn't normed.");
fi;
od;
od;
return leadpos;
end;
#############################################################################
##
#F SpinnedBasis ( v, matrices, F, [ngens] ) . . . .
##
## The first argument v can either be a vector over the module on
## which matrices act or a subspace.
##
## SpinnedBasis computes a basis for the submodule defined by the action of the
## matrix group generated by the list matrices on v.
## F is the field over which we act.
## It is returned as a list of normed vectors.
## If the optional third argument is present, then only the first ngens
## matrices in the list are used.
SMTX_SpinnedBasis:=function ( arg )
local v, matrices, ngens, zero,
ans, dim, subdim, leadpos, w, i, j, k, l, m,F;
if Number (arg) < 3 or Number (arg) > 4 then
Error ("Usage: SpinnedBasis ( v, matrices, F, [ngens] )");
fi;
v:=arg[1];
matrices:=arg[2];
F:=arg[3];
if Number (arg) = 4 then
ngens:=arg[4];
if ngens <= 0 or ngens > Length (matrices) then
ngens:=Length (matrices);
fi;
else
ngens:=Length (matrices);
fi;
ans:=[];
if Length(v)=0 then
return [];
fi;
if not IsList(v[1]) then
v:=[v];
fi;
zero:=Zero(matrices[1][1][1]);
ans:=ShallowCopy(Basis(VectorSpace(F,v)));
for v in ans do ConvertToVectorRep(v,F); od;
if Length(ans)=0 then
return ans;
fi;
dim:=Length(ans[1]);
subdim:=Length(ans);
leadpos:=SubGModLeadPos(ans,dim,subdim,zero);
i:=1;
while i <= subdim do
for l in [1..ngens] do
m:=matrices[l];
# apply generator m to submodule generator i
w:=ShallowCopy(ans[i] * m);
# try to express w in terms of existing submodule generators
j:=1;
for j in [1..subdim] do
k:=w[leadpos[j]];
if k <> zero then
#w:=w - k * ans[j];
AddRowVector(w,ans[j],-k);
fi;
od;
j:=1;
while j <= dim and w[j] = zero do j:=j + 1; od;
if j <= dim then
#we have found a new generator of the submodule
subdim:=subdim + 1;
leadpos[subdim]:=j;
#w:=(w[j]^-1) * w;
MultRowVector(w,w[j]^-1);
Add ( ans, w );
if subdim = dim then
ans:=ImmutableMatrix(F,ans);
return ans;
fi;
fi;
od;
i:=i + 1;
od;
Sort(ans);
ans:=Reversed(ans); #To bring it into semi-echelonised form.
ans:=ImmutableMatrix(F,ans);
return ans;
end;
SMTX.SpinnedBasis:=SMTX_SpinnedBasis;
SMTX_SubGModule:=function(module, subspace)
## The submodule of module generated by <subspace>.
return SMTX.SpinnedBasis(subspace, SMTX.Generators(module),
SMTX.Field(module));
end;
SMTX.SubGModule:=SMTX_SubGModule;
SMTX.SubmoduleGModule:=SMTX_SubGModule;
#############################################################################
##
#F SMTX.SubQuotActionsModule (matrices,sub,dim,subdim,field,typ) . . .
## generators of sub- and quotient-module and original module wrt new basis
##
## IT IS ASSUMED THAT THE GENERATORS OF SUB ARE NORMED.
##
## this function is used to compute all submodule/quotient stuff, as
## indicated by typ: 1=Sub, 2=Quotient, 4=Common
## The function returns a record with components 'smatrices', 'qmatrices',
## 'nmatrices' and 'nbasis' if applicable.
##
## See the description for 'SMTX.InducedAction' for
## description of the matrices
##
SMTX_SubQuotActions:=function(matrices,sub,dim,subdim,F,typ)
local c,q,i,j,k,w,zero,leadpos,cfleadpos, m, ct, erg,one,
g, newg, newgn, smatrices, qmatrices, nmatrices,
im, newim, newimn,onem,zerov,zeroc;
one:=One(F);
onem:=One(matrices[1]);
zero:=Zero(one);
c:=typ>3; # common indicator
q:=c or (typ mod 4)>1; # quotient indicator
if c then
zeroc:=ListWithIdenticalEntries(subdim,zero);
ConvertToVectorRep(zeroc,F);
else
zeroc:=fail;
fi;
leadpos:=SubGModLeadPos(sub,dim,subdim,zero);
cfleadpos:=leadpos[2];
leadpos:=leadpos[1];
## Now add a further dim-subdim vectors to the list sub, to complete a basis.
if q then
sub:=ShallowCopy (sub);
k:=subdim;
for i in [1..dim] do
if cfleadpos[i] = 0 then
k:=k + 1;
#w:=[];
#for m in [1..dim] do w[m]:=zero; od;
#w[i]:=one;
w:=onem[i];
leadpos[k]:=i;
Add (sub, w);
fi;
od;
fi;
sub:=ImmutableMatrix(F,sub);
erg:=rec();
nmatrices:=[];
if (typ mod 2)>0 then
zerov:=ListWithIdenticalEntries(subdim,zero);
ConvertToVectorRep(zerov,F);
## Now work out action of generators on submodule
smatrices:=[];
for g in matrices do
newg:=[]; newgn:=[];
for i in [1..subdim] do
im:=ShallowCopy(sub[i] * g);
#newim:=[]; newimn:=[];
newim:=ShallowCopy(zerov);
for j in [1..subdim] do
k:=im[leadpos[j]];
newim[j]:=k; #newimn[j]:=k;
if k<> zero then
#im:=im - k * sub[j];
AddRowVector(im,sub[j],-k);
fi;
od;
# Check that the vector is now zero - if not, then sub was
# not the basis of a submodule
if im <> Zero(im) then return fail; fi;
Add (newg, newim);
if c then
#for j in [subdim + 1..dim] do newimn[j]:=zero; od;
newimn:=ShallowCopy(zeroc);
newimn{[1..subdim]}:=newim;
Add (newgn, newimn);
fi;
od;
i:=ShallowCopy(newg);
i:=ImmutableMatrix(F,i);
Add (smatrices, i);
Add (nmatrices, newgn); # will still be added to
od;
erg.smatrices:=smatrices;
else
nmatrices:=List(matrices,i->[]);
fi;
if q then
zerov:=ListWithIdenticalEntries(dim-subdim,zero);
ConvertToVectorRep(zerov,F);
## Now work out action of generators on quotient module
qmatrices:=[];
ct:=0;
for g in matrices do
ct:=ct + 1;
newg:=[];
newgn:=nmatrices[ct];
for i in [subdim + 1..dim] do
im:=ShallowCopy(sub[i] * g);
#newim:=[]; newimn:=[];
newim:=ShallowCopy(zerov);
newimn:=ShallowCopy(zeroc);
for j in [1..dim] do
k:=im[leadpos[j]];
if j > subdim then
newim[j - subdim]:=k;
fi;
if k <> zero then
#im:=im - k * sub[j];
AddRowVector(im,sub[j],-k);
if c then
newimn[j]:=k;
fi;
fi;
od;
Add (newg, newim);
Add (newgn, newimn);
od;
newg:=ImmutableMatrix(F,newg);
Add (qmatrices, newg);
od;
erg.qmatrices:=qmatrices;
erg.nbasis:=sub;
if c then
nmatrices:=List(nmatrices,i->ImmutableMatrix(F,i));
MakeImmutable(nmatrices);
erg.nmatrices:=nmatrices;
fi;
fi;
return erg;
end;
SMTX_SubQuotActions:=function(matrices,sub,dim,subdim,F,typ)
local s, c, q, leadpos, zero, zerov, smatrices, newg, im, newim, k, subi,
qmats, smats, nmats, sr, qr, g, h, erg, i, j;
s:=(typ mod 2)=1; # subspace indicator
typ:=QuoInt(typ,2);
q:=(typ mod 2)=1; # quotient indicator
c:=typ>1; # common indicator
zero:=Zero(F);
leadpos:=SubGModLeadPos(sub,dim,subdim,zero);
if subdim*2<dim and not (q or c) then
# the subspace dimension is small and we only want the subspace action:
# performing a base change is too expensive
zerov:=ListWithIdenticalEntries(subdim,zero);
ConvertToVectorRep(zerov,F);
smatrices:=[];
for g in matrices do
newg:=[];
for i in [1..subdim] do
im:=ShallowCopy(sub[i] * g);
newim:=ShallowCopy(zerov);
for j in [1..subdim] do
k:=im[leadpos[j]];
if k<> zero then
newim[j]:=k;
AddRowVector(im,sub[j],-k);
fi;
od;
# Check that the vector is now zero - if not, then sub was
# not the basis of a submodule
if im <> Zero(im) then return fail; fi;
Add (newg, newim);
od;
Add(smatrices,ImmutableMatrix(F,newg));
od;
return rec(smatrices:=smatrices);
else
# we want the quotient or all or the subspace dimension is big enough to
# merit a basechange
# first extend the basis
sub:=ShallowCopy(sub);
Append(sub,One(matrices[1]){Difference([1..dim],leadpos)});
sub:=ImmutableMatrix(F,sub);
subi:=sub^-1;
qmats:=[];
smats:=[];
nmats:=[];
sr:=[1..subdim];qr:=[subdim+1..dim];
for g in matrices do
g:=sub*g*subi;
if s then
h:=g{sr}{sr};
h:=ImmutableMatrix(F,h);
Add(smats,h);
fi;
if q then
h:=g{qr}{qr};
h:=ImmutableMatrix(F,h);
Add(qmats,h);
fi;
if c then Add(nmats,g);fi;
od;
erg:=rec();
if s then
erg.smatrices:=smats;
fi;
if q then
erg.qmatrices:=qmats;
fi;
if c then
erg.nmatrices:=nmats;
fi;
if q or c then
erg.nbasis:=sub;
fi;
return erg;
fi;
end;
SMTX.SubQuotActions:=SMTX_SubQuotActions;
#############################################################################
##
## SMTX.NormedBasisAndBaseChange(sub)
##
## returns a list [bas,change] where bas is a normed basis for <sub> and
## change is the base change from bas to sub (the basis vectors of bas
## expressed in coefficients for sub)
SMTX.NormedBasisAndBaseChange:=function(sub)
local l,m,d;
l:=Length(sub);
d:=Length(sub[1]);
m:= IdentityMat(d,One(sub[1][1]));
sub:=List([1..l],i->Concatenation(ShallowCopy(sub[i]),m[i]));
TriangulizeMat(sub);
m:=d+l;
return [sub{[1..l]}{[1..d]},sub{[1..l]}{[d+1..m]}];
end;
#############################################################################
##
#F SMTX.InducedActionSubmoduleNB ( module, sub ) . . . . construct submodule
##
## module is a module record, and sub is a list of generators of a submodule.
## IT IS ASSUMED THAT THE GENERATORS OF SUB ARE NORMED.
## (i.e. each has leading coefficient 1 in a unique place).
## SMTX.InducedActionSubmoduleNB ( module, sub ) computes the submodule of
## module for which sub is the basis.
## If sub does not generate a submodule then fail is returned.
SMTX.InducedActionSubmoduleNB:=function ( module, sub )
local ans, dim, subdim, smodule,F;
subdim:=Length (sub);
if subdim = 0 then
return List(module.generators,i->[[]]);
fi;
dim:=SMTX.Dimension(module);
F:=SMTX.Field(module);
ans:=SMTX.SubQuotActions(module.generators,sub,dim,subdim,F,1);
if ans=fail then
return fail;
fi;
if SMTX.IsZeroGens(module) then
smodule:=GModuleByMats([],Length(ans.smatrices[1]),F);
else
smodule:=GModuleByMats (ans.smatrices,F);
fi;
return smodule;
end;
# Ditto, but allowing also unnormed modules
SMTX.InducedActionSubmodule:=function(module,sub)
local nb,ans,dim,subdim,smodule,F;
nb:=SMTX.NormedBasisAndBaseChange(sub);
sub:=nb[1];
nb:=nb[2];
subdim:=Length (sub);
if subdim = 0 then
return List(module.generators,i->[[]]);
fi;
dim:=SMTX.Dimension(module);
F:=SMTX.Field(module);
ans:=SMTX.SubQuotActions(module.generators,
sub,dim,subdim,F,1);
if ans=fail then
return fail;
fi;
# conjugate the matrices to correspond to given sub
if SMTX.IsZeroGens(module) then
smodule:=GModuleByMats([],Length(ans.smatrices[1]),F);
else
smodule:=GModuleByMats (List(ans.smatrices,i->i^nb),F);
fi;
return smodule;
end;
SMTX.ProperSubmoduleBasis:=function(module)
if SMTX.IsIrreducible(module) then
return fail;
fi;
return SMTX.Subbasis(module);
end;
#############################################################################
##
#F SMTX.InducedActionFactorModule( module, sub [,compl] )
##
## module is a module record, and sub is a list of generators of a submodule.
## (i.e. each has leading coefficient 1 in a unique place).
## Qmodule is returned, where qmodule
## is the quotient module.
##
SMTX.InducedActionFactorModule:=function (arg)
local module,sub, ans, dim, subdim, F,qmodule;
module:=arg[1];
sub:=arg[2];
sub:=List(sub,ShallowCopy);
TriangulizeMat(sub);
subdim:=Length (sub);
dim:=SMTX.Dimension(module);
if subdim = dim then
return List(module.generators,i->[[]]);
fi;
F:=SMTX.Field(module);
ans:=SMTX.SubQuotActions(module.generators,
sub,dim,subdim,F,2);
if ans=fail then
return fail;
fi;
if Length(arg)=3 then
# compute basechange
sub:=Concatenation(sub,arg[3]);
sub:=sub*Inverse(ans.nbasis);
ans.qmatrices:=List(ans.qmatrices,i->i^sub);
fi;
if SMTX.IsZeroGens(module) then
qmodule:=GModuleByMats([],Length(ans.qmatrices[1]),F);
else
qmodule:=GModuleByMats (ans.qmatrices, F);
fi;
return qmodule;
end;
#############################################################################
##
#F SMTX.InducedActionFactorModuleWithBasis( module, sub )
##
SMTX.InducedActionFactorModuleWithBasis:=function (module,sub)
local ans, dim, subdim, F,qmodule;
sub:=List(sub,ShallowCopy);
TriangulizeMat(sub);
subdim:=Length (sub);
dim:=SMTX.Dimension(module);
if subdim = dim then
return List(module.generators,i->[[]]);
fi;
F:=SMTX.Field(module);
ans:=SMTX.SubQuotActions(module.generators,
sub,dim,subdim,F,2);
if ans=fail then
return fail;
fi;
# fetch new basis
sub:=ans.nbasis{[Length(sub)+1..module.dimension]};
if SMTX.IsZeroGens(module) then
qmodule:=GModuleByMats([],Length(ans.qmatrices[1]),F);
else
qmodule:=GModuleByMats (ans.qmatrices, F);
fi;
return [qmodule,sub];
end;
#############################################################################
##
#F SMTX.InducedAction( module, sub, typ )
## generators of sub- and quotient-module and original module wrt new basis
## and new basis
##
## module is a module record, and sub is a list of generators of a submodule.
## IT IS ASSUMED THAT THE GENERATORS OF SUB ARE NORMED.
## (i.e. each has leading coefficient 1 in a unique place).
## SMTX.InducedAction computes the submodule and quotient
## and the original module with its matrices written wrt to the basis used
## to compute smodule and qmodule.
## [smodule, qmodule, nmodule] is returned,
## where smodule is the submodule and qmodule the quotient module.
## The matrices of nmodule have the form A 0 where A and B are the
## C B
## corresponding matrices of smodule and qmodule resepctively.
## If sub is not the basis of a submodule then fail is returned.
SMTX.InducedAction:=function ( arg )
local module,sub,typ,ans,dim,subdim,F,one,erg;
module:=arg[1];
sub:=arg[2];
if Length(arg)>2 then
typ:=arg[3];
else
typ:=7;
fi;
subdim:=Length (sub);
dim:=SMTX.Dimension(module);
F:=SMTX.Field(module); one:=One (F);
erg:=SMTX.SubQuotActions(module.generators,
sub,dim,subdim,F,typ);
if erg=fail then
return fail;
fi;
ans:=[];
if IsBound(erg.smatrices) then
if SMTX.IsZeroGens(module) then
Add(ans,GModuleByMats([],Length(erg.smatrices[1]), F));
else
Add(ans,GModuleByMats(erg.smatrices, F));
fi;
fi;
if IsBound(erg.qmatrices) then
if SMTX.IsZeroGens(module) then
Add(ans,GModuleByMats([],Length(erg.qmatrices[1]), F));
else
Add(ans,GModuleByMats(erg.qmatrices, F));
fi;
fi;
if IsBound(erg.nmatrices) then
if SMTX.IsZeroGens(module) then
Add(ans,GModuleByMats([],Length(erg.nmatrices[1]), F));
else
Add(ans,GModuleByMats(erg.nmatrices, F));
fi;
fi;
if IsBound(erg.nbasis) then
Add(ans,erg.nbasis);
fi;
return ans;
end;
#############################################################################
##
#F SMTX.InducedActionSubMatrixNB ( mat, sub ) . . . . construct submodule
##
## as InducedActionSubmoduleNB but for a matrix.
SMTX.InducedActionSubMatrixNB:=function ( mat, sub )
local subdim, dim, F, ans;
subdim:=Length (sub);
if subdim = 0 then
return [];
fi;
dim:=Length(mat);
F:=DefaultFieldOfMatrix(mat);
ans:=SMTX.SubQuotActions([mat],sub,dim,subdim,F,1);
if ans=fail then
return fail;
else
return ans.smatrices[1];
fi;
end;
# Ditto, but allowing also unnormed modules
SMTX.InducedActionSubMatrix:=function(mat,sub)
local nb, subdim, dim, F, ans;
nb:=SMTX.NormedBasisAndBaseChange(sub);
sub:=nb[1];
nb:=nb[2];
subdim:=Length (sub);
if subdim = 0 then
return [];
fi;
dim:=Length(mat);
F:=DefaultFieldOfMatrix(mat);
ans:=SMTX.SubQuotActions([mat],sub,dim,subdim,F,1);
if ans=fail then
return fail;
else
# conjugate the matrices to correspond to given sub
return ans.smatrices[1]^nb;
fi;
end;
#############################################################################
##
#F SMTX.InducedActionFactorMatrix( mat, sub [,compl] )
##
## as InducedActionFactor, but for a matrix.
##
SMTX.InducedActionFactorMatrix:=function (arg)
local mat, sub, subdim, dim, F, ans;
mat:=arg[1];
sub:=arg[2];
sub:=List(sub,ShallowCopy);
TriangulizeMat(sub);
subdim:=Length (sub);
dim:=Length(mat);
if subdim = dim then
return [];
fi;
F:=DefaultFieldOfMatrix(mat);
ans:=SMTX.SubQuotActions([mat],sub,dim,subdim,F,2);
if ans=fail then
return fail;
fi;
if Length(arg)=3 then
# compute basechange
sub:=Concatenation(sub,arg[3]);
sub:=sub*Inverse(ans.nbasis);
ans.qmatrices:=List(ans.qmatrices,i->i^sub);
fi;
return ans.qmatrices[1];
end;
SMTX_SMCoRaEl:=function(matrices,ngens,newgenlist,dim,F)
local g1,g2,coefflist,M,pol;
g1:=Random ([1..ngens]);
g2:=g1;
while g2=g1 and ngens>1 do
g2:=Random ([1..ngens]);
od;
ngens:=ngens + 1;
matrices[ngens]:=matrices[g1] * matrices[g2];
Add (newgenlist, [g1, g2]);
# Take a random linear sum of the existing generators as new generator.
# Record the sum in coefflist
coefflist:=[Random(F)];
#M:=NullMat(dim, dim, F);
M:=coefflist[1]*matrices[1];
for g1 in [2..ngens] do
g2:=Random (F);
if IsOne(g2) then
M:=M + matrices[g1];
elif not IsZero(g2) then
M:=M + g2 * matrices[g1];
fi;
Add (coefflist, g2);
od;
Info(InfoMeatAxe,2,"Evaluated random element in algebra.");
pol:=CharacteristicPolynomialMatrixNC (F,M,1);
return [M,coefflist,pol];
end;
SMTX.SMCoRaEl:=SMTX_SMCoRaEl;
# how many random elements should we try before (temporarily ) giving up?
# This number is set relatively high to minimize the chance of an unlucky
# random run in functions such as composition series computation.
SMTX.RAND_ELM_LIMIT:=5000;
#############################################################################
##
#F SMTX.IrreduciblityTest( module ) try to reduce a module over a finite
## field
##
## 27/12/2000.
## New version incorporating Ivanyos/Lux method of handling one difficult case
## for proving reducibility.
## (See G.Ivanyos and K. Lux, `Treating the exceptional cases of the meataxe',
## Experimental Mathematics 9, 2000, 373-381.
##
## module is a module record
## IsIrreducible ( ) attempts to decide whether module is irreducible.
## When it succeeds it returns true or false.
## We choose at random elements of the group algebra of the group.
## If el is such an element, we define M, p, fac, N, e and v as follows:-
## M is the matrix corresponding to el, p is its characteristic polynomial,
## fac an irreducible factor of p, N the nullspace of the matrix fac (M),
## ndim the dimension of N, and v a vector in N.
## If we can find the above such that ndim = deg (fac) then we can test
## conclusively for irreducibility. Then, in the case where irreducibility is
## proved, we store the information as fields for the module, since it may be
## useful later (e.g. to test for absolute irreducibility, equivalence with
## another module).
## These fields are accessed by the functions
## AlgEl() (el), AlgElMat (M), AlgElCharPol (p),
## AlgElCharPolFac (fac), AlgElNullspaceDimension (ndim), and
## AlgElNullspaceVec(v).
##
## If we cannot find such a set with ndim = deg (fac) we may nonetheless prove
## reducibility by finding a submodule. However we can never prove
## irreducibility without such a set (and hence the algorithm could run
## forever, but hopefully this will never happen!)
## Where reducibility is proved, we set the field .subbasis
## (a basis for the submodule, normed in the sense that the first non-zero
## component of each basis vector is 1, and is in a different position from
## the first non-zero component of every other basis vector).
## The test for irreducibility is based on the meataxe method (but in the
## meataxe, ndim is always very small, usually 1. The modification here is put
## in to enable the method to work over modules with large centralizing fields).
## We simply spin v. If we do not get the whole space, we have a submodule,
## on the other hand, if we do get the whole space, we calculate the
## nullspace NT of the transpose of fac (M), spin that under the group
## generated by the transposes of the generating matrices, and thus either
## find the transpose of a submodule or conclusively prove irreducibility.
##
## This function can also be used to get a random submodule. Therefore it
## is not an end-user function but only called internally
SMTX_IrreducibilityTest:=function ( module )
local matrices, tmatrices, ngens, ans, M, mat, g1, g2, maxdeg,
newgenlist, coefflist, orig_ngens, zero,
N, NT, v, subbasis, fac, sfac, pol, orig_pol, q, dim, ndim, i,
l, trying, deg, facno, bestfacno, F, count, R, rt0,idmat,
pfac1, pfac2, pfr, idemp, M2, mat2, mat3;
rt0:=Runtime ();
Info(InfoMeatAxe,1,"Calling MeatAxe. All times will be in milliseconds");
if not SMTX.IsMTXModule (module) then
return Error ("Argument of IsIrreducible is not a module.");
fi;
if not module.IsOverFiniteField then
return Error ("Argument of IsIrreducible is not over a finite field.");
fi;
matrices:=ShallowCopy(module.generators);
dim:=SMTX.Dimension(module);
ngens:=Length (matrices);
orig_ngens:=ngens;
F:=SMTX.Field(module);
zero:=Zero (F);
R:=PolynomialRing (F);
# Now compute random elements M of the group algebra, calculate their
# characteristic polynomials, factorize, and apply the irreducible factors
# to M to get matrices with nontrivial nullspaces.
# tmatrices will be a list of the transposed generators if required.
tmatrices:=[];
trying:=true;
#trying will become false when we have an answer
maxdeg:=1;
newgenlist:=[];
# Do a small amount of preprocessing to increase the generator set.
for i in [1..1] do
g1:=Random ([1..ngens]);
g2:=g1;
while g2=g1 and Length (matrices) > 1 do
g2:=Random ([1..ngens]);
od;
ngens:=ngens + 1;
matrices[ngens]:=matrices[g1] * matrices[g2];
Add (newgenlist, [g1, g2]);
od;
Info(InfoMeatAxe,1,"Done preprocessing. Time = ",Runtime()-rt0,".");
count:=0;
#Main loop starts - choose a random element of group algebra on each pass
while trying do
count:=count + 1;
if count mod SMTX.RAND_ELM_LIMIT = 0 then
Error ("Have generated ",SMTX.RAND_ELM_LIMIT,
"random elements and failed to prove\n",
"or disprove irreducibility. Type return to keep trying.");
fi;
maxdeg:=Minimum(maxdeg * 2,dim);
# On this pass, we only consider irreducible factors up to degree maxdeg.
# Using higher degree factors is very time consuming, so we prefer to try
# another element.
# To choose random element, first add on a new generator as a product of
# two randomly chosen unequal existing generators
# Record the product in newgenlist.
Info(InfoMeatAxe,1,"Choosing random element number ",count);
M:=SMTX.SMCoRaEl(matrices,ngens,newgenlist,dim,F);
idmat:=matrices[1]^0;
ngens:=Length(matrices);
coefflist:=M[2];
pol:=M[3];
M:=M[1];
orig_pol:=pol;
Info(InfoMeatAxe,2,"Evaluated characteristic polynomial. Time = ",
Runtime()-rt0,".");
#Now we extract the irreducible factors of pol starting with those
#of low degree
deg:=0;
fac:=[];
#The next loop is through the degrees of irreducible factors
while DegreeOfLaurentPolynomial (pol) > 0 and deg < maxdeg and trying do
repeat
deg:=deg + 1;
if deg > Int (DegreeOfLaurentPolynomial (pol) / 2) then
fac:=[pol];
else
fac:=Factors(R, pol: factoroptions:=rec(onlydegs:=[deg]));
fac:=Filtered(fac,i->DegreeOfLaurentPolynomial(i)=deg);
Info(InfoMeatAxe,2,Length (fac)," factors of degree ",deg,
", Time = ",Runtime()-rt0,".");
fi;
until fac <> [] or deg = maxdeg;
if fac <> [] then
if DegreeOfLaurentPolynomial (fac[1]) = dim then
# In this case the char poly is irreducible, so the
# module is irreducible.
ans:=true;
trying:=false;
bestfacno:=1;
v:=ListWithIdenticalEntries(dim,zero);
v[1]:=One (F);
ndim:=dim;
fi;
# Otherwise, first see if there is a non-repeating factor.
# If so it will be decisive, so delete the rest of the list
l:=Length (fac);
facno:=1;
while facno <= l and trying do
if facno = l or fac[facno] <> fac[facno + 1] then
fac:=[fac[facno]]; l:=1;
else
while facno < l and fac[facno] = fac[facno + 1] do
facno:=facno + 1;
od;
fi;
facno:=facno + 1;
od;
# Now we can delete repetitions from the list fac
sfac:=Set (fac);
if DegreeOfLaurentPolynomial (fac[1]) <> dim then
# Now go through the factors and attempt to find a submodule
facno:=1; l:=Length (sfac);
while facno <= l and trying do
mat:=Value (sfac[facno], M,idmat);
MakeImmutable(mat);
ConvertToMatrixRep(mat,F);
Info(InfoMeatAxe,2,"Evaluated matrix on factor. Time = ",
Runtime()-rt0,".");
N:=NullspaceMat (mat);
v:=N[1];
ConvertToVectorRep(v,F);
ndim:=Length (N);
Info(InfoMeatAxe,2,"Evaluated nullspace. Dimension = ",
ndim,". Time = ",Runtime()-rt0,".");
subbasis:=SMTX.SpinnedBasis (v, matrices, F,orig_ngens);
Info(InfoMeatAxe,2,"Spun up vector. Dimension = ",
Length(subbasis),". Time = ",Runtime()-rt0,".");
if Length (subbasis) < dim then
# Proper submodule found
trying:=false;
ans:=false;
SMTX.SetSubbasis(module, subbasis);
elif ndim = deg then
trying:=false;
# if we transpose and find no proper submodule, then the
# module is definitely irreducible.
mat:=TransposedMat (mat);
if Length (tmatrices)=0 then
for i in [1..orig_ngens] do
Add (tmatrices, TransposedMat (matrices[i]));
od;
fi;
Info(InfoMeatAxe,2,"Transposed matrices. Time = ",
Runtime()-rt0,".");
NT:=NullspaceMat (mat);
ConvertToVectorRep(NT[1],F);
Info(InfoMeatAxe,2,"Evaluated nullspace. Dimension = ",
Length(NT),". Time = ",Runtime()-rt0, ".");
subbasis:=SMTX.SpinnedBasis(NT[1],tmatrices,F,orig_ngens);
Info(InfoMeatAxe,2,"Spun up vector. Dimension = ",
Length(subbasis),". Time = ",Runtime()-rt0, ".");
if Length (subbasis) < dim then
# subbasis is a basis for a submodule of the transposed
# module, and the orthogonal complement of this is a
# submodule of the original module. So we find a vector
# v in that, and then spin it. Of course we won't
# necessarily get the full orthogonal complement
# that way, but we'll certainly get a proper submodule.
v:=SMTX.OrthogonalVector (subbasis);
SMTX.SetSubbasis(module,
SMTX.SpinnedBasis(v,matrices,F,orig_ngens));
ans:=false;
else
ans:=true;
bestfacno:=facno;
fi;
fi;
if trying and deg>1 and count>2 then
Info(InfoMeatAxe,1,"Trying Ivanyos/Lux Method");
#first find the appropriate idempotent
pfac1:=sfac[facno];
pfac2:= Quotient(R, orig_pol, sfac[facno]);
while QuotRemLaurpols(pfac2, sfac[facno], 2) = Zero(R) do
pfac1:=pfac1*sfac[facno];
pfac2:= Quotient(R, pfac2, sfac[facno]);
od;
pfr:=GcdRepresentation(pfac1, pfac2);
idemp:=QuotRemLaurpols(pfr[2]*pfac2, orig_pol, 2);
#Now another random element in the group algebra.
#and a random vector in the module
g2:=Random (F);
if IsOne(g2) then
M2:=matrices[1];
else
M2:=g2 * matrices[1];
fi;
for g1 in [2..ngens] do
g2:=Random (F);
if IsOne(g2) then
M2:=M2 + matrices[g1];
elif not IsZero(g2) then
M2:=M2 + g2 * matrices[g1];
fi;
od;
Info(InfoMeatAxe,2,
"Evaluated second random element in algebra.");
v:=Random(FullRowSpace(F,dim));
mat2:=Value (idemp, M,idmat);
MakeImmutable(mat2);
ConvertToMatrixRep(mat2,F);
mat3:=mat2*M2*mat2;
v:=v*(M*mat3 - mat3*M);
#This vector might lie in a proper subspace!
ConvertToVectorRep(v,F);
subbasis:=SMTX.SpinnedBasis (v, matrices, F,orig_ngens);
Info(InfoMeatAxe,2,"Spun up vector. Dimension = ",
Length(subbasis),". Time = ",Runtime()-rt0,".");
if Length(subbasis) < dim and Length(subbasis) <> 0 then
# Proper submodule found
trying:=false;
ans:=false;
SMTX.SetSubbasis(module, subbasis);
fi;
fi;
facno:=facno + 1;
od; # going through irreducible factors of fixed degree.
# If trying is false at this stage, then we don't have
#an answer yet, so we have to go onto factors of the next degree.
# Now divide p by the factors used if necessary
if trying and deg < maxdeg then
for q in fac do
pol:=Quotient (R, pol, q);
od;
fi;
fi; #DegreeOfLaurentPolynomial (fac[1]) <> dim
fi; #fac <> []
od; #loop through degrees of irreducible factors
# if we have not found a submodule and trying is false, then the module
# must be irreducible.
if trying = false and ans = true then
SMTX.SetAlgEl(module, [newgenlist, coefflist]);
SMTX.SetAlgElMat (module, M);
SMTX.SetAlgElCharPol (module, orig_pol);
SMTX.SetAlgElCharPolFac (module, sfac[bestfacno]);
SMTX.SetAlgElNullspaceVec(module, v);
SMTX.SetAlgElNullspaceDimension (module, ndim);
fi;
od; #main loop
# das kommt in die eigentliche Methode!
#if ans = true then
# SMTX.SetReducibleFlag (module, false);
#else
# SMTX.SetReducibleFlag (module, true);
#fi;
Info(InfoMeatAxe,1,"Total time = ",Runtime()-rt0," milliseconds.");
return ans;
end;
SMTX.IrreducibilityTest:=SMTX_IrreducibilityTest;
SMTX.IsIrreducible:=function(module)
if not IsBound(module.IsIrreducible) then
module.IsIrreducible:=SMTX.IrreducibilityTest(module);
fi;
return module.IsIrreducible;
end;
#############################################################################
##
#F SMTX.RandomIrreducibleSubGModule ( module ) . . .
## find a basis for a random irreducible
## submodule of module, and return that basis and the submodule, with all
## the irreducibility flags set.
## Returns false if module is irreducible.
SMTX_RandomIrreducibleSubGModule:=function ( module )
local ranSub, subbasis, submodule, subbasis2, submodule2,
F, dim, el, M, fac, N, i, matrices, ngens, genpair;
if not SMTX.IsMTXModule (module) then
return Error ("Argument of RandomIrreducibleSubGModule is not a module.");
elif SMTX.HasIsIrreducible(module) and SMTX.IsIrreducible(module) then
return false;
fi;
# now call an irreducibility test that will compute a new subbasis
#AH Do we really want to keep old flags? What are they good for?
# copymodule:=Copy (module);
# UndoReducibleFlag (copymodule);
# # Do this to avoid changing the flags in the original module
# # We need to undo the reducible falgs before calling IsIrreducible
# # so that it actually runs and doesn't merely select the submodule
# # already listed as a field of module.
i:=SMTX.IrreducibilityTest(module);
if i then
# we just found out it is irreducible
SMTX.SetIsIrreducible(module,true);
return false;
elif not SMTX.HasIsIrreducible(module) then
# or store reducibility
SMTX.SetIsIrreducible(module,false);
fi;
subbasis:=SMTX.Subbasis (module);
submodule:=SMTX.InducedActionSubmoduleNB (module, subbasis);
ranSub:=SMTX.RandomIrreducibleSubGModule (submodule);
if ranSub = false then
# submodule has been proved irreducible in a call to this function,
# so the flags have been set.
return [ subbasis, submodule] ;
else
# ranSub[1] is given in terms of the basis for the submodule,
# but we want it in terms of the basis of the original module.
# So we multiply it by subbasis.
# Then we need our basis to be normed.
# this is done by triangulization
F:=SMTX.Field(module);
subbasis2:=ranSub[1] * subbasis;
subbasis2:=List(subbasis2,ShallowCopy);
TriangulizeMat(subbasis2);
# But now since we've normed the basis subbasis2,
# the matrices of the submodule ranSub[2] are given with respect to
# the wrong basis. So we have to recompute the submodule.
submodule2:=SMTX.InducedActionSubmoduleNB (module, subbasis2);
# Unfortunately, although it's clear that this submodule is
# irreducible, we'll have to reset the flags that IsIrreducible sets.
# AH Why can't we keep irreducibility?
# Some will be the same # as in ranSub[2], but some are affected by
# the base change, or at least part of it, since the flags gets
# screwed up by the base change.
# We need to set the following flags:-
# ReducibleFlag
# AlgEl(el), AlgElMat (M), AlgElCharPol (p),
# AlgElCharPolFac (fac), AlgElNullspaceDimension (ndim), and
# AlgElNullspaceVec(v).
# Most of these can simply be copied.
#AHSetReducibleFlag (submodule2, false);
el:=SMTX.AlgEl(ranSub[2]);
SMTX.SetAlgEl(submodule2,el);
SMTX.SetAlgElCharPol(submodule2,SMTX.AlgElCharPol(ranSub[2]));
fac:=SMTX.AlgElCharPolFac(ranSub[2]);
SMTX.SetAlgElCharPolFac(submodule2,fac);
SMTX.SetAlgElNullspaceDimension(submodule2,
SMTX.AlgElNullspaceDimension(ranSub[2]));
# Only the actual algebra element and its nullspace have to be recomputed
# This code is essentially from IsomorphismGModule
dim:=SMTX.Dimension(submodule2);
matrices:=ShallowCopy(submodule2.generators);
ngens:=Length (matrices);
for genpair in el[1] do
ngens:=ngens + 1;
matrices[ngens]:=matrices[genpair[1]] * matrices[genpair[2]];
od;
M:= ImmutableMatrix(F,NullMat(dim,dim,Zero(F)));
for i in [1..ngens] do M:=M + el[2][i] * matrices[i]; od;
SMTX.SetAlgElMat(submodule2,M);
N:=NullspaceMat(Value(fac,M,M^0));
ConvertToVectorRep(N[1],F);
SMTX.SetAlgElNullspaceVec(submodule2,N[1]);
return [subbasis2, submodule2];
fi;
end;
SMTX.RandomIrreducibleSubGModule:=SMTX_RandomIrreducibleSubGModule;
#############################################################################
##
#F SMTX.GoodElementGModule ( module ) . . find good group algebra element
## in an irreducible module
##
## module is a module that is already known to be irreducible.
## GoodElementGModule finds a group algebra element with nullspace of
## minimal possible dimension. This dimension is 1 if the module is absolutely
## irreducible, and the degree of the relevant field extension otherwise.
## This is needed for testing for equivalence of modules.
SMTX_GoodElementGModule:=function ( module )
local matrices, ngens, M, mat, N, newgenlist, coefflist, orig_ngens,
fac, sfac, pol, oldpol, q, deg, i, l,
trying, dim, mindim, F, R, count, rt0;
rt0:=Runtime ();
if not SMTX.IsMTXModule(module) or not SMTX.IsIrreducible(module) then
return Error ("Argument is not an irreducible module.");
fi;
if not SMTX.HasIsAbsolutelyIrreducible(module) then
SMTX.IsAbsolutelyIrreducible(module);
fi;
if SMTX.IsAbsolutelyIrreducible(module) then
mindim:=1;
else
mindim:=SMTX.DegreeFieldExt(module);
fi;
if SMTX.AlgElNullspaceDimension (module) = mindim then return; fi;
# This is the condition that we want. If it holds already, then there is
# nothing else to do.
dim:=SMTX.Dimension(module);
matrices:=ShallowCopy(module.generators);
ngens:=Length (matrices);
orig_ngens:=ngens;
F:=SMTX.Field(module);
R:=PolynomialRing(F);
# Now compute random elements el of the group algebra, calculate their
# characteristic polynomials, factorize, and apply the irreducible factors
# to el to get matrices with nontrivial nullspaces.
trying:=true;
count:=0;
newgenlist:=[];
while trying do
count:=count + 1;
if count mod SMTX.RAND_ELM_LIMIT = 0 then
Error ("Have generated ",SMTX.RAND_ELM_LIMIT,
" random elements and failed ",
"to find a good one. Type return to keep trying.");
fi;
Info(InfoMeatAxe,2,"Choosing random element number ",count,".");
M:=SMTX.SMCoRaEl(matrices,ngens,newgenlist,dim,F);
ngens:=Length(matrices);
coefflist:=M[2];
pol:=M[3];
M:=M[1];
Info(InfoMeatAxe,2,"Evaluated characteristic polynomial. Time = ",
Runtime()-rt0,".");
#That is necessary in case p is defined over a smaller field that F.
oldpol:=pol;
#Now we extract the irreducible factors of pol starting with those
#of low degree
deg:=0;
fac:=[];
while deg <= mindim and trying do
repeat
deg:=deg + 1;
if deg > mindim then
fac:=[pol];
else
fac:=Factors(R, pol: factoroptions:=rec(onlydegs:=[deg]));
fac:=Filtered(fac,i->DegreeOfLaurentPolynomial(i)<=deg);
Info(InfoMeatAxe,2,Length(fac)," factors of degree ",deg,
", Time = ",Runtime()-rt0,".");
sfac:=Set (fac);
fi;
until fac <> [];
l:=Length (fac);
if trying and deg <= mindim then
i:=1;
while i <= l and trying do
mat:=Value (fac[i], M,M^0);
MakeImmutable(mat);
ConvertToMatrixRep(mat,F);
Info(InfoMeatAxe,2,"Evaluated matrix on factor. Time = ",
Runtime()-rt0,".");
N:=NullspaceMat(mat);
Info(InfoMeatAxe,2,"Evaluated nullspace. Dimension = ",
Length(N),". Time = ",Runtime()-rt0,".");
if Length (N) = mindim then
trying:=false;
SMTX.SetAlgEl(module, [newgenlist, coefflist]);
SMTX.SetAlgElMat (module, M);
SMTX.SetAlgElCharPol (module, oldpol);
SMTX.SetAlgElCharPolFac (module, fac[i]);
ConvertToVectorRep(N[1],F);
SMTX.SetAlgElNullspaceVec(module, N[1]);
SMTX.SetAlgElNullspaceDimension (module, Length (N));
fi;
i:=i + 1;
od;
fi;
if trying then
for q in fac do
pol:=Quotient (R, pol, q);
od;
fi;
od;
od;
Info(InfoMeatAxe,1,"Total time = ",Runtime()-rt0," milliseconds.");
end;
SMTX.GoodElementGModule:=SMTX_GoodElementGModule;
#############################################################################
##
#F EnlargedIrreducibleGModule (module, mat) . .add a generator to a module that
#
# 2bdef!
#############################################################################
##
#F SMTX.FrobeniusAction (A, v [, basis]) . . action of matrix A on
## . . Frobenius block of vector v
##
## FrobeniusAction (A, v) computes the Frobenius block of the dxd matrix A
## generated by the length - d vector v, and returns it.
## It is based on code of MinPolCoeffsMat.
## The optional third argument is for returning the basis for this block.
##
SMTX_FrobeniusAction:=function ( arg )
local L, d, p, M, one, zero, R, h, v, w, i, j, nd, ans,
A, basis;
if Number (arg) = 2 then
A:=arg[1];
v:=arg[2];
basis:=0;
elif Number (arg) = 3 then
A:=arg[1];
v:=arg[2];
basis:=arg[3];
else
return Error ("usage: SMTX.FrobeniusAction ( <A>, <v>, [, <basis>] )");
fi;
one :=One(A[1][1]);
zero:=Zero(one);
d:=Length ( A );
M:=ListWithIdenticalEntries(Length(A[1]),zero);
Add ( M, M[1] );
ConvertToVectorRep(M,DefaultField(v));
# L[i] (length d) will contain a vector with head entry 1 at position i,
# which is in the current block.
# R[i] (length d + 1 but (d + 1) - entry always 0) is vector expressing
# L[i] in terms of the basis of the block.
L:=[];
R:=[];
# <j> - 1 gives the power of <A> we are looking at
j:=1;
# spin vector around and construct polynomial
repeat
# compute the head of <v>
h:=1;
while v[h] = zero do
h:=h + 1;
od;
# start with appropriate polynomial x^(<j> - 1)
p:=ShallowCopy ( M );
p[j]:=one;
# divide by known left sides
w:=v;
while h <= d and IsBound ( L[h] ) do
p:=p - w[h] * R[h];
w:=w - w[h] * L[h];
while h <= d and w[h] = zero do
h:=h + 1;
od;
od;
# if <v> is not the zero vector try next power
if h <= d then
#AH replaced Copy by ShallowCopy as only vector is used
if (basis <> 0) then basis[j]:=ShallowCopy (v); fi;
R[h]:=p * w[h]^-1;
L[h]:=w * w[h]^-1;
j:=j + 1;
v:=v * A;
fi;
until h > d;
nd:=Length (p);
while 0 < nd and p[nd] = zero do
nd:=nd - 1;
od;
nd:=nd - 1;
ans:=[];
for i in [1..nd - 1] do
ans[i]:=[];
for j in [1..nd] do ans[i][j]:=zero; od;
ans[i][i + 1]:=one;
od;
ans[nd]:=[];
for j in [1..nd] do
ans[nd][j]:= - p[j];
od;
return ans;
end;
SMTX.FrobeniusAction:=SMTX_FrobeniusAction;
#############################################################################
##
#F SMTX.CompleteBasis(matrices,basis) . complete a basis under a group action
##
## CompleteBasis ( matrices, basis ) takes the partial basis 'basis' of the
## underlying space of the (irreducible) module defined by matrices, and
## attempts to extend it to a complete basis which is a direct sum of
## translates of the original subspace under group elements. It returns
## true or false according to whether it succeeds.
## It is called by IsAbsolutelyIrreducible ()
##
SMTX_CompleteBasis:=function ( matrices, basis )
local L, d, subd, subd0, zero, h, v, w, i, bno, gno, vno, newb, ngens;
subd:=Length (basis);
subd0:=subd;
d:=Length ( basis[1] );
if d = subd then
return true;
fi;
# L is list of normalized generators of the subspace spanned by basis.
L:=[];
zero:=Zero(basis[1][1]);
ngens:=Length (matrices);
#First find normalized generators for subspace itself.
for i in [1..subd] do
v:=basis[i];
h:=1;
while v[h] = zero do
h:=h + 1;
od;
w:=v;
while h <= d and IsBound ( L[h] ) do
w:=w - w[h] * L[h];
while h <= d and w[h] = zero do
h:=h + 1;
od;
od;
if h <= d then
L[h]:=w * w[h]^-1;
else
return Error ("Initial vectors are not linearly independent.");
fi;
od;
#Now start translating
bno:=1; gno:=1; vno:=1;
while subd < d do
#translate vector vno of block bno by generator gno
v:= basis[ (bno - 1) * subd0 + vno] * matrices[gno];
h:=1;
while h<=d and v[h] = zero do
h:=h + 1;
od;
w:=v;
while h <= d and IsBound ( L[h] ) do
w:=w - w[h] * L[h];
while h <= d and w[h] = zero do
h:=h + 1;
od;
od;
if (h <= d) then
#new generator (and block)
if vno = 1 then
newb:=true;
elif newb = false then
return false;
fi;
L[h]:=w * w[h]^-1;
subd:=subd + 1;
basis[subd]:=v;
else
#in existing subspace
if vno = 1 then
newb:=false;
elif newb = true then
return false;
fi;
fi;
vno:=vno + 1;
if vno > subd0 then
vno:=1;
gno:=gno + 1;
if gno > ngens then
gno:=1;
bno:=bno + 1;
fi;
fi;
od;
return true;
end;
SMTX.CompleteBasis:=SMTX_CompleteBasis;
#############################################################################
##
#F SMTX.AbsoluteIrreducibilityTest( module ) . . decide if an irreducible
## module over a finite field is absolutely irreducible
##
## this function does the work for an absolute irreducibility test but does
## not actually set the flags.
## The function calculates the centralizer of the module.
## The centralizer should be isomorphic to the multiplicative
## group of the field GF (q^e) for some e, or rather to the group of
## dim/e x dim/e scalar matrices over GF (q^e), or equivalently,
## dim x dim matrices composed of identical e x e blocks along the diagonal.
## e = 1 <=> the module is absolutely irreducible.
## The .fieldExtDeg component is set to e during the function call.
## The function shouldn't be called if the module has not already been
## shown to be irreducible, using IsIrreducible.
##
SMTX_AbsoluteIrreducibilityTest:=function ( module )
local dim, ndim, gcd, div, e, ct, F, q, ok,
M, v, M0, v0, C, C0, centmat, one, zero,
pow, matrices, newmatrices, looking,
basisN, basisB, basisBN, P, Pinv, i, j, k, nblocks;
if not SMTX.IsMTXModule(module) then
Error("Argument of IsAbsoluteIrreducible is not a module");
fi;
if not SMTX.IsIrreducible(module) then
Error("Argument of iIsAbsoluteIrreducible s not an irreducible module");
fi;
if not module.IsOverFiniteField then
return Error ("Argument of IsAbsoluteIrreducible is not over a finite field.");
fi;
dim:=SMTX.Dimension(module);
F:=SMTX.Field(module);
q:=Size (F);
matrices:=module.generators;
# M acts irreducibly on N, which is canonically defined with respect to M
# as the nullspace of fac (M), where fac is a factor of the char poly of M.
# ndim is the dimension of N, and v is a vector of N. All these come from
# the irreducibility test for the module.
# An element of the centralizer must centralize every element, and
# therefore M, and so must preserve N, since N is canonically defined
# wrt M. Our plan is therefore first to find an element which centralizes
# the restriction of M to N, and then extend it to the whole space.
M:=SMTX.AlgElMat(module);
ndim:=SMTX.AlgElNullspaceDimension(module);
v:=SMTX.AlgElNullspaceVec(module);
# e will have to divide both dim and ndim, and hence their gcd.
gcd:=GcdInt (dim, ndim);
Info(InfoMeatAxe,2,"GCD of module and nullspace dimensions = ", gcd, ".");
if gcd = 1 then
SMTX.SetDegreeFieldExt(module,1);
#SetAbsReducibleFlag (module, false);
return true;
fi;
div:=DivisorsInt(gcd);
# It's easy to find elements in the centralizer of an element in Frobenius
# (=rational canonical) form (centralizing elements are defined by their
# action on the first basis element).
# M0 is the Frobenius form for the action of M on N.
# basisN is set by the function SMTX.FrobeniusAction to be the
# basis v, vM, vM^2, .. for N
basisN:=[];
Info(InfoMeatAxe,2,
"Calc. Frobenius action of element from group algebra on nullspace.");
M0:=SMTX.FrobeniusAction(M,v,basisN);
zero:=Zero (F);
one:= One (F);
v0:=ListWithIdenticalEntries(Length(M0[1]),zero);
v0[1]:=one;
ConvertToVectorRep(v0, F);
# v0 is just the vector (1, 0, 0....0) of length ndim. It has nothing
# in particular to do with M0[1], but multiplying a vector that happens to be
# around by 0 is a good way to get a zero vector of the right length.
# we try all possible divisors of gcd (biggest first) as possibilities for e
# We're looking for a centralizing element with order dividing q^e - 1, and
# blocks size e on N.
for ct in Reversed ([2..Length (div)]) do
e:=div[ct];
Info(InfoMeatAxe,2,"Trying dimension ",e," for centralising field.");
# if ndim = e, M0 will do.
if ndim > e then
C:=M0;
# Take the smallest power of C guaranteed to have order dividing
# q^e - 1, and try that.
pow:=(q^ndim - 1)/ (q^e - 1);
Info(InfoMeatAxe,2,"Looking for a suitable centralising element.");
repeat
# The first time through the loop C is M0, otherwise we choose C
# at random from the centralizer of M0. Since M0 is in Frobenius
# form any centralising element is determined by its top row
# (which may be anything but the zero vector).
if Length(C)=0 then
C[1]:=[];
repeat
ok:=0;
for i in [1..ndim] do
C[1][i]:=Random (F);
if C[1][i] <> zero then ok:=1; fi;
od;
until ok=1;
for i in [2..ndim] do C[i]:=C[i - 1] * M0; od;
C:=ImmutableMatrix(F,C);
fi;
# C0 is the Frobenius form for the action of this power on one
# of its blocks, B (all blocks have the same size). basisBN will
# be set to be a basis for B, in terms of the elements of basisN.
# A matrix product gives us the basis for B in terms of the
# original basis for the module.
basisBN:=[];
C0:=SMTX.FrobeniusAction(C^pow,v0,basisBN);
C:=[];
until Length (C0) = e;
Info(InfoMeatAxe,2,"Found one.");
basisB:=ShallowCopy(basisBN * basisN);
else
C0:=M0;
basisB:=ShallowCopy(basisN);
fi;
# Now try to extend basisB to a basis for the whole module, by
# translating it by the generating matrices.
P:=basisB;
Info(InfoMeatAxe,2,"Trying to extend basis to whole module.");
if SMTX.CompleteBasis(matrices,P) then
# We succeeded in extending the basis (might not have done).
# So now we have a full basis, which we think of now as a base
# change matrix.
Info(InfoMeatAxe,2,"Succeeded. Calculating centralising matrix.");
newmatrices:=[];
Pinv:=P^-1;
for i in [1..Length (matrices)] do
newmatrices[i]:=P * matrices[i] * Pinv;
od;
# Make the sum of copies of C0 as centmat
centmat:=NullMat (dim, dim, F);
nblocks:=dim/e;
for i in [1..nblocks] do
for j in [1..e] do
for k in [1..e] do
centmat[ (i - 1) * e + j][ (i - 1) * e + k]:=C0[j][k];
od;
od;
od;
Info(InfoMeatAxe,2,"Checking that it centralises the generators.");
# Check centralizing.
looking:=true;
i:=1;
while looking and i <= Length (newmatrices) do
if newmatrices[i] * centmat <> centmat * newmatrices[i] then
looking:=false;
fi;
i:=i + 1;
od;
if looking then
Info(InfoMeatAxe,2,"It did!");
SMTX.SetDegreeFieldExt(module, e);
#SetAbsReducibleFlag (module, true);
SMTX.SetCentMat (module, P^-1 * centmat * P); # get the base right
# We will also record the minimal polynomial of C0 (and hence of
# centmat) in case we need it at some future date.
SMTX.SetCentMatMinPoly (module, MinimalPolynomialMatrixNC(F,C0,1));
return false;
fi;
Info(InfoMeatAxe,2,"But it didn't.");
else
Info(InfoMeatAxe,2,"Failed!");
fi;
od;
Info(InfoMeatAxe,2,
"Tried all divisors. Must be absolutely irreducible.");
SMTX.SetDegreeFieldExt(module, 1);
#SetAbsReducibleFlag (module, false);
return true;
end;
SMTX.AbsoluteIrreducibilityTest:=SMTX_AbsoluteIrreducibilityTest;
SMTX.DegreeFieldExt:=function(module)
if not IsBound(module.smashMeataxe.degreeFieldExt) then
SMTX.AbsoluteIrreducibilityTest( module );
fi;
return module.smashMeataxe.degreeFieldExt;
end;
SMTX.DegreeSplittingField:=function(module)
return DegreeOverPrimeField(SMTX.Field(module))
*SMTX.DegreeFieldExt(module);
end;
#############################################################################
##
#F FieldGenCentMat ( module ) . . find a centralizing matrix that generates
## the centralizing field of an irred. module
##
## FieldGenCentMat ( ) should only be applied to modules that have already
## been proved irreducible using IsIrreducible. It then tests for absolute
## irreducibility (if not already known) and does nothing if module is
## absolutely irreducible. Otherwise, it returns a a matrix that generates
## (multiplicatively) the centralizing field (i.e. its multiplicative order
## is q^e - 1, where e is the degree of the centralizing field. This is not
## yet used, but maybe in future, if we wish to reduce the group to matrices
## over the larger field.
SMTX.FieldGenCentMat:=function ( module )
local e, F, R, q, qe, minpol, pp,
M, v, M0, v0, C, C0, centmat, newcentmat, genpol, looking,
i, l, okd;
if SMTX.FGCentMat(module)=fail then
if SMTX.IsMTXModule (module) = false then
Error ("Argument of IsIrreducible is not a module.");
fi;
if not SMTX.IsIrreducible(module) then
Error ("GModule is not irreducible.");
fi;
# enforce absirred knowledge as well.
#if not SMTX.IsAbsolutelyIrreducible (module) then
# Error ("GModule is not absolutely irreducible.");
#fi;
if SMTX.CentMat(module)=fail then
Error ("No CentMat component!");
fi;
F:=SMTX.Field (module);
R:=PolynomialRing (F);
q:=Size (F);
e :=SMTX.DegreeFieldExt(module);
qe:=q^e - 1;
minpol:=SMTX.CentMatMinPoly (module);
# Factorise q^e - 1
pp:=PrimePowersInt (qe);
# We seek a generator of the field of order q^e - 1. In other words, a
# polynomial genpol of degree e, which has multiplicative order q^e - 1
# modulo minpol. We first try the polynomial x, which is the element we
# have already. If this does not work, then we try random nonconstant
# polynomials until we find one with the right order.
genpol:=Indeterminate (F);
looking:=true;
while looking do
if genpol <> minpol then
okd:=FFPOrderKnownDividend (R, genpol, minpol, pp);
if okd[1] * Order (One(F)*okd[2]) = qe then
looking:=false;
fi;
fi;
if looking then
repeat
genpol:=RandomPol (F, e,1);
until DegreeOfUnivariateLaurentPolynomial(genpol) > 0;
genpol:=StandardAssociate (R, genpol);
fi;
od;
# Finally recalculate centmat and its minimal polynomial.
centmat:=SMTX.CentMat (module);
newcentmat:=Value (genpol, centmat,centmat^0);
ConvertToMatrixRep(newcentmat,q);
SMTX.SetFGCentMat (module, newcentmat);
SMTX.SetFGCentMatMinPoly(module,MinimalPolynomialMatrixNC(F,newcentmat,1));
# Ugh! That was very inefficient - should work out the min poly using
# polynomials, but will sort that out if its ever needed.
fi;
return SMTX.FGCentMat(module);
end;
###############################################################################
##
#F SMTX.CollectedFactors ( module ) . . find composition factors of a module
##
## 01/01/01 Try to deal more efficiently with large numbers of repeated
## small factors by using SMTX.Homomorphisms
##
## SMTX.CollectedFactors calls IsIrreducible repeatedly to find the
## composition factors of the GModule `module'. It also calls
## IsomorphismGModule to determine which are isomorphic.
## It returns a list [f1, f2, ..fr], where each fi is a list [m, n],
## where m is an irreducible composition factor of module, and n is the
## number of times it occurs in module.
##
SMTX_CollectedFactors:= function ( module )
local field,dim, factors, factorsout, queue, cmod, new,
d, i, j, l, lq, lf, q, smod, ds, homs, mat;
if SMTX.IsMTXModule (module) = false then
return Error ("Argument is not a module.");
fi;
dim:=SMTX.Dimension(module);
field:= SMTX.Field(module);
factors:=[];
for i in [1..dim] do
factors[i]:=[];
od;
#factors[i] will contain a list [f1, f2, ..., fr] of the composition factors
#of module of dimension i. Each fi will have the form [m, n], where m is
#the module, and n its multiplicity.
queue:=[module];
#queue is the list of modules awaiting processing.
while Length (queue) > 0 do
lq:=Length (queue);
cmod:=queue[lq];
Unbind (queue[lq]);
d:=SMTX.Dimension(cmod);
Info(InfoMeatAxe,3,"Length of queue = ", lq, ", dim = ", d, ".");
if SMTX.IsIrreducible (cmod) then
Info(InfoMeatAxe,2,"Irreducible: ");
#module is irreducible. See if it is already on the list.
new:=true;
lf:=Length (factors[d]);
i:=1;
while new and i <= lf do
if SMTX.IsEquivalent(factors[d][i][1], cmod) then
new:=false;
factors[d][i][2]:=factors[d][i][2] + 1;
fi;
i:=i + 1;
od;
if new then
Info(InfoMeatAxe,2," new.");
factors[d][lf + 1]:=[cmod, 1];
else
Info(InfoMeatAxe,2," old.");
fi;
else
Info(InfoMeatAxe,2,"Reducible.");
#module is reducible. Add sub- and quotient-modules to queue.
lq:=Length (queue);
q:=SMTX.InducedAction(cmod,
SMTX.Subbasis (cmod),3);
smod:=q[1];
ds:=SMTX.Dimension(smod);
if ds < d/10 and SMTX.IsIrreducible(smod) then
#Small dimensional submodule
#test for repeated occurrences.
homs:=SMTX.Homomorphisms( smod, cmod); # must have length >0
# build the submodule formed by their images
mat:=homs[1];
for i in [2..Length(homs)] do
mat:=Concatenation(mat,homs[i]);
od;
TriangulizeMat(mat);
mat:=Filtered(mat,i->not IsZero(i));
mat:=ImmutableMatrix(field,mat);
if Length(mat)<cmod.dimension then
# there is still some factor left
queue[lq+1]:=SMTX.InducedActionFactorModule(cmod, mat);
fi;
Info(InfoMeatAxe,2,
"Small irreducible submodule X ",Length(homs),
" subdim :",Length(mat)/smod.dimension,":");
#module is irreducible. See if it is already on the list.
new:=true;
lf:=Length (factors[ds]);
i:=1;
while new and i <= lf do
if SMTX.IsEquivalent(factors[ds][i][1], smod) then
Info(InfoMeatAxe,2," old.");
new:=false;
factors[ds][i][2]:=factors[ds][i][2] +
Length(mat)/smod.dimension;
fi;
i:=i + 1;
od;
if new then
Info(InfoMeatAxe,2," new.");
factors[ds][lf + 1]:=[smod, Length(mat)/smod.dimension];
fi;
else
queue[lq + 1]:=smod; queue[lq + 2]:=q[2];
fi;
fi;
od;
#Now repack the sequence for output.
l:=0;
factorsout:=[];
for i in [1..dim] do
for j in [1..Length (factors[i])] do
l:=l + 1;
factorsout[l]:=factors[i][j];
od;
od;
return factorsout;
end;
SMTX.CollectedFactors:=SMTX_CollectedFactors;
SMTX.CompositionFactors:=function ( module )
if SMTX.IsIrreducible(module) then
return [module];
else
module:=SMTX.InducedAction(module,
SMTX.Subbasis(module),3);
return Concatenation(SMTX.CompositionFactors(module[1]),
SMTX.CompositionFactors(module[2]));
fi;
end;
###############################################################################
##
#F SMTX.Distinguish ( cf, i ) distinguish a composition factor of a module
##
## cf is assumed to be the output of a call to SMTX.CollectedFactors,
## and i is the number of one of the cf.
## Distinguish tries to find a group-algebra element for factor[i]
## which gives nullity zero when applied to all other cf.
## Once this is done, it is easy to find submodules containing this
## composition factor.
##
SMTX_Distinguish:=function ( cf, i )
local el, genpair, ngens, orig_ngens, mat, matsi, mats, M,
dimi, dim, F, fac, sfac, p, q, oldp, found, extdeg, j, k,
lcf, lf, x, y, wno, deg, trying, N, fact, R;
lcf:=Length (cf);
ngens:=Length (cf[1][1].generators);
orig_ngens:=ngens;
F:=SMTX.Field (cf[1][1]);
R:=PolynomialRing (F);
matsi:=ShallowCopy(cf[i][1].generators);
dimi:=SMTX.Dimension (cf[i][1]);
#First check that the existing nullspace has dim. 1 over centralising field.
SMTX.GoodElementGModule (cf[i][1]);
#First see if the existing element is OK
#Apply the alg. el. of factor i to every other factor and see if the
# matrix is nonsingular.
found:=true;
el:=SMTX.AlgEl(cf[i][1]);
fact:=SMTX.AlgElCharPolFac(cf[i][1]);
for j in [1..lcf] do
if j <> i and found then
mats:=ShallowCopy(cf[j][1].generators);
dim:=SMTX.Dimension(cf[j][1]);
for genpair in el[1] do
ngens:=ngens + 1;
mats[ngens]:=mats[genpair[1]] * mats[genpair[2]];
od;
M:=ImmutableMatrix(F, NullMat (dim, dim, F) );
for k in [1..ngens] do
M:=M + el[2][k] * mats[k];
od;
ngens:=orig_ngens;
mat:=Value (fact, M,M^0);
MakeImmutable(mat);
ConvertToMatrixRep(mat,F);
if RankMat (mat) < dim then
found:=false;
Info(InfoMeatAxe,2,"Current element failed on factor ", j);
fi;
fi;
od;
if found then
Info(InfoMeatAxe,2,"Current element worked.");
return;
fi;
#That didn't work, so we have to try new random elements.
wno:=0;
el:=[]; el[1]:=[];
extdeg:=SMTX.DegreeFieldExt (cf[i][1]);
while found = false do
Info(InfoMeatAxe,2,"Trying new one.");
wno:=wno + 1;
#Add a new generator if there are less than 8 or if wno mod 10=0.
if ngens<8 or wno mod 10 = 0 then
x:=Random ([1..ngens]);
y:=x;
while y = x and ngens > 1 do y:=Random ([1..ngens]); od;
Add (el[1], [x, y]);
ngens:=ngens + 1;
matsi[ngens]:=matsi[x] * matsi[y];
fi;
#Now take the new random element
el[2]:=[];
for j in [1..ngens] do el[2][j]:=Random (F); od;
#First evaluate on cf[i][1].
M:=ImmutableMatrix(F, NullMat (dimi, dimi, F) );
for k in [1..ngens] do
M:=M + el[2][k] * matsi[k];
od;
p:=CharacteristicPolynomialMatrixNC (F,M,1);
#That is necessary in case p is defined over a smaller field that F.
oldp:=p;
#extract irreducible factors
deg:=0;
fac:=[];
trying:=true;
while deg <= extdeg and trying do
repeat
deg:=deg + 1;
if deg > extdeg then
fac:=[p];
else
fac:=Factors(R, p: factoroptions:=rec(onlydegs:=[deg]));
fac:=Filtered(fac,i->DegreeOfLaurentPolynomial(i)<=deg);
sfac:=Set (fac);
fi;
until fac <> [];
lf:=Length (fac);
if trying and deg <= extdeg then
j:=1;
while j <= lf and trying do
mat:=Value (fac[j], M,M^0);
MakeImmutable(mat);
ConvertToMatrixRep(mat,F);
N:=NullspaceMat (mat);
if Length (N) = extdeg then
trying:=false;
SMTX.SetAlgEl(cf[i][1], el);
SMTX.SetAlgElMat(cf[i][1], M);
SMTX.SetAlgElCharPol (cf[i][1], oldp);
SMTX.SetAlgElCharPolFac (cf[i][1], fac[j]);
ConvertToVectorRep(N[1],F);
SMTX.SetAlgElNullspaceVec(cf[i][1], N[1]);
fi;
j:=j + 1;
od;
fi;
if trying then
for q in fac do
p:=Quotient (R, p, q);
od;
fi;
od;
#Now see if it works against the other factors of cf
if trying = false then
Info(InfoMeatAxe,2,"Found one.");
found:=true;
fact:=SMTX.AlgElCharPolFac(cf[i][1]);
#Apply the alg. el. of factor i to every other factor and
#see if the matrix is nonsingular.
for j in [1..lcf] do
if j <> i and found then
mats:=ShallowCopy(cf[j][1].generators);
dim:=SMTX.Dimension(cf[j][1]);
ngens:=orig_ngens;
for genpair in el[1] do
ngens:=ngens + 1;
mats[ngens]:=mats[genpair[1]] * mats[genpair[2]];
od;
M:=ImmutableMatrix(F, NullMat (dim, dim, F) );
for k in [1..ngens] do
M:=M + el[2][k] * mats[k];
od;
mat:=Value (fact, M,M^0);
MakeImmutable(mat);
ConvertToMatrixRep(mat,F);
if RankMat (mat) < dim then
found:=false;
Info(InfoMeatAxe,2,"Failed on factor ", j);
fi;
fi;
od;
fi;
if found then
Info(InfoMeatAxe,2,"It worked!");
fi;
od;
end;
SMTX.Distinguish:=SMTX_Distinguish;
###############################################################################
##
#F SMTX.MinimalSubGModule ( module, cf, i ) . . find minimal submodule
## containing a given composition factor.
##
## cf is assumed to be the output of a call to SMTX.CollectedFactors,
## and i is the number of one of the cf.
## It is assumed that SMTX.Distinguish (cf, i) has already been called.
## A basis of a minimal submodule of module containing the composition factor
## cf[i][1] is calculated and returned - i.e. if cf[i][2] = 1.
##
SMTX_MinimalSubGModule:=function ( module, cf, i )
local el, genpair, ngens, orig_ngens, mat, mats, M, dim, F,
k, N, fact;
if SMTX.IsMTXModule (module) = false then
return Error ("First argument is not a module.");
fi;
ngens:=Length (module.generators);
orig_ngens:=ngens;
F:=SMTX.Field (module);
#Apply the alg. el. of factor i to module
el:=SMTX.AlgEl(cf[i][1]);
mats:=ShallowCopy(module.generators);
dim:=SMTX.Dimension(module);
for genpair in el[1] do
ngens:=ngens + 1;
mats[ngens]:=mats[genpair[1]] * mats[genpair[2]];
od;
M:=ImmutableMatrix(F, NullMat (dim, dim, F) );
for k in [1..ngens] do
M:=M + el[2][k] * mats[k];
od;
#Now throw away extra generators of module
for k in [orig_ngens + 1..ngens] do
Unbind (mats[k]);
od;
ngens:=orig_ngens;
fact:=SMTX.AlgElCharPolFac(cf[i][1]);
mat:=Value (fact, M,M^0);
N:=NullspaceMat (mat);
ConvertToVectorRep(N[1],F);
return (SMTX.SpinnedBasis (N[1], mats,F, ngens));
end;
SMTX.MinimalSubGModule:=SMTX_MinimalSubGModule ;
#############################################################################
##
#F SMTX.Isomomorphism(module1, module2) . . . .
## decide whether two irreducible modules are isomorphic.
##
## If the 2 modules are not isomorphic, this function returns false;
## if they are isomorphic it returns the matrix B, whose rows form the
## basis of module2 which is the image of the standard basis for module1.
## Thus if X and Y are corresponding matrices in the generating sets
## for module1 and module2 respectively, Y = B^-1XB
## It is assumed that the same group acts on both modules.
## Otherwise who knows what will happen?
##
SMTX_IsomorphismComp:=function (module1, module2, action)
local matrices, matrices1, matrices2, F, R, dim, swapmodule, genpair,
swapped, orig_ngens, i, j, el, p, fac, ngens, M, mat, v1, v2, v,
N, basis, basis1, basis2;
#CCC:=[ShallowCopy(module1),ShallowCopy(module2),ShallowCopy(action)];
#CCC[1].smashMeataxe:=ShallowCopy(CCC[1].smashMeataxe);
#CCC[2].smashMeataxe:=ShallowCopy(CCC[2].smashMeataxe);
#Print(CCC,"\n");
if SMTX.IsMTXModule (module1) = false then
Error ("Argument is not a module.");
elif SMTX.IsMTXModule (module2) = false then
Error ("Argument is not a module.");
elif SMTX.Field (module1) <> SMTX.Field (module2) then
Error ("GModules are defined over different fields.");
fi;
swapped:=false;
if not SMTX.HasIsIrreducible (module1) then
if not SMTX.HasIsIrreducible (module2) then
Error ("Neither module is known to be irreducible.");
else
# The second module is known to be irreducible, so swap arguments.
swapmodule:=module2; module2:=module1; module1:=swapmodule;
swapped:=true;
Info(InfoMeatAxe,2,"Second module is irreducible. Swap them round.");
fi;
fi;
#At this stage, module1 is known to be irreducible
dim:=SMTX.Dimension (module1);
if dim <> SMTX.Dimension (module2) then
Info(InfoMeatAxe,2,"GModules have different dimensions.");
return fail;
fi;
F:=SMTX.Field (module1);
R:=PolynomialRing (F);
#First we must check that our nullspace is 1-dimensional over the
#centralizing field.
Info(InfoMeatAxe,2,
"Checking nullspace 1-dimensional over centralising field.");
SMTX.GoodElementGModule (module1);
matrices1:=module1.generators;
matrices2:=ShallowCopy(module2.generators);
ngens:=Length (matrices1);
orig_ngens:=ngens;
if ngens <> Length (matrices2) then
Error ("GModules have different numbers of defining matrices.");
fi;
# Now we calculate the element in the group algebra of module2 that
# corresponds to that in module1. This is done using the AlgEl flag
# for module1. We first extend the generating set in the same way as
# we did for module1, and then calculate the group alg. element as
# a linear sum in the generators.
Info(InfoMeatAxe,2,"Extending generating set for second module.");
el:=SMTX.AlgEl(module1);
for genpair in el[1] do
ngens:=ngens + 1;
matrices2[ngens]:=matrices2[genpair[1]] * matrices2[genpair[2]];
od;
M:=ImmutableMatrix(F, NullMat(dim, dim, F) );
for i in [1..ngens] do
M:=M + el[2][i] * matrices2[i];
od;
# Having done that, we no longer want the extra generators of module2,
# so we throw them away again.
for i in [orig_ngens + 1..ngens] do
Unbind (matrices2[i]);
od;
Info(InfoMeatAxe,2,
"Calculating characteristic polynomial for second module.");
p:=CharacteristicPolynomialMatrixNC (F,M,1);
if p <> SMTX.AlgElCharPol (module1) then
Info(InfoMeatAxe,2,"Characteristic polynomial different.");
return fail;
fi;
fac:=SMTX.AlgElCharPolFac (module1);
mat:=Value (fac, M,M^0);
Info(InfoMeatAxe,2,"Calculating nullspace for second module.");
N:=NullspaceMat (mat);
if Length (N) <> SMTX.AlgElNullspaceDimension(module1) then
Info(InfoMeatAxe,2,"Null space dimensions different.");
return fail;
fi;
# That concludes the easy tests for nonisomorphism. Now we must proceed
# to spin up. We first form the direct sum of the generating matrices.
Info(InfoMeatAxe,2,"Spinning up in direct sum.");
matrices:=SMTX.MatrixSum (matrices1, matrices2);
v1:=SMTX.AlgElNullspaceVec(module1);
ConvertToVectorRep(N[1],F);
v2:=N[1];
v:=Concatenation (v1, v2);
basis:=SMTX.SpinnedBasis (v, matrices, F);
if Length (basis) = dim then
if action<>true then
return true;
fi;
basis1:=[]; basis2:=[];
for i in [1..dim] do
basis1[i]:=[]; basis2[i]:=[];
for j in [1..dim] do
basis1[i][j]:=basis[i][j];
basis2[i][j]:=basis[i][j + dim];
od;
od;
if swapped then
return basis2^-1 * basis1;
else
return basis1^-1 * basis2;
fi;
else
return fail;
fi;
end;
SMTX.IsomorphismComp:=SMTX_IsomorphismComp;
SMTX.IsomorphismIrred:=function(module1,module2)
return SMTX.IsomorphismComp(module1,module2,true);
end;
SMTX.Isomorphism:=SMTX.IsomorphismIrred;
SMTX.IsEquivalent:=function(module1,module2)
return SMTX.IsomorphismComp(module1,module2,false)<>fail;
end;
#############################################################################
##
#F SMTX.MatrixSum (matrices1, matrices2) direct sum of two lists of matrices
##
SMTX_MatrixSum:=function (matrices1, matrices2)
local matrices, nmats, i;
matrices:=[];
nmats:=Length (matrices1);
for i in [1..nmats] do
matrices[i]:=DirectSumMat(matrices1[i],matrices2[i]);
od;
return matrices;
end;
SMTX.MatrixSum:=SMTX_MatrixSum ;
#############################################################################
##
#F SMTX.Homomorphisms( m1, m2) . . . . homomorphisms from an irreducible
## . . . GModule to an arbitrary GModule
##
## It is assumed that m1 is a module that has been proved irreducible
## (using IsIrreducible), and m2 is an arbitrary module for the same group.
## A basis of the space of G-homomorphisms from m1 to m2 is returned.
## Each homomorphism is given as a list of base images.
##
SMTX_Homomorphisms:= function (m1, m2)
local F, ngens, orig_ngens, mats1, mats2, dim1, dim2, m1bas, imbases,
el, genpair, fac, mat, N, imlen, subdim, leadpos, vec, imvecs,
numrels, rels, leadposrels, newrels, bno, genno, colno, rowno,
zero, looking, ans, i, j, k;
if not SMTX.IsMTXModule (m1) then
return Error ("First argument is not a module.");
elif not SMTX.IsIrreducible(m1) then
return Error ("First module is not known to be irreducible.");
fi;
if not SMTX.IsMTXModule (m2) then
return Error ("Second argument is not a module.");
fi;
mats1:=m1.generators;
mats2:=ShallowCopy(m2.generators);
ngens:=Length (mats1);
if ngens <> Length (mats2) then
return Error ("GModules have different numbers of generators.");
fi;
F:=SMTX.Field (m1);
if F <> SMTX.Field (m2) then
return Error ("GModules are defined over different fields.");
fi;
zero:=Zero (F);
dim1:=SMTX.Dimension (m1); dim2:=SMTX.Dimension (m2);
m1bas:=[];
m1bas[1]:= SMTX.AlgElNullspaceVec(m1);
# In any homomorphism from m1 to m2, the vector in the nullspace of the
# algebraic element that was used to prove irreducibility (which is now
# m1bas[1]) must map onto a vector in the nullspace of the same algebraic
# element evaluated in m2. We therefore calculate this nullspaces, and
# store a basis in imbases.
Info(InfoMeatAxe,2,"Extending generating set for second module.");
orig_ngens:=ngens;
el:=SMTX.AlgEl(m1);
for genpair in el[1] do
ngens:=ngens + 1;
mats2[ngens]:=mats2[genpair[1]] * mats2[genpair[2]];
od;
mat:=ImmutableMatrix(F, NullMat(dim2, dim2, F) );
for i in [1..ngens] do
mat:=mat + el[2][i] * mats2[i];
od;
# Having done that, we no longer want the extra generators of m2,
# so we throw them away again.
for i in [orig_ngens + 1..ngens] do
Unbind (mats2[i]);
od;
ngens:=orig_ngens;
fac:=SMTX.AlgElCharPolFac (m1);
mat:=Value (fac, mat,mat^0);
MakeImmutable(mat);
ConvertToMatrixRep(mat,F);
Info(InfoMeatAxe,2,"Calculating nullspace for second module.");
N:=NullspaceMat (mat);
N:=ImmutableMatrix(F,N);
imlen:=Length (N);
Info(InfoMeatAxe,2,"Dimension = ", imlen, ".");
if imlen = 0 then
return [];
fi;
imbases:=[];
for i in [1..imlen] do
imbases[i]:=[N[i]];
od;
# Now the main algorithm starts. We are going to spin the vectors in m1bas
# under the action of the module generators, norming as we go. Every
# operation that we perform on m1bas will also be performed on each of the
# vectors in imbas[1], ..., imbas[imlen].
# When we find a vector that norms to zero in m1bas, then the image of this
# under a homomorphism must be zero. This leads to a linear relation
# amongst some vectors in imbas. We store up such relations, echelonizing as
# we go. At the end, if we have numrels subch independent relations, then
# there will be imlen - numrels independent homomorphisms from m1 to m2,
# which we can then calculate.
subdim:=1; # the dimension of module spanned by m1bas
numrels:=0;
rels:=[];
#leadpos[j] will be the position of the first nonzero entry in m1bas[j]
leadpos:=[];
vec:=m1bas[1];
j:=1;
while j <= dim1 and vec[j] = zero do j:=j + 1; od;
leadpos[1]:=j;
k:=vec[j]^-1;
m1bas[1]:=k * vec;
for i in [1..imlen] do
imbases[i][1]:=k * imbases[i][1];
od;
leadposrels:=[];
#This will play the same role as leadpos but for the relation matrix.
Info(InfoMeatAxe,2,"Starting spinning.");
bno:=1;
while bno <= subdim do
for genno in [1..ngens] do
# apply generator no. genno to submodule generator bno
vec:=m1bas[bno] * mats1[genno];
# and do the same to the images
imvecs:=[];
for i in [1..imlen] do
imvecs[i]:=imbases[i][bno] * mats2[genno];
od;
# try to express w in terms of existing submodule generators
# make same changes to images
j:=1;
for j in [1..subdim] do
k:=vec[leadpos[j]];
if k <> zero then
vec:=vec - k * m1bas[j];
for i in [1..imlen] do
imvecs[i]:=imvecs[i] - k * imbases[i][j];
od;
fi;
od;
j:=1;
while j <= dim1 and vec[j] = zero do j:=j + 1; od;
if j <= dim1 then
#we have found a new generator of the submodule
subdim:=subdim + 1;
leadpos[subdim]:=j;
k:=vec[j]^-1;
m1bas[subdim]:=k * vec;
for i in [1..imlen] do
imbases[i][subdim]:=k * imvecs[i];
od;
else
# vec has reduced to zero. We get relations among the imvecs.
# (these are given by the transpose of imvec)
# reduce these against any existing relations.
newrels:=TransposedMat (imvecs);
for i in [1..Length (newrels)] do
vec:=newrels[i];
for j in [1..numrels] do
k:=vec[leadposrels[j]];
if k <> zero then
vec:=vec - k * rels[j];
fi;
od;
j:=1;
while j <= imlen and vec[j] = zero do j:=j + 1; od;
if j <= imlen then
# we have a new relation
numrels:=numrels + 1;
# if we have imlen relations, there can be no homomorphisms
# so we might as well give up immediately
if numrels = imlen then
return [];
fi;
k:=vec[j]^-1;
rels[numrels]:=k * vec;
leadposrels[numrels]:=j;
fi;
od;
fi;
od;
bno:=bno + 1;
od;
# That concludes the spinning. Now we do row operations on the im1bas to
# make it the identity, and do the same operations to the imvecs.
# Then the homomorphisms we output will be the basis images.
Info(InfoMeatAxe,2,"Done. Reducing spun up basis.");
for colno in [1..dim1] do
rowno:=colno;
looking:=true;
while rowno <= dim1 and looking do
if m1bas[rowno][colno] <> zero then
looking:=false;
if rowno <> colno then
#swap rows rowno and colno
vec:=m1bas[rowno]; m1bas[rowno]:=m1bas[colno];
m1bas[colno]:=vec;
#and of course the same in the images
for i in [1..imlen] do
vec:=imbases[i][rowno];
imbases[i][rowno]:=imbases[i][colno];
imbases[i][colno]:=vec;
od;
fi;
# and then clear remainder of column
for j in [1..dim1] do
if j <> colno and m1bas[j][colno] <> zero then
k:=m1bas[j][colno];
m1bas[j]:=m1bas[j] - k * m1bas[colno];
for i in [1..imlen] do
imbases[i][j]:=imbases[i][j] - k * imbases[i][colno];
od;
fi;
od;
fi;
rowno:=rowno + 1;
od;
od;
#Now we are ready to compute and output the linearly independent
#homomorphisms. The coefficients for the solution are given by
#the basis elements of the nullspace of the transpose of rels.
Info(InfoMeatAxe,2,"Done. Calculating homomorphisms.");
if rels = [] then
rels:=NullMat (imlen, 1, F);
else
rels:=TransposedMat (rels);
fi;
N:=NullspaceMat (rels);
for k in N do
ConvertToVectorRep(k,F);
od;
ans:=[];
for k in [1..Length (N)] do
vec:=N[k];
mat:=ImmutableMatrix(F, NullMat (dim1, dim2, F) );
for i in [1..imlen] do
mat:=mat + vec[i] * imbases[i];
od;
ans[k]:=mat;
od;
return ans;
end;
SMTX.Homomorphisms:=SMTX_Homomorphisms;
#############################################################################
##
#F SMTX.SortHomGModule ( m1, m2, homs) . . sort output of HomGModule
## according to their images
##
## It is assumed that m1 is a module that has been proved irreducible
## (using IsIrreducible), and m2 is an arbitrary module for the same group,
## and that homs is the output of a call HomGModule (m1, m2).
## Let e be the degree of the centralising field of m1.
## If e = 1 then SMTX.SortHomGModule does nothing. If e > 1, then it replaces
## the basis contained in homs by a new basis arranged in the form
## b11, b12, ..., b1e, b21, b22, ...b2e, ..., br1, br2, ...bre, where each
## block of e adjacent basis vectors are all equivalent under the
## centralising field of m1, and so they all have the same image in m2.
## A complete list of the distinct images can then be obtained with a call
## to DistinctIms (m1, m2, homs).
##
SMTX_SortHomGModule:=function (m1, m2, homs)
local e, F, ngens, mats1, mats2, dim1, dim2, centmat, fullimbas, oldhoms,
homno, dimhoms, newdim, subdim, leadpos, vec, nexthom,
i, j, k, zero;
if SMTX.IsAbsolutelyIrreducible(m1) then return; fi;
e:=SMTX.DegreeFieldExt (m1);
F:=SMTX.Field (m1);
zero:=Zero (F);
mats1:=m1.generators; mats2:=m2.generators;
dim1:=SMTX.Dimension (m1); dim2:=SMTX.Dimension (m2);
ngens:=Length (mats1);
centmat:=SMTX.CentMat(m1);
fullimbas:=[];
subdim:=0;
leadpos:=[];
# fullimbas will contain an echelonised basis for the submodule of m2
# generated by all images of the basis vectors of hom that we have found
# so far; subdim is its length.
# We go through the existing basis of homs.
# For each hom in the basis, we first check whether the first vector in
# the image of hom is in the space spanned by fullimbas.
# If so, we reject hom. If not, then hom is adjoined to the new
# basis of homs, as are the other e-1 linearly independent homomorphisms
# that are equivalent to hom by a multiplication by centmat. The
# resulting block of e homomorphisms all have the same image in m2.
# first make a copy of homs.
oldhoms:=ShallowCopy (homs);
dimhoms:=Length (homs);
homno:=0; newdim:=0;
while homno < dimhoms and newdim < dimhoms do
homno:=homno + 1;
nexthom:=oldhoms[homno];
vec:=nexthom[1];
#Now check whether vec is in existing submodule spanned by fullimbas
j:=1;
for j in [1..subdim] do
k:=vec[leadpos[j]];
if k <> zero then
vec:=vec - k * fullimbas[j];
fi;
od;
j:=1;
while j <= dim2 and vec[j] = zero do j:=j + 1; od;
if j <= dim2 then
#vec is not in the image, so we adjoin this homomorphism to the list;
#first adjoin vec and all other basis vectors in the image to fullimbas
subdim:=subdim + 1;
leadpos[subdim]:=j;
k:=vec[j]^-1;
fullimbas[subdim]:=k * vec;
for i in [2..dim1] do
vec:=nexthom[i];
j:=1;
for j in [1..subdim] do
k:=vec[leadpos[j]];
if k <> zero then
vec:=vec - k * fullimbas[j];
fi;
od;
j:=1;
while j <= dim2 and vec[j] = zero do j:=j + 1; od;
subdim:=subdim + 1;
leadpos[subdim]:=j;
k:=vec[j]^-1;
fullimbas[subdim]:=k * vec;
od;
newdim:=newdim + 1;
homs[newdim]:=nexthom;
#Now add on the other e - 1 homomorphisms equivalent to
#newhom by centmat.
for k in [1..e - 1] do
nexthom:=centmat * nexthom;
newdim:=newdim + 1;
homs[newdim]:=nexthom;
od;
fi;
od;
end;
SMTX.SortHomGModule:=SMTX_SortHomGModule;
#############################################################################
##
#F SMTX.Homomorphism(module1,module2,mat) . . . define a module homorphism
##
## module1 and module2 should be meataxe modules of dimensions m and n
## over the same algebra, and mat an mXn matrix over the field of
## the modules that defines a homomorphism module1 -> module2, where
## the i-th row of mat gives the image in module2 of the i-th basis
## vector of module1.
## It is checked whether mat really does define a homomorphism.
## If, so then the corresponding vector space homomorphism from the underlying
## row space of module1 to that of module2 is returned. This can be used
## for computing images, kernel, preimages, etc.
SMTX_Homomorphism:=function(module1, module2, mat)
local F, gens1, gens2, ng, dim1, dim2, i, j;
F:=SMTX.Field(module1);
if F <> SMTX.Field(module2) then
Error("Modules are over different fields");
fi;
gens1:=SMTX.Generators(module1); gens2:=SMTX.Generators(module2);
dim1:=SMTX.Dimension(module1); dim2:=SMTX.Dimension(module2);
ng:=Length(gens1);
if ng <> Length(gens2) then
Error("Modules are not over the same algebra");
fi;
if Length(mat) <> dim1 or Length(mat[1]) <> dim2 then
Error("matrix has wrong size for a homomorphism");
fi;
#Check if it is a homorphism
MakeImmutable(mat);
ConvertToMatrixRep(mat,F);
for i in [1..ng] do
for j in [1..dim1] do
if gens1[i][j] * mat <> mat[j] * gens2[i] then
Print(i,j,"\n");
Error("matrix does not define a homomorphism");
fi;
od;
od;
return LeftModuleHomomorphismByImages(FullRowSpace(F,dim1),
FullRowSpace(F,dim2),IdentityMat(dim1,F),mat);
end;
SMTX.Homomorphism:=SMTX_Homomorphism;
#############################################################################
##
#F SMTX.MinimalSubGModules (m1, m2, [max]) . .
## minimal submodules of m2 isomorphic to m1
##
## It is assumed that m1 is a module that has been proved irreducible
## (using IsIrreducible), and m2 is an arbitrary module for the same group.
## MinimalSubGModules computes and outputs a list of normed bases for all of the
## distinct minimal submodules of m2 that are isomorphic to m1.
## max is an optional maximal number - if the total number of submodules
## exceeds max, then the procedure aborts.
## First HomGModule is called and then SMTX.SortHomGModule to get a basis for
## the homomorphisms from m1 to m2 in the correct order.
## It is then easy to write down the list of distinct images.
##
SMTX_MinimalSubGModules:=function (arg)
local m1, m2, max, e, homs, coeff, dimhom, edimhom, F, elF, q,
submodules, sub, adno, more, count, sr, er, i, j, k ;
if Number (arg) < 2 or Number (arg) > 3 then
Error ("Number of arguments to MinimalSubGModules must be 2 or 3.");
fi;
m1:=arg[1]; m2:=arg[2];
if Number (arg) = 2 then max:=0; else max:=arg[3]; fi;
Info(InfoMeatAxe,2,"Calculating homomorphisms from m1 to m2.");
homs:=SMTX.Homomorphisms(m1, m2);
Info(InfoMeatAxe,2,"Sorting them.");
SMTX.SortHomGModule (m1, m2, homs);
F:=SMTX.Field (m1);
e:=SMTX.DegreeFieldExt (m1);
dimhom:=Length (homs);
edimhom:=dimhom / e;
submodules:=[];
count:=0;
coeff:=[];
elF:=AsList(F);
q:=Length (elF);
for i in [1..dimhom] do coeff[i]:=1; od;
#coeff[i] will be an integer in the range [1..q] corresponding to the
#field element elF[coeff[i]].
#Each submodule will be calculated as the image of the homomorphism
#elF[coeff[1]] * homs[1] +...+ elF[coeff[dimhom]] * homs[dimhom]
#for appropriate field elements elF[coeff[i]].
#We get each distinct submodule
#exactly once by making the first nonzero elF[coeff[i]] to be 1,
#and all other elF[coeff[i]]'s in that block equal to zero.
Info(InfoMeatAxe,2,"Done. Calculating submodules.");
for i in Reversed ([1..edimhom]) do
j:=e * (i - 1) + 1;
coeff[j]:=2; #giving field element 1.
for k in [j + 1..dimhom] do coeff[k]:=1; od; # field element 0.
sr:=j + e; er:=dimhom;
#coeff[i] for i in [sr..er] ranges over all field elements.
more:=true;
adno:=er;
while more do
count:=count + 1;
if max > 0 and count > max then
Info(InfoMeatAxe,2,"Number of submodules exceeds ", max,
". Aborting.");
return submodules;
fi;
# Calculate the next submodule
sub:=homs[j];
for k in [sr..er] do
sub:=sub + elF[coeff[k]] * homs[k];
od;
sub:=List(sub,ShallowCopy);
TriangulizeMat (sub);
Add (submodules, ImmutableMatrix(F,sub));
#Move on to next set of coefficients if any
while adno >= sr and coeff[adno]=q do
coeff[adno]:=1;
adno:=adno - 1;
od;
if adno < sr then
more:=false;
else
coeff[adno]:=coeff[adno] + 1;
adno:=er;
fi;
od;
od;
return submodules;
end;
SMTX.MinimalSubGModules:=SMTX_MinimalSubGModules;
SMTX_BasesCompositionSeries:=function(m)
local q,b,s,ser,queue,F,one,mats,mo;
mats:=m.generators;
SMTX.SetSmashRecord(m,0);
F:=SMTX.Field(m);
one:=One(F);
b:= IdentityMat(SMTX.Dimension(m),SMTX.Field(m) );
# denombasis: Basis des Kerns
m.smashMeataxe.denombasis:=[];
# csbasis: Basis des Moduls
#m.smashMeataxe.csbasis:=b;
# fakbasis: Urbilder der Basis, bzgl. derer csbasis angegeben wird
# the first <dimension> vectors of <fakbasis> are the right ones.
m.smashMeataxe.fakbasis:=b;
ser:=[[]];
queue:=[m];
while Length(queue)>0 do
m:=queue[1];
queue:=queue{[2..Length(queue)]};
if SMTX.IsIrreducible(m) then
mo:=m;
Info(InfoMeatAxe,3,SMTX.Dimension(m)," ",
Length(m.smashMeataxe.denombasis));
m:=List(Concatenation(m.smashMeataxe.denombasis,
m.smashMeataxe.fakbasis{[1..SMTX.Dimension(m)]}),
ShallowCopy);
#List(m.smashMeataxe.csbasis,
# i->LinearCombinationVecs(m.smashMeataxe.fakbasis,i)));
TriangulizeMat(m);
m:=ImmutableMatrix(F,m);
# m:=Filtered(m,i->i<>Zero(i));
#if ForAny(m,i->i=Zero(i)) then
# Error("zero!");
#fi;
#Assert(1,ForAll(m,i->ForAll(mats,j->SolutionMat(m,i*j)<>fail)));
Add(ser,m);
else
b:=SMTX.Subbasis(m);
#Assert(1,ForAll(b,i->ForAll(m.generators,j->SolutionMat(b,i*j)<>fail)));
s:=SMTX.InducedAction(m,b,3);
q:=s[2];
b:=s[3];
s:=s[1];
SMTX.SetSmashRecord(s,0);
SMTX.SetSmashRecord(q,0);
Info(InfoMeatAxe,1,"chopped ",SMTX.Dimension(s),"\\", SMTX.Dimension(q));
s.smashMeataxe.denombasis:=m.smashMeataxe.denombasis;
#s.smashMeataxe.csbasis:= IdentityMat(SMTX.Dimension(s), SMTX.Field(s) );
s.smashMeataxe.fakbasis:=
List(b,i->LinearCombinationVecs(m.smashMeataxe.fakbasis,i));
q.smashMeataxe.denombasis:=Concatenation(
#List(m.smashMeataxe.denombasis,ShallowCopy),
m.smashMeataxe.denombasis,
#List(s.smashMeataxe.fakbasis{[1..s.dimension]},ShallowCopy));
s.smashMeataxe.fakbasis{[1..s.dimension]});
#q.smashMeataxe.csbasis:= IdentityMat(SMTX.Dimension(q), SMTX.Field(q) );
q.smashMeataxe.fakbasis:=List(b{[SMTX.Dimension(s)+1..Length(b)]},
i->LinearCombinationVecs(m.smashMeataxe.fakbasis,i));
Add(queue,s);
Add(queue,q);
fi;
od;
Sort(ser,function(a,b) return Length(a)<Length(b);end);
return ser;
end;
SMTX.BasesCompositionSeries:=SMTX_BasesCompositionSeries;
SMTX_BasesSubmodules:=function(m)
local cf,u,i,j,f,cl,min,neu,sq,sb,fb,k,nmin,F;
F:=SMTX.Field(m);
cf:=SMTX.CollectedFactors(m);
cl:=Sum(cf,i->i[2]); # composition length
cf:=List(cf,i->i[1]);
u:=[[]];
if cl>1 then
min:=Concatenation(List(cf,i->SMTX.MinimalSubGModules(i,m)));
u:=Concatenation(u,min);
fi;
for i in [2..cl-1] do
neu:=[];
for j in min do
f:=List(j,i->List(i,i->i));
sq:=SMTX.InducedAction(m,j,2);
Assert(2,j=f);
f:=sq[1];
sb:=j;
fb:=sq[2]{[Length(j)+1..Length(sq[2])]};
# actually we might want to count frequencies to speed up the process,
# so far I'm lazy
nmin:=Concatenation(List(cf,i->SMTX.MinimalSubGModules(i,f)));
Info(InfoMeatAxe,3,Length(nmin),"minimal submodules");
for k in nmin do
sq:=Concatenation(List(sb,ShallowCopy), # don't destroy old basis
List(k,i->LinearCombinationVecs(fb,i)));
TriangulizeMat(sq);
sq:=ImmutableMatrix(F,sq);
Assert(2,SMTX.InducedAction(m,sq)<>fail);
if not sq in neu then
Info(InfoMeatAxe,2,"submodule dimension ",Length(sq));
Add(neu,sq);
fi;
od;
od;
u:=Concatenation(u,neu);
min:=neu;
od;
Add(u,ImmutableMatrix(SMTX.Field(m),
IdentityMat(SMTX.Dimension(m),SMTX.Field(m))));
return u;
end;
SMTX.BasesSubmodules:=SMTX_BasesSubmodules;
SMTX_BasesMinimalSubmodules:=function(m)
local cf;
cf:=SMTX.CollectedFactors(m);
cf:=List(cf,i->i[1]);
return Concatenation(List(cf,i->SMTX.MinimalSubGModules(i,m)));
end;
SMTX.BasesMinimalSubmodules:=SMTX_BasesMinimalSubmodules;
SMTX.DualModule:=function(module)
if SMTX.IsZeroGens(module) then
return GModuleByMats([],module.dimension,SMTX.Field(module));
else
return GModuleByMats(List(SMTX.Generators(module),i->TransposedMat(i)^-1),
module.dimension,
SMTX.Field(module));
fi;
end;
###############################################################################
##
#F DualGModule ( module ) . . . . . dual of a G-module
##
## DualGModule calculates the dual of a G-module.
## The matrices of the module are inverted and transposed.
##
InstallGlobalFunction(DualGModule,function ( module)
return SMTX.DualModule(module);
end);
SMTX.DualizedBasis:=function(module,sub)
local F,M;
F:=DefaultFieldOfMatrix(sub);
M:=NullspaceMat(TransposedMat(sub));
M:=List(M,ShallowCopy);
TriangulizeMat(M);
M:=ImmutableMatrix(F,M);
return M;
end;
SMTX_BasesMaximalSubmodules:=function(m)
local d,u;
d:=SMTX.DualModule(m);
u:=SMTX.BasesMinimalSubmodules(d);
return List(u,i->SMTX.DualizedBasis(d,i));
end;
SMTX.BasesMaximalSubmodules:=SMTX_BasesMaximalSubmodules ;
SMTX_BasesMinimalSupermodules:=function(m,sub)
local a,u,i,nb;
a:=SMTX.InducedAction(m,sub,2);
u:=SMTX.BasesMinimalSubmodules(a[1]);
nb:=a[2];
nb:=nb{[Length(sub)+1..Length(nb)]}; # the new basis part
nb:=List(u,i->Concatenation( List( sub, ShallowCopy ),
List(i,j->LinearCombinationVecs(nb,j))));
u:=[];
for i in nb do
TriangulizeMat(i);
Add(u,Filtered(i,j->j<>Zero(j)));
od;
return u;
end;
SMTX.BasesMinimalSupermodules:=SMTX_BasesMinimalSupermodules ;
SMTX_BasisRadical:=function(module)
local m,i,r;
m:=SMTX.BasesMaximalSubmodules(module);
r:=m[1];
for i in [2..Length(m)] do
r:=SumIntersectionMat(r,m[i])[2];
od;
return r;
end;
SMTX.BasisRadical:=SMTX_BasisRadical;
#############################################################################
##
#F SMTX.SpanOfMinimalSubGModules (m1, m2) . .
## span of the minimal submodules of m2 isomorphic to m1
##
## It is assumed that m1 is a module that has been proved irreducible
## (using IsIrreducible), and m2 is an arbitrary module for the same group.
## SpanOfMinimalSubGModules computes a normed bases for the span of
## the minimal submodules of m2 that are isomorphic to m1,
## First HomGModule is called.
##
SMTX_SpanOfMinimalSubGModules:=function (m1, m2)
local homs, e, mat, i;
Info(InfoMeatAxe,2,"Calculating homomorphisms from m1 to m2.");
homs:=SMTX.Homomorphisms(m1, m2);
if homs=[] then
return [];
fi;
Info(InfoMeatAxe,2,"Sorting them.");
SMTX.SortHomGModule (m1, m2, homs);
e:=SMTX.DegreeFieldExt (m1);
#homs are now grouped so that each block of e have the same image.
#We only want one from each block.
if e > 1 then
homs:=homs{Filtered([1..Length(homs)],i->(i mod e) = 1)};
fi;
if Length(homs) = 1 then
return homs[1];
fi;
#The span of the images of homs is what we want!
mat:=homs[1];
for i in [2..Length(homs)] do
mat:=Concatenation(mat,homs[i]);
od;
TriangulizeMat(mat);
MakeImmutable(mat);
return mat;
end;
SMTX.SpanOfMinimalSubGModules:=SMTX_SpanOfMinimalSubGModules;
SMTX_BasisSocle:=function(module)
local cf, mat, i;
cf:=SMTX.CollectedFactors(module);
cf:=List(cf,i->i[1]);
mat:=SMTX.SpanOfMinimalSubGModules(cf[1],module);
if Length(cf) = 1 then
return mat;
fi;
for i in [2..Length(cf)] do
mat:=Concatenation(mat,SMTX_SpanOfMinimalSubGModules(cf[i],module));
od;
TriangulizeMat(mat);
MakeImmutable(mat);
return mat;
end;
SMTX.BasisSocle:=SMTX_BasisSocle;
SMTX_BasisRadical:=function(module)
local d, bs;
d:=SMTX.DualModule(module);
bs:=SMTX.BasisSocle(d);
return SMTX.DualizedBasis(d,bs);
end;
SMTX.BasisRadical:=SMTX_BasisRadical;
# the following assignement is for profiling
SMTX.funcs:=[SMTX_OrthogonalVector,SMTX_SpinnedBasis,SMTX_SubQuotActions,
SMTX_SMCoRaEl,SMTX_IrreducibilityTest,SMTX_RandomIrreducibleSubGModule,
SMTX_GoodElementGModule,SMTX_FrobeniusAction,SMTX_CompleteBasis,
SMTX_AbsoluteIrreducibilityTest,SMTX_CollectedFactors,SMTX_Distinguish,
SMTX_MinimalSubGModule,SMTX_IsomorphismComp,SMTX_MatrixSum,
SMTX_Homomorphisms,SMTX_SortHomGModule,SMTX_MinimalSubGModules,
SMTX_BasesCompositionSeries,SMTX_BasesSubmodules,SMTX_BasesMinimalSubmodules,
SMTX_BasesMaximalSubmodules,SMTX_BasesMinimalSupermodules,SMTX_BasisSocle,
SMTX_BasisRadical];
# The following functions are for finding a basis of an irreducible module
# that is contained in an orbit of the G-action on vectors, and for
# looking for G-invariant bilinear and quadratic forms of the module.
# The special basis is used for finding invariant quadratic forms when
# the characteristic of the field is 2.
SMTX.SetBasisInOrbit:=function(module,b)
module.BasisInOrbit:=b;
end;
#############################################################################
##
#F BasisInOrbit ( module ) . . . .
##
## Find a basis of the irrecucible GModule module that is contained in
## an orbit of the action of G.
## The code is similar to that of SpinnedBasis.
SMTX_BasisInOrbit:=function ( module )
local v, matrices, ngens, zero, ans, normedans,
dim, subdim, leadpos, w, normedw, i, j, k, l, m, F;
if not SMTX.IsMTXModule(module) or not SMTX.IsIrreducible(module) then
Error("Argument of BasisInOrbit is not an irreducible module");
fi;
if IsBound(module.BasisInOrbit) then return module.BasisInOrbit; fi;
dim:=SMTX.Dimension(module);
F:=SMTX.Field(module);
matrices:=module.generators;
ngens:=Length(matrices);
zero:=Zero(F);
v:=IdentityMat(dim,F)[1];
ConvertToVectorRep(v,F);
ans:=[v];
normedans:=[v];
subdim:=1;
leadpos:=SubGModLeadPos(ans,dim,subdim,zero);
i:=1;
while i <= subdim do
for l in [1..ngens] do
m:=matrices[l];
# apply generator m to submodule generator i
w:=ans[i] * m;
normedw:=w;
# try to express w in terms of existing submodule generators
j:=1;
for j in [1..subdim] do
k:=normedw[leadpos[j]];
if k <> zero then
normedw:=normedw - k * normedans[j];
fi;
od;
j:=1;
while j <= dim and normedw[j] = zero do j:=j + 1; od;
if j <= dim then
#we have found a new generator of the submodule
subdim:=subdim + 1;
leadpos[subdim]:=j;
normedw:=(normedw[j]^-1) * normedw;
Add ( ans, w );
Add ( normedans, normedw );
if subdim = dim then
ans:=ImmutableMatrix(F,ans);
SMTX.SetBasisInOrbit(module,ans);
return ans;
fi;
fi;
od;
i:=i + 1;
od;
end;
SMTX.BasisInOrbit:=SMTX_BasisInOrbit;
SMTX.SetInvariantBilinearForm:=function(module,b)
module.InvariantBilinearForm:=b;
end;
#############################################################################
##
#F InvariantBilinearForm ( module ) . . . .
##
## Look for an invariant bilinear form of the absolutely irreducible
## GModule module. Return fail, or the matrix of the form.
SMTX_InvariantBilinearForm:=function ( module )
local DM, iso;
if not SMTX.IsMTXModule(module) or
not SMTX.IsAbsolutelyIrreducible(module) then
Error(
"Argument of InvariantBilinearForm is not an absolutely irreducible module");
fi;
if IsBound(module.InvariantBilinearForm) then
return module.InvariantBilinearForm;
fi;
DM:=SMTX.DualModule(module);
iso:=MTX.IsomorphismIrred(module,DM);
if iso = fail then
SMTX.SetInvariantBilinearForm(module, fail);
return fail;
fi;
ConvertToMatrixRep(iso,module.field);
MakeImmutable(iso);
SMTX.SetInvariantBilinearForm(module, iso);
return iso;
end;
SMTX.InvariantBilinearForm:=SMTX_InvariantBilinearForm;
SMTX.MatrixUnderFieldAuto:=function(matrix, r)
# raise every component of matrix to r-th power
local mat;
mat:=List( matrix, x -> List(x, y->y^r) );
ConvertToMatrixRep(mat, GF(r^2));
MakeImmutable(mat);
return mat;
end;
SMTX.TwistedDualModule:=function(module)
local q, r, mats;
q:=Size(module.field);
r:=RootInt(q,2);
if r^2 <> q then
Error("Size of field of module is not a square");
fi;
if SMTX.IsZeroGens(module) then
return GModuleByMats([],module.dimension,SMTX.Field(module));
else
mats:=List( SMTX.Generators(module),
i->SMTX.MatrixUnderFieldAuto(TransposedMat(i)^-1,r) );
return GModuleByMats( mats, module.dimension, SMTX.Field(module) );
fi;
end;
SMTX.SetInvariantSesquilinearForm:=function(module,b)
module.InvariantSesquilinearForm:=b;
end;
#############################################################################
##
#F InvariantSesquilinearForm ( module ) . . . .
##
## Look for an invariant sesquililinear form of the absolutely irreducible
## GModule module. Return fail, or the matrix of the form.
SMTX_InvariantSesquilinearForm:=function ( module )
local DM, q, r, iso, isot, l;
if not SMTX.IsMTXModule(module) or
not SMTX.IsAbsolutelyIrreducible(module) then
Error(
"Argument of InvariantSesquilinearForm is not an absolutely irreducible module"
);
fi;
if IsBound(module.InvariantSesquilinearForm) then
return module.InvariantSesquilinearForm;
fi;
DM:=SMTX.TwistedDualModule(module);
iso:=MTX.IsomorphismIrred(module,DM);
if iso = fail then
SMTX.SetInvariantSesquilinearForm(module, fail);
return fail;
fi;
#Replace iso by a scalar multiple to get iso twisted symmetric
q:=Size(module.field);
r:=RootInt(q,2);
isot:=List( TransposedMat(iso), x -> List(x, y->y^r) );
isot:=iso * isot^-1;
if not IsDiagonalMat(isot) then
Error("Form does not seem to be of the right kind (non-diagonal)!");
fi;
l:=LogFFE(isot[1][1],Z(q));
if l mod (r-1) <> 0 then
Error("Form does not seem to be of the right kind (not (q-1)st root)!");
fi;
iso:=Z(q)^(l/(r-1)) * iso;
ConvertToMatrixRep(iso,GF(q));
MakeImmutable(iso);
SMTX.SetInvariantSesquilinearForm(module, iso);
return iso;
end;
SMTX.InvariantSesquilinearForm:=SMTX_InvariantSesquilinearForm;
SMTX.SetInvariantQuadraticForm:=function(module,b)
module.InvariantQuadraticForm:=b;
end;
#############################################################################
##
#F InvariantQuadraticForm ( module ) . . . .
##
## Look for an invariant quadratic form of the absolutely irreducible
## GModule module. Return fail, or the matrix of the form.
SMTX_InvariantQuadraticForm:=function ( module )
local iso, bas, cgens, ciso, dim, f, z, x, i, j, qf, g, id, cqf, fix;
if not SMTX.IsMTXModule(module) or
not SMTX.IsAbsolutelyIrreducible(module) then
Error(
"Argument of InvariantQuadraticForm is not an absolutely irreducible module");
fi;
if IsBound(module.InvariantQuadraticForm) then
return module.InvariantQuadraticForm;
fi;
iso:=SMTX.InvariantBilinearForm(module);
if iso = fail then return fail; fi;
if Characteristic(module.field) <> 2 then return iso/2; fi;
#In characteristic two, we change to a basis in orbit.
#This makes the search for an invariant quadratic form quicker.
bas:=SMTX.BasisInOrbit(module);
cgens:=List (module.generators, x->bas*x*bas^-1 );
ciso:=List(bas * iso * TransposedMat(bas),ShallowCopy);
dim:=module.dimension;
f:=module.field;
z:=Zero(f);
#Matrix must be symplectic - perhaps it must be?
for i in [1..dim] do if ciso[i][i] <> z then
Print("Non-symplectic failure!\n");
return fail;
fi; od;
#If there is an invariant quadratic form, then it will be the lower
#left hand part of ciso plus a scalar.
for i in [1..dim-1] do for j in [i+1..dim] do ciso[i][j]:=z; od; od;
id:=IdentityMat(dim, f);
for x in f do
qf:=ciso + x*id;
fix:=true;
#Form is preserved if and only if diagonal is.
for g in cgens do
cqf:=g * qf * TransposedMat(g);
for j in [1..dim] do if cqf[j][j] <> x then
fix:=false;
break;
fi; od;
if not fix then break; fi;
od;
if fix then
qf:=bas^-1 * qf * TransposedMat(bas^-1);
#switch to lower triangular equivalent
for i in [1..dim-1] do for j in [i+1..dim] do
qf[j][i]:=qf[i][j] + qf[j][i];
qf[i][j]:=z;
od; od;
ConvertToMatrixRep(qf,f);
MakeImmutable(qf);
SMTX.SetInvariantQuadraticForm(module, qf);
return qf;
fi;
od;
SMTX.SetInvariantQuadraticForm(module, fail);
return fail;
end;
SMTX.InvariantQuadraticForm:=SMTX_InvariantQuadraticForm;
#############################################################################
##
#F OrthogonalSign ( module ) . . . .
##
## When an absolutely irreducible G-module has an invariant quadratic
## form, this implies that it embeds in a General Orthogonal group. In
## even dimension there are two non-isomorphic General Orthogonal groups
## "plus" and "minus" type `GeneralOrthogonalGroup(+1,<n>,<q>)' and
## `GeneralOrthogobalGroup(-1,<n>,<q>)' in GAP terms. This function
## decides which one the module embeds into.
##
## It returns:
## fail if the module is not absolutely irreducible, or
## does not stabilize a quadratic form.
## 0 otherwise, if the dimension of the module is odd
## +1 or -1 otherwise, according to which GO the module embeds in
##
## This is an implementation of an algorithm by Jon Thackray
SMTX.SetOrthogonalSign:=function(module,s)
module.OrthogonalSign:=s;
end;
SMTX_OrthogonalSign:=function(gm)
local b, q, k, n, W, o, z, lo, lzo, lines, l, w, p,
x, y, r, i;
if IsBound(gm.OrthogonalSign) then
return gm.OrthogonalSign;
fi;
b:=MTX.InvariantBilinearForm(gm);
q:=MTX.InvariantQuadraticForm(gm);
if q = fail then
return fail;
fi;
n:=Length(b);
if n mod 2 = 1 then
return 0;
fi;
k:=MTX.Field(gm);
W:=IdentityMat(n,k);
#
# Assemble the points of projective 3-space
#
o:=One(k);
z:=Zero(k);
lo:=[o];
lzo:=[z,o];
lines:=List(Elements(FullRowSpace(k,2)),x -> Concatenation(lo,x));
Append(lines,List(Elements(k), x-> Concatenation(lzo,[x])));
Add(lines,[z,z,o]);
#
# Main loop of Thackray's algorithm, build up a totally isotropic
# subspace and restrict it's perp until the gap between is just 2 dimensional
#
while n > 2 do
#
# Find an isotropic vector
#
for l in lines do
w:=l*W;
if w*q*w = z then
break;
fi;
od;
Assert(1,w*b*w = z);
p:=PositionNonZero(l);
#
# delete it from W (add it to the subspace)
#
W{[p..n-1]}:=W{[p+1..n]};
Unbind(W[n]);
n:=n-1;
#
# find a vector with which it has non-zero inner product
#
x:=w*b;
p:=PositionProperty(W, row -> x*row <> z);
Assert(1, p <> fail);
#
# use it to find the perp of the enlarged subspace
#
y:=W[p];
r:=x*y;
for i in [p+1..n] do
AddRowVector(W[i], y, - x*W[i]/r);
W[i-1]:=W[i];
od;
Unbind(W[n]);
n:=n-1;
#
# Now n has gone down by 2 and W is still the "gap" between the
# subspace and its perp
#
od;
#
# Now we need to see if the span of W contains an isotropic vector
#
if W[2]*q*W[2] = z then
SMTX.SetOrthogonalSign(gm,1);
return 1;
else
for x in k do
w:=W[1]+x*W[2];
if w*q*w = z then
SMTX.SetOrthogonalSign(gm,1);
return 1;
fi;
od;
SMTX.SetOrthogonalSign(gm,-1);
return -1;
fi;
end;
SMTX.OrthogonalSign:=SMTX_OrthogonalSign;
|