/usr/share/gap/lib/matblock.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 | #############################################################################
##
#W matblock.gi GAP Library Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the implementation of methods for block matrices.
##
#############################################################################
##
#R IsBlockMatrixRep( <mat> )
##
## A matrix in this representation is described by the following data.
##
## \beginitems
## `blocks' &
## an ordered list of triples $[ i, j, m ]$ where $m$ is a matrix
## (possibly again a block matrix) with `rb' rows and `cb' columns
## that is in the $i$-th row block and in the $j$-th column block
## of the matrix <mat>,
##
## `nrb' &
## number of row blocks,
##
## `ncb' &
## number of column blocks,
##
## `rpb' &
## rows per block,
##
## `cpb' &
## columns per block,
##
## `zero' &
## the zero element that is stored in all places of the matrix
## outside the blocks in `blocks'.
## \enditems
##
DeclareRepresentation( "IsBlockMatrixRep",
IsComponentObjectRep,
[ "blocks", "zero", "nrb", "ncb", "rpb", "cpb" ] );
#############################################################################
##
#F BlockMatrix( <blocks>, <nrb>, <ncb> )
#F BlockMatrix( <blocks>, <nrb>, <ncb>, <rpb>, <cpb>, <zero> )
##
InstallGlobalFunction( BlockMatrix, function( arg )
local blocks, nrb, ncb, rpb, cpb, zero, dims, newblocks, block, i;
# Check and get the arguments.
if Length( arg ) < 3 or not
( IsList( arg[1] ) and IsInt( arg[2] ) and IsInt( arg[3] ) ) then
Error( "need at least <blocks>, <nrb>, <ncb>" );
fi;
blocks := arg[1];
nrb := arg[2];
ncb := arg[3];
if Length( arg ) = 3 then
if IsEmpty( blocks ) then
Error( "need <rpb>, <cpb>, <zero> if <blocks> is empty" );
fi;
rpb := Length( blocks[1][3] );
cpb := Length( blocks[1][3][1] );
zero := Zero( blocks[1][3][1][1] );
elif Length( arg ) = 6 then
rpb := arg[4];
cpb := arg[5];
zero := arg[6];
else
Error("usage: BlockMatrix(<blocks>,<nrb>,<ncb>[,<rpb>,<cpb>,<zero>])");
fi;
if not ( IsInt(rpb) and IsInt(cpb) and IsInt(nrb) and IsInt(ncb) ) then
Error( "block matrices must be finite" );
fi;
dims:= [ rpb, cpb ];
# Remove zero blocks, and sort the list of blocks.
newblocks:= [];
for block in blocks do
if IsBlockMatrixRep( block[3] ) or not IsZero( block[3] ) then
if DimensionsMat( block[3] ) <> dims then
Error( "all blocks must have the same dimensions" );
fi;
Add( newblocks, block );
fi;
od;
Sort( newblocks, IsLexicographicallyLess );
i:=1;
while i+1<=Length(newblocks) do
if newblocks[i][1] = newblocks[ i+1 ][1] and
newblocks[i][2] = newblocks[ i+1 ][2] then
#Error( "two blocks for position [", newblocks[i][1], "][",
# newblocks[i][2], "]" );
newblocks:=Concatenation(newblocks{[1..i-1]},
[[newblocks[i][1],newblocks[i][2],
newblocks[i][3]+newblocks[i+1][3]]],
newblocks{[i+2..Length(newblocks)]});
else
i:=i+1;
fi;
od;
# Construct and return the block matrix.
return Objectify( NewType( CollectionsFamily( CollectionsFamily(
FamilyObj( zero ) ) ),
IsOrdinaryMatrix
and IsMultiplicativeGeneralizedRowVector
and IsBlockMatrixRep
and IsCopyable
and IsFinite ),
rec( blocks := Immutable( newblocks ),
zero := zero,
nrb := nrb,
ncb := ncb,
rpb := rpb,
cpb := cpb ) );
end );
#############################################################################
##
#M Length( <blockmat> ) . . . . . . . . . . . . . . . . for a block matrix
##
InstallMethod( Length,
"for an ordinary block matrix",
[ IsOrdinaryMatrix and IsBlockMatrixRep ],
blockmat -> blockmat!.nrb * blockmat!.rpb );
#############################################################################
##
#M \[\]( <blockmat>, <n> ) . . . . . . . . . . . . . . . for a block matrix
##
InstallMethod( \[\],
"for an ordinary block matrix and a positive integer",
[ IsOrdinaryMatrix and IsBlockMatrixRep, IsPosInt ],
function( blockmat, n )
local qr, i, ii, row, block, j;
# `n-1 = qr[1] * blockmat!.rpb + qr[2]'.
qr:= QuotientRemainder( Integers, n-1, blockmat!.rpb );
i:= qr[1] + 1;
ii:= qr[2] + 1;
row:= ListWithIdenticalEntries( blockmat!.cpb * blockmat!.ncb,
blockmat!.zero );
for block in blockmat!.blocks do
if block[1] = i then
j:= block[2];
row{ [ (j-1)*blockmat!.cpb + 1 .. j*blockmat!.cpb ] }:= block[3][ii];
elif i < block[1] then
break;
fi;
od;
return row;
end );
#############################################################################
##
#M TransposedMat( <blockmat> ) . . . . . . . . . . . . . for a block matrix
##
InstallMethod( TransposedMat,
"for an ordinary block matrix",
[ IsOrdinaryMatrix and IsBlockMatrixRep ],
m -> BlockMatrix( List( m!.blocks, i -> [ i[2], i[1],
TransposedMat( i[3] ) ] ),
m!.ncb,
m!.nrb,
m!.cpb,
m!.rpb,
m!.zero ) );
#############################################################################
##
#M MatrixByBlockMatrix( <blockmat> ) . . . create matrix from (block) matrix
##
InstallMethod( MatrixByBlockMatrix,
[ IsMatrix ],
function( blockmat )
local mat, block, i, j;
if not IsOrdinaryMatrix( blockmat ) then
Error( "<blockmat> must be an ordinary matrix" );
elif not IsBlockMatrixRep( blockmat ) then
mat:= blockmat;
else
mat:= NullMat( blockmat!.nrb * blockmat!.rpb,
blockmat!.ncb * blockmat!.cpb,
blockmat!.zero );
for block in blockmat!.blocks do
i:= block[1];
j:= block[2];
mat{ [ (i-1)*blockmat!.rpb+1 .. i*blockmat!.rpb ] }{
[ (j-1)*blockmat!.cpb+1 .. j*blockmat!.cpb ] }:=
MatrixByBlockMatrix( block[3] );
od;
fi;
return mat;
end );
#############################################################################
##
#F AsBlockMatrix( <m>, <nrb>, <ncb> ) . . . create block matrix from matrix
##
InstallGlobalFunction( AsBlockMatrix, function( mat, nrb, ncb )
local rpb, cpb, blocks, i, ii, j, jj, block;
if not IsOrdinaryMatrix( mat ) or IsEmpty( mat ) then
Error( "<mat> must be a nonempty ordinary matrix" );
fi;
rpb:= Length( mat ) / nrb;
cpb:= Length( mat[1] ) / ncb;
if not ( IsInt( rpb ) and IsInt( cpb ) ) then
Error( "<nrb> and <ncb> must divide the dimensions of <mat>" );
fi;
blocks:= [];
for i in [ 1 .. nrb ] do
ii:= (i-1) * rpb;
for j in [ 1 .. ncb ] do
jj:= (j-1) * cpb;
block:= mat{ [ ii+1 .. ii+cpb ] }{ [ jj+1 .. jj+rpb ] };
if not IsZero( block ) then
Add( blocks, [ i, j, block ] );
fi;
od;
od;
return BlockMatrix( blocks, nrb, ncb, rpb, cpb, Zero( mat[1][1] ) );
end );
#############################################################################
##
## arithmetic operations for block matrices
##
#############################################################################
##
#M \=( <bm1>, <bm2> ) . . . . . . . . . . . . . . . for two block matrices
##
InstallMethod( \=,
"for two ordinary block matrices",
IsIdenticalObj,
[ IsOrdinaryMatrix and IsBlockMatrixRep,
IsOrdinaryMatrix and IsBlockMatrixRep ],
function( bm1, bm2 )
if bm1!.nrb = bm2!.nrb
and bm1!.ncb = bm2!.ncb
and bm1!.rpb = bm2!.rpb
and bm1!.cpb = bm2!.cpb then
return bm1!.blocks = bm2!.blocks;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M \+( <bm1>, <bm2> ) . . . . . . . . . . . . . . . for two block matrices
##
InstallMethod( \+,
"for two ordinary block matrices",
IsIdenticalObj,
[ IsOrdinaryMatrix and IsBlockMatrixRep,
IsOrdinaryMatrix and IsBlockMatrixRep ],
function( bm1, bm2 )
local blocks, pos, i;
if bm1!.nrb = bm2!.nrb
and bm1!.ncb = bm2!.ncb
and bm1!.rpb = bm2!.rpb
and bm1!.cpb = bm2!.cpb then
blocks:= Concatenation( bm1!.blocks, bm2!.blocks );
Sort( blocks, IsLexicographicallyLess );
pos:= 1;
i:= 1;
while i < Length( blocks ) do
blocks[ pos ]:= blocks[i];
if blocks[i][1] = blocks[ i+1 ][1] and
blocks[i][2] = blocks[ i+1 ][2] then
blocks[ pos ]:= ShallowCopy( blocks[ pos ] );
blocks[ pos ][3]:= blocks[i][3] + blocks[ i+1 ][3];
i:= i+1;
fi;
i:= i+1;
pos:= pos+1;
od;
if i = Length( blocks ) then
blocks[ pos ]:= blocks[i];
pos:= pos+1;
fi;
for i in [ pos .. Length( blocks ) ] do
Unbind( blocks[i] );
od;
return BlockMatrix( blocks, bm1!.nrb, bm1!.ncb, bm1!.rpb, bm1!.cpb,
bm1!.zero );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M \+( <bm>, <grv> ) . . . . . . . . . . . . . . . for block matrix and grv
#M \+( <grv>, <bm> ) . . . . . . . . . . . . . . . for grv and block matrix
##
InstallOtherMethod( \+,
"for an ordinary block matrix, and a grv",
IsIdenticalObj,
[ IsOrdinaryMatrix and IsBlockMatrixRep, IsGeneralizedRowVector ],
function( bm, grv )
return MatrixByBlockMatrix( bm ) + grv;
end );
InstallOtherMethod( \+,
"for a grv, and an ordinary block matrix",
IsIdenticalObj,
[ IsGeneralizedRowVector, IsOrdinaryMatrix and IsBlockMatrixRep ],
function( grv, bm )
return grv + MatrixByBlockMatrix( bm );
end );
#############################################################################
##
#M AdditiveInverseOp( <blockmat> ) . . . . . . . . . . . for a block matrix
##
## We can't do better than the default method for AdditiveInverseOp,
## since that has to produce a mutable result
##
InstallMethod( AdditiveInverseOp,
"for an ordinary block matrix",
[ IsOrdinaryMatrix and IsBlockMatrixRep ],
bm -> BlockMatrix( List( bm!.blocks,
b -> [ b[1], b[2], AdditiveInverse( b[3] ) ] ),
bm!.nrb, bm!.ncb, bm!.rpb, bm!.cpb, bm!.zero ) );
#############################################################################
##
#M \*( <bm1>, <bm2> ) . . . . . . . . . . . . . . . for two block matrices
#M \*( <bm>, <vec> ) . . . . . . . . . . . . . . for block matrix and vector
#M \*( <vec>, <bm> ) . . . . . . . . . . . . . . for vector and block matrix
#M \*( <bm>, <c> ) . . . . . . . . . . . . for block matrix and ring element
#M \*( <c>, <bm> ) . . . . . . . . . . . . for ring element and block matrix
##
InstallMethod( \*,
"for two ordinary block matrices",
IsIdenticalObj,
[ IsOrdinaryMatrix and IsBlockMatrixRep,
IsOrdinaryMatrix and IsBlockMatrixRep ], 6,
# being a block matrix is better than being a small list
function( bm1, bm2 )
local blocks, b1, b2, pos, i;
if bm1!.ncb = bm2!.nrb and bm1!.cpb = bm2!.rpb then
# Get the blocks of the product.
blocks:= [];
for b1 in bm1!.blocks do
for b2 in bm2!.blocks do
if b1[2] = b2[1] then
Add( blocks, [ b1[1], b2[2], b1[3] * b2[3] ] );
fi;
od;
od;
# Put blocks at the same position together.
pos:= 1;
i:= 1;
while i < Length( blocks ) do
blocks[ pos ]:= blocks[i];
if blocks[i][1] = blocks[ i+1 ][1] and
blocks[i][2] = blocks[ i+1 ][2] then
blocks[ pos ]:= ShallowCopy( blocks[ pos ] );
blocks[ pos ][3]:= blocks[i][3] + blocks[ i+1 ][3];
i:= i+1;
fi;
i:= i+1;
pos:= pos+1;
od;
if i = Length( blocks ) then
blocks[ pos ]:= blocks[i];
pos:= pos+1;
fi;
for i in [ pos .. Length( blocks ) ] do
Unbind( blocks[i] );
od;
# Return the result.
return BlockMatrix( blocks, bm1!.nrb, bm2!.ncb, bm1!.rpb, bm2!.cpb,
bm1!.zero );
else
TryNextMethod();
fi;
end );
InstallMethod( \*,
"for ordinary block matrix and vector",
IsCollsElms,
[ IsOrdinaryMatrix and IsBlockMatrixRep, IsRowVector ],
function( bm, vec )
local cpb, rpb, ncols, nrows, vector, block, i, j;
cpb:= bm!.cpb;
rpb:= bm!.rpb;
ncols:= bm!.ncb * cpb;
nrows:= bm!.nrb * rpb;
if Length( vec ) < ncols then
vec:= Concatenation( vec,
ListWithIdenticalEntries( ncols - Length( vec ), bm!.zero ) );
#T yes, this can be optimized ...
fi;
vector:= ListWithIdenticalEntries( nrows, bm!.zero );
for block in bm!.blocks do
i:= block[1];
j:= block[2];
vector{ [ (i-1)*rpb+1 .. i*rpb ] }:=
vector{ [ (i-1)*rpb+1 .. i*rpb ] } +
block[3] * vec{ [ (j-1)*cpb+1 .. j*cpb ] };
od;
return vector;
end );
InstallMethod( \*,
"for vector and ordinary block matrix",
IsElmsColls,
[ IsRowVector, IsOrdinaryMatrix and IsBlockMatrixRep ],
function( vec, bm )
local cpb, rpb, ncols, nrows, vector, block, i, j;
cpb:= bm!.cpb;
rpb:= bm!.rpb;
ncols:= bm!.ncb * cpb;
nrows:= bm!.nrb * rpb;
if Length( vec ) < nrows then
vec:= Concatenation( vec,
ListWithIdenticalEntries( nrows - Length( vec ), bm!.zero ) );
#T yes, this can be optimized ...
fi;
vector:= ListWithIdenticalEntries( ncols, bm!.zero );
for block in bm!.blocks do
i:= block[1];
j:= block[2];
vector{ [ (j-1)*cpb+1 .. j*cpb ] }:=
vector{ [ (j-1)*cpb+1 .. j*cpb ] } +
vec{ [ (i-1)*rpb+1 .. i*rpb ] } * block[3];
od;
return vector;
end );
InstallMethod( \*,
"for ordinary block matrix and ring element",
IsCollCollsElms,
[ IsOrdinaryMatrix and IsBlockMatrixRep, IsRingElement ],
function( bm, c )
return BlockMatrix( List( bm!.blocks,
b -> [ b[1], b[2], b[3] * c ] ),
bm!.nrb, bm!.ncb, bm!.rpb, bm!.cpb, bm!.zero );
end );
InstallMethod( \*,
"for ring element and ordinary block matrix",
IsElmsCollColls,
[ IsRingElement, IsOrdinaryMatrix and IsBlockMatrixRep ],
function( c, bm )
return BlockMatrix( List( bm!.blocks,
b -> [ b[1], b[2], c * b[3] ] ),
bm!.nrb, bm!.ncb, bm!.rpb, bm!.cpb, bm!.zero );
end );
#############################################################################
##
#M \*( <bm>, <n> ) . . . . . . . . . . . . . . for block matrix and integer
#M \*( <n>, <bm> ) . . . . . . . . . . . . . . for integer and block matrix
##
InstallMethod( \*,
"for ordinary block matrix and integer",
[ IsOrdinaryMatrix and IsBlockMatrixRep, IsInt ],
function( bm, n )
return BlockMatrix( List( bm!.blocks,
b -> [ b[1], b[2], b[3] * n ] ),
bm!.nrb, bm!.ncb, bm!.rpb, bm!.cpb, bm!.zero );
end );
InstallMethod( \*,
"for integer and ordinary block matrix",
[ IsInt, IsOrdinaryMatrix and IsBlockMatrixRep ],
function( n, bm )
return BlockMatrix( List( bm!.blocks,
b -> [ b[1], b[2], n * b[3] ] ),
bm!.nrb, bm!.ncb, bm!.rpb, bm!.cpb, bm!.zero );
end );
#############################################################################
##
#M \*( <bm>, <z> ) . . . . . . . . . . . . for integer block matrix and ffe
#M \*( <z>, <bm> ) . . . . . . . . . . . . for ffe and integer block matrix
##
InstallMethod( \*,
"for ordinary block matrix of integers and ffe",
[ IsOrdinaryMatrix and IsBlockMatrixRep and IsCyclotomicCollColl,
IsFFE ],
function( bm, z )
return BlockMatrix( List( bm!.blocks,
b -> [ b[1], b[2], b[3] * z ] ),
bm!.nrb, bm!.ncb, bm!.rpb, bm!.cpb, Zero( z ) );
end );
InstallMethod( \*,
"for ffe and ordinary block matrix of integers",
[ IsFFE,
IsOrdinaryMatrix and IsBlockMatrixRep and IsCyclotomicCollColl ],
function( z, bm )
return BlockMatrix( List( bm!.blocks,
b -> [ b[1], b[2], z * b[3] ] ),
bm!.nrb, bm!.ncb, bm!.rpb, bm!.cpb, Zero( z ) );
end );
#############################################################################
##
#M \*( <bm>, <mgrv> ) . . . . . . . . . . . . . . for block matrix and mgrv
#M \*( <mgrv>, <bm> ) . . . . . . . . . . . . . . for mgrv and block matrix
##
InstallOtherMethod( \*,
"for an ordinary block matrix, and a mgrv",
IsIdenticalObj,
[ IsOrdinaryMatrix and IsBlockMatrixRep,
IsMultiplicativeGeneralizedRowVector ],
function( bm, grv )
return MatrixByBlockMatrix( bm ) * grv;
end );
InstallOtherMethod( \*,
"for a mgrv, and an ordinary block matrix",
IsIdenticalObj,
[ IsMultiplicativeGeneralizedRowVector,
IsOrdinaryMatrix and IsBlockMatrixRep ],
function( grv, bm )
return grv * MatrixByBlockMatrix( bm );
end );
#############################################################################
##
#M OneOp( <bm> ) . . . . . . . . . . . . . . . . . . . . for a block matrix
##
InstallOtherMethod( OneOp,
"for an ordinary block matrix",
[ IsOrdinaryMatrix and IsBlockMatrixRep ], 3,
# being a block matrix is better than being a small list
function( bm )
local mat;
if bm!.nrb = bm!.ncb and bm!.rpb = bm!.cpb then
if IsEmpty( bm!.blocks ) then
mat:= Immutable( IdentityMat( bm!.rpb, bm!.zero ) );
else
mat:= One( bm!.blocks[1][3] );
fi;
return BlockMatrix( List( [ 1 .. bm!.nrb ], i -> [ i, i, mat ] ),
bm!.nrb, bm!.ncb, bm!.rpb, bm!.cpb, bm!.zero );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M InverseOp( <bm> ) . . . . . . . . . . . . . . . . . . for a block matrix
##
InstallOtherMethod( InverseOp,
"for an ordinary block matrix",
[ IsOrdinaryMatrix and IsBlockMatrixRep ],
function( bm )
return AsBlockMatrix(InverseOp(MatrixByBlockMatrix(bm)),bm!.nrb,bm!.ncb);
end );
#############################################################################
##
#M \^
##
InstallMethod( \^,"for block matrix and integer",
[ IsOrdinaryMatrix and IsBlockMatrixRep,IsInt ],POW_OBJ_INT);
#############################################################################
##
#M ViewObj( <blockmat> ) . . . . . . . . . . . . . . . . for a block matrix
##
InstallMethod( ViewObj,
"for an ordinary block matrix",
[ IsOrdinaryMatrix and IsBlockMatrixRep ],
function( m )
Print( "<block matrix of dimensions (", m!.nrb, "*", m!.rpb,
")x(", m!.ncb, "*", m!.cpb, ")>" );
end );
#############################################################################
##
#M PrintObj( <blockmat> ) . . . . . . . . . . . . . . . for a block matrix
##
InstallMethod( PrintObj,
"for an ordinary block matrix",
[ IsOrdinaryMatrix and IsBlockMatrixRep ],
function( m )
Print( "BlockMatrix( ", m!.blocks, ",", m!.nrb, ",", m!.ncb,
",", m!.rpb, ",", m!.cpb, ",", m!.zero, " )" );
end );
#############################################################################
##
#M DimensionsMat( <blockmat> ) . . . . . . . . . . . . . for a block matrix
##
InstallMethod( DimensionsMat,
"for an ordinary block matrix",
[ IsOrdinaryMatrix and IsBlockMatrixRep ],
m -> [ m!.nrb * m!.rpb, m!.ncb * m!.cpb ] );
#############################################################################
##
#E
|