/usr/share/gap/lib/lierep.gd is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 | #############################################################################
##
#W lierep.gd GAP library Willem de Graaf
#W and Craig A. Struble
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of attributes, properties, and
## operations for modules over Lie algebras.
##
#############################################################################
##
## <#GAPDoc Label="[1]{lierep}">
##
## An <M>s</M>-cochain of a module <M>V</M> over a Lie algebra <M>L</M>
## is an <M>s</M>-linear map
## <Display Mode="M">
## c: L \times \cdots \times L \rightarrow V ,
## </Display>
## with <M>s</M> factors <M>L</M>,
## that is skew-symmetric (meaning that if any of the arguments are
## interchanged, <M>c</M> changes to <M>-c</M>).
## <P/>
## Let <M>(x_1, \ldots, x_n)</M> be a basis of <M>L</M>.
## Then any <M>s</M>-cochain is
## determined by the values <M>c( x_{{i_1}}, \ldots, x_{{i_s}} )</M>,
## where <M>1 \leq i_1 < i_2 < \cdots < i_s \leq \dim L</M>.
## Now this value again is a linear combination of basis elements of <M>V</M>:
## <M>c( x_{{i_1}}, \ldots, x_{{i_s}} ) =
## \sum \lambda^k_{{i_1,\ldots, i_s}} v_k</M>.
## Denote the dimension of <M>V</M> by <M>r</M>.
## Then we represent an <M>s</M>-cocycle by a list of <M>r</M> lists.
## The <M>j</M>-th of those lists consists of entries of the form
## <Display Mode="M">
## [ [ i_1, i_2, \ldots, i_s ], \lambda^j_{{i_1, \ldots, i_s}} ]
## </Display>
## where the coefficient on the second position is non-zero.
## (We only store those entries for which this coefficient is non-zero.)
## It follows that every <M>s</M>-tuple <M>(i_1, \ldots, i_s)</M> gives rise
## to <M>r</M> basis elements.
## <P/>
## So the zero cochain is represented by a list of the form
## <C>[ [ ], [ ], \ldots, [ ] ]</C>. Furthermore, if <M>V</M> is, e.g.,
## <M>4</M>-dimensional, then the <M>2</M>-cochain represented by
## <P/>
## <Log><![CDATA[
## [ [ [ [1,2], 2] ], [ ], [ [ [1,2], 1/2 ] ], [ ] ]
## ]]></Log>
## <P/>
## maps the pair <M>(x_1, x_2)</M> to <M>2v_1 + 1/2 v_3</M>
## (where <M>v_1</M> is the first basis element of <M>V</M>,
## and <M>v_3</M> the third), and all other pairs to zero.
## <P/>
## By definition, <M>0</M>-cochains are constant maps
## <M>c( x ) = v_c \in V</M> for all <M>x \in L</M>.
## So <M>0</M>-cochains have a different representation: they are just
## represented by the list <C>[ v_c ]</C>.
## <P/>
## Cochains are constructed using the function <Ref Func="Cochain"/>,
## if <A>c</A> is a cochain, then its corresponding list is returned by
## <C>ExtRepOfObj( <A>c</A> )</C>.
## <#/GAPDoc>
##
##############################################################################
##
#C IsCochain( <obj> )
#C IsCochainCollection( <obj> )
##
## <#GAPDoc Label="IsCochain">
## <ManSection>
## <Filt Name="IsCochain" Arg='obj' Type='Category'/>
## <Filt Name="IsCochainCollection" Arg='obj' Type='Category'/>
##
## <Description>
## Categories of cochains and of collections of cochains.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsCochain", IsVector );
DeclareCategoryCollections( "IsCochain" );
#############################################################################
##
#O Cochain( <V>, <s>, <obj> )
##
## <#GAPDoc Label="Cochain">
## <ManSection>
## <Oper Name="Cochain" Arg='V, s, obj'/>
##
## <Description>
## Constructs a <A>s</A>-cochain given by the data in <A>obj</A>, with
## respect to the Lie algebra module <A>V</A>. If <A>s</A> is non-zero,
## then <A>obj</A> must be a list.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
## gap> V:= AdjointModule( L );
## <3-dimensional left-module over <Lie algebra of dimension
## 3 over Rationals>>
## gap> c1:= Cochain( V, 2,
## > [ [ [ [ 1, 3 ], -1 ] ], [ ], [ [ [ 2, 3 ], 1/2 ] ] ]);
## <2-cochain>
## gap> ExtRepOfObj( c1 );
## [ [ [ [ 1, 3 ], -1 ] ], [ ], [ [ [ 2, 3 ], 1/2 ] ] ]
## gap> c2:= Cochain( V, 0, Basis( V )[1] );
## <0-cochain>
## gap> ExtRepOfObj( c2 );
## v.1
## gap> IsCochain( c2 );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Cochain", [ IsLeftModule, IsInt, IsObject ] );
#############################################################################
##
#O CochainSpace( <V>, <s> )
##
## <#GAPDoc Label="CochainSpace">
## <ManSection>
## <Oper Name="CochainSpace" Arg='V, s'/>
##
## <Description>
## Returns the space of all <A>s</A>-cochains with respect to <A>V</A>.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
## gap> V:= AdjointModule( L );;
## gap> C:=CochainSpace( V, 2 );
## <vector space of dimension 9 over Rationals>
## gap> BasisVectors( Basis( C ) );
## [ <2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>,
## <2-cochain>, <2-cochain>, <2-cochain>, <2-cochain> ]
## gap> ExtRepOfObj( last[1] );
## [ [ [ [ 1, 2 ], 1 ] ], [ ], [ ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CochainSpace", [ IsAlgebraModule, IS_INT ] );
#############################################################################
##
#F ValueCochain( <c>, <y1>, <y2>,...,<ys> )
##
## <#GAPDoc Label="ValueCochain">
## <ManSection>
## <Func Name="ValueCochain" Arg='c, y1, y2,...,ys'/>
##
## <Description>
## Here <A>c</A> is an <C>s</C>-cochain. This function returns the value of
## <A>c</A> when applied to the <C>s</C> elements <A>y1</A> to <A>ys</A>
## (that lie in the Lie algebra acting on the module corresponding to
## <A>c</A>). It is also possible to call this function with two arguments:
## first <A>c</A> and then the list containing <C><A>y1</A>,...,<A>ys</A></C>.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
## gap> V:= AdjointModule( L );;
## gap> C:= CochainSpace( V, 2 );;
## gap> c:= Basis( C )[1];
## <2-cochain>
## gap> ValueCochain( c, Basis(L)[2], Basis(L)[1] );
## (-1)*v.1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ValueCochain" );
#############################################################################
##
#F LieCoboundaryOperator( <c> )
##
## <#GAPDoc Label="LieCoboundaryOperator">
## <ManSection>
## <Func Name="LieCoboundaryOperator" Arg='c'/>
##
## <Description>
## This is a function that takes an <C>s</C>-cochain <A>c</A>,
## and returns an <C>s+1</C>-cochain. The coboundary operator is applied.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
## gap> V:= AdjointModule( L );;
## gap> C:= CochainSpace( V, 2 );;
## gap> c:= Basis( C )[1];;
## gap> c1:= LieCoboundaryOperator( c );
## <3-cochain>
## gap> c2:= LieCoboundaryOperator( c1 );
## <4-cochain>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LieCoboundaryOperator", "Lie coboundary operator" );
#############################################################################
##
#O Cocycles( <V>, <s> )
##
## <#GAPDoc Label="Cocycles">
## <ManSection>
## <Oper Name="Cocycles" Arg='V, s' Label="for Lie algebra module"/>
##
## <Description>
## is the space of all <A>s</A>-cocycles with respect to the Lie algebra
## module <A>V</A>. That is the kernel of the coboundary operator when
## restricted to the space of <A>s</A>-cochains.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Cocycles", [ IsAlgebraModule, IS_INT ] );
#############################################################################
##
#O Coboundaries( <V>, <s> )
##
## <#GAPDoc Label="Coboundaries">
## <ManSection>
## <Oper Name="Coboundaries" Arg='V, s'/>
##
## <Description>
## is the space of all <A>s</A>-coboundaries with respect to the Lie algebra
## module <A>V</A>. That is the image of the coboundary operator, when applied
## to the space of <A>s</A>-1-cochains. By definition the space of all
## 0-coboundaries is zero.
## <Example><![CDATA[
## gap> T:= EmptySCTable( 3, 0, "antisymmetric" );;
## gap> SetEntrySCTable( T, 1, 2, [ 1, 3 ] );
## gap> L:= LieAlgebraByStructureConstants( Rationals, T );;
## gap> V:= FaithfulModule( L );
## <left-module over <Lie algebra of dimension 3 over Rationals>>
## gap> Cocycles( V, 2 );
## <vector space of dimension 7 over Rationals>
## gap> Coboundaries( V, 2 );
## <vector space over Rationals, with 9 generators>
## gap> Dimension( last );
## 5
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Coboundaries", [ IsAlgebraModule, IS_INT ] );
############################################################################
##
#P IsWeylGroup( <G> )
##
## <#GAPDoc Label="IsWeylGroup">
## <ManSection>
## <Prop Name="IsWeylGroup" Arg='G'/>
##
## <Description>
## A Weyl group is a group generated by reflections, with the attribute
## <Ref Attr="SparseCartanMatrix"/> set.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsWeylGroup", IsGroup );
############################################################################
##
#A WeylGroup( <R> )
##
## <#GAPDoc Label="WeylGroup">
## <ManSection>
## <Attr Name="WeylGroup" Arg='R'/>
##
## <Description>
## The Weyl group of the root system <A>R</A>. It is generated by the simple
## reflections. A simple reflection is represented by a matrix, and the
## result of letting a simple reflection <C>m</C> act on a weight <C>w</C>
## is obtained by <C>w*m</C>.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "F", 4, Rationals );;
## gap> R:= RootSystem( L );;
## gap> W:= WeylGroup( R );
## <matrix group with 4 generators>
## gap> IsWeylGroup( W );
## true
## gap> SparseCartanMatrix( W );
## [ [ [ 1, 2 ], [ 3, -1 ] ], [ [ 2, 2 ], [ 4, -1 ] ],
## [ [ 1, -1 ], [ 3, 2 ], [ 4, -1 ] ],
## [ [ 2, -1 ], [ 3, -2 ], [ 4, 2 ] ] ]
## gap> g:= GeneratorsOfGroup( W );;
## gap> [ 1, 1, 1, 1 ]*g[2];
## [ 1, -1, 1, 2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "WeylGroup", IsRootSystem );
############################################################################
##
#A SparseCartanMatrix( <W> )
##
## <#GAPDoc Label="SparseCartanMatrix">
## <ManSection>
## <Attr Name="SparseCartanMatrix" Arg='W'/>
##
## <Description>
## This is a sparse form of the Cartan matrix of the corresponding root
## system. If we denote the Cartan matrix by <C>C</C>, then the sparse
## Cartan matrix of <A>W</A> is a list (of length equal to the length of
## the Cartan matrix), where the <C>i</C>-th entry is a list consisting
## of elements <C>[ j, C[i][j] ]</C>, where <C>j</C> is such that
## <C>C[i][j]</C> is non-zero.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SparseCartanMatrix", IsWeylGroup );
############################################################################
##
#O ApplySimpleReflection( <SC>, <i>, <wt> )
##
## <#GAPDoc Label="ApplySimpleReflection">
## <ManSection>
## <Oper Name="ApplySimpleReflection" Arg='SC, i, wt'/>
##
## <Description>
## Here <A>SC</A> is the sparse Cartan matrix of a Weyl group. This
## function applies the <A>i</A>-th simple reflection to the weight
## <A>wt</A>, thus changing <A>wt</A>.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "F", 4, Rationals );;
## gap> W:= WeylGroup( RootSystem( L ) );;
## gap> C:= SparseCartanMatrix( W );;
## gap> w:= [ 1, 1, 1, 1 ];;
## gap> ApplySimpleReflection( C, 2, w );
## gap> w;
## [ 1, -1, 1, 2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ApplySimpleReflection", [ IsList, IS_INT, IsList ] );
############################################################################
##
#A LongestWeylWordPerm( <W> )
##
## <#GAPDoc Label="LongestWeylWordPerm">
## <ManSection>
## <Attr Name="LongestWeylWordPerm" Arg='W'/>
##
## <Description>
## Let <M>g_0</M> be the longest element in the Weyl group <A>W</A>,
## and let <M>\{ \alpha_1, \ldots, \alpha_l \}</M> be a simple system
## of the corresponding root system.
## Then <M>g_0</M> maps <M>\alpha_i</M> to <M>-\alpha_{{\sigma(i)}}</M>,
## where <M>\sigma</M> is a permutation of <M>(1, \ldots, l)</M>.
## This function returns that permutation.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "E", 6, Rationals );;
## gap> W:= WeylGroup( RootSystem( L ) );;
## gap> LongestWeylWordPerm( W );
## (1,6)(3,5)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LongestWeylWordPerm", IsWeylGroup );
############################################################################
##
#O ConjugateDominantWeight( <W>, <wt> )
#O ConjugateDominantWeightWithWord( <W>, <wt> )
##
## <#GAPDoc Label="ConjugateDominantWeight">
## <ManSection>
## <Oper Name="ConjugateDominantWeight" Arg='W, wt'/>
## <Oper Name="ConjugateDominantWeightWithWord" Arg='W, wt'/>
##
## <Description>
## Here <A>W</A> is a Weyl group and <A>wt</A> a weight (i.e., a list of
## integers). <Ref Oper="ConjugateDominantWeight"/> returns the unique
## dominant weight conjugate to <A>wt</A> under <A>W</A>.
## <P/>
## <Ref Oper="ConjugateDominantWeightWithWord"/> returns a list of two
## elements. The first of these is the dominant weight conjugate to <A>wt</A>.
## The second element is a list of indices of simple reflections that have to
## be applied to <A>wt</A> in order to get the dominant weight conjugate to it.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "E", 6, Rationals );;
## gap> W:= WeylGroup( RootSystem( L ) );;
## gap> C:= SparseCartanMatrix( W );;
## gap> w:= [ 1, -1, 2, -2, 3, -3 ];;
## gap> ConjugateDominantWeight( W, w );
## [ 2, 1, 0, 0, 0, 0 ]
## gap> c:= ConjugateDominantWeightWithWord( W, w );
## [ [ 2, 1, 0, 0, 0, 0 ], [ 2, 4, 2, 3, 6, 5, 4, 2, 3, 1 ] ]
## gap> for i in [1..Length(c[2])] do
## > ApplySimpleReflection( C, c[2][i], w );
## > od;
## gap> w;
## [ 2, 1, 0, 0, 0, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ConjugateDominantWeight", [ IsWeylGroup, IsList ] );
DeclareOperation( "ConjugateDominantWeightWithWord", [ IsWeylGroup, IsList ]);
############################################################################
##
#O WeylOrbitIterator( <W>, <wt> )
##
## <#GAPDoc Label="WeylOrbitIterator">
## <ManSection>
## <Oper Name="WeylOrbitIterator" Arg='W, wt'/>
##
## <Description>
## Returns an iterator for the orbit of the weight <A>wt</A> under the
## action of the Weyl group <A>W</A>.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "E", 6, Rationals );;
## gap> W:= WeylGroup( RootSystem( L ) );;
## gap> orb:= WeylOrbitIterator( W, [ 1, 1, 1, 1, 1, 1 ] );
## <iterator>
## gap> NextIterator( orb );
## [ 1, 1, 1, 1, 1, 1 ]
## gap> NextIterator( orb );
## [ -1, -1, -1, -1, -1, -1 ]
## gap> orb:= WeylOrbitIterator( W, [ 1, 1, 1, 1, 1, 1 ] );
## <iterator>
## gap> k:= 0;
## 0
## gap> while not IsDoneIterator( orb ) do
## > w:= NextIterator( orb ); k:= k+1;
## > od;
## gap> k; # this is the size of the Weyl group of E6
## 51840
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "WeylOrbitIterator", [ IsWeylGroup, IsList ] );
############################################################################
##
#A PositiveRootsAsWeights( <R> )
##
## <ManSection>
## <Attr Name="PositiveRootsAsWeights" Arg='R'/>
##
## <Description>
## Returns the list of positive roots of <A>R</A>, represented in the basis
## of fundamental weights.
## </Description>
## </ManSection>
##
DeclareAttribute( "PositiveRootsAsWeights", IsRootSystem );
############################################################################
##
#O DominantWeights( <R>, <maxw> )
##
## <#GAPDoc Label="DominantWeights">
## <ManSection>
## <Oper Name="DominantWeights" Arg='R, maxw'/>
##
## <Description>
## Returns a list consisting of two lists. The first of these contains
## the dominant weights (written on the basis of fundamental weights)
## of the irreducible highest-weight module, with highest weight <A>maxw</A>,
## over the Lie algebra with the root system <A>R</A>.
## The <M>i</M>-th element of the second list is the level of the
## <M>i</M>-th dominant weight.
## (Where the level is defined as follows.
## For a weight <M>\mu</M> we write
## <M>\mu = \lambda - \sum_i k_i \alpha_i</M>, where
## the <M>\alpha_i</M> are the simple roots,
## and <M>\lambda</M> the highest weight.
## Then the level of <M>\mu</M> is <M>\sum_i k_i</M>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DominantWeights", [ IsRootSystem, IsList ] );
############################################################################
##
#O DominantCharacter( <L>, <maxw> )
#O DominantCharacter( <R>, <maxw> )
##
## <#GAPDoc Label="DominantCharacter">
## <ManSection>
## <Oper Name="DominantCharacter" Arg='L, maxw'
## Label="for a semisimple Lie algebra and a highest weight"/>
## <Oper Name="DominantCharacter" Arg='R, maxw'
## Label="for a root system and a highest weight"/>
##
## <Description>
## For a highest weight <A>maxw</A> and a semisimple Lie algebra <A>L</A>,
## this returns the dominant weights of the highest-weight module over
## <A>L</A>, with highest weight <A>maxw</A>.
## The output is a list of two lists,
## the first list contains the dominant weights;
## the second list contains their multiplicities.
## <P/>
## The first argument can also be a root system, in which case
## the dominant character of the highest-weight module over the
## corresponding semisimple Lie algebra is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DominantCharacter", [ IsRootSystem, IsList ] );
#############################################################################
##
#O DecomposeTensorProduct( <L>, <w1>, <w2> )
##
## <#GAPDoc Label="DecomposeTensorProduct">
## <ManSection>
## <Oper Name="DecomposeTensorProduct" Arg='L, w1, w2'/>
##
## <Description>
## Here <A>L</A> is a semisimple Lie algebra and <A>w1</A>, <A>w2</A> are
## dominant weights.
## Let <M>V_i</M> be the irreducible highest-weight module over <A>L</A>
## with highest weight <M>w_i</M> for <M>i = 1, 2</M>.
## Let <M>W = V_1 \otimes V_2</M>.
## Then in general <M>W</M> is a reducible <A>L</A>-module. Now this function
## returns a list of two lists. The first of these is the list of highest
## weights of the irreducible modules occurring in the decomposition of
## <M>W</M> as a direct sum of irreducible modules. The second list contains
## the multiplicities of these weights (i.e., the number of copies of
## the irreducible module with the corresponding highest weight that occur
## in <M>W</M>). The algorithm uses Klimyk's formula
## (see <Cite Key="Klimyk68"/> or <Cite Key="Klimyk66"/>
## for the original Russian version).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DecomposeTensorProduct", [ IsLieAlgebra, IsList, IsList ] );
#############################################################################
##
#O DimensionOfHighestWeightModule( <L>, <w> )
##
## <#GAPDoc Label="DimensionOfHighestWeightModule">
## <ManSection>
## <Oper Name="DimensionOfHighestWeightModule" Arg='L, w'/>
##
## <Description>
## Here <A>L</A> is a semisimple Lie algebra, and <A>w</A> a dominant weight.
## This function returns the dimension of the highest-weight module
## over <A>L</A> with highest weight <A>w</A>. The algorithm
## uses Weyl's dimension formula.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "F", 4, Rationals );;
## gap> R:= RootSystem( L );;
## gap> DominantWeights( R, [ 1, 1, 0, 0 ] );
## [ [ [ 1, 1, 0, 0 ], [ 2, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ],
## [ 1, 0, 0, 0 ], [ 0, 0, 0, 0 ] ], [ 0, 3, 4, 8, 11, 19 ] ]
## gap> DominantCharacter( L, [ 1, 1, 0, 0 ] );
## [ [ [ 1, 1, 0, 0 ], [ 2, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ],
## [ 1, 0, 0, 0 ], [ 0, 0, 0, 0 ] ], [ 1, 1, 4, 6, 14, 21 ] ]
## gap> DecomposeTensorProduct( L, [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ] );
## [ [ [ 1, 0, 1, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 1, 0, 0 ],
## [ 2, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 1, 1, 0, 0 ] ],
## [ 1, 1, 1, 1, 1, 1, 1 ] ]
## gap> DimensionOfHighestWeightModule( L, [ 1, 2, 3, 4 ] );
## 79316832731136
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DimensionOfHighestWeightModule", [ IsLieAlgebra, IsList ] );
#############################################################################
##
## <#GAPDoc Label="[2]{lierep}">
## Let <M>L</M> be a semisimple Lie algebra over a field of characteristic
## <M>0</M>, and let <M>R</M> be its root system.
## For a positive root <M>\alpha</M> we let <M>x_{\alpha}</M> and
## <M>y_{\alpha}</M> be positive and negative root vectors,
## respectively, both from a fixed Chevalley basis of <M>L</M>. Furthermore,
## <M>h_1, \ldots, h_l</M> are the Cartan elements from the same Chevalley
## basis. Also we set
## <Display Mode="M">
## x_{\alpha}^{(n)} = {{x_{\alpha}^n \over n!}},
## y_{\alpha}^{(n)} = {{y_{\alpha}^n \over n!}} .
## </Display>
## Furthermore, let <M>\alpha_1, \ldots, \alpha_s</M> denote the positive
## roots of <M>R</M>.
## For multi-indices <M>N = (n_1, \ldots, n_s)</M>,
## <M>M = (m_1, \ldots, m_s)</M>
## and <M>K = (k_1, \ldots, k_s)</M> (where <M>n_i, m_i, k_i \geq 0</M>) set
## <Table Align="lcl">
## <Row>
## <Item><M>x^N</M></Item>
## <Item>=</Item>
## <Item><M>x_{{\alpha_1}}^{(n_1)} \cdots x_{{\alpha_s}}^{(n_s)}</M>,</Item>
## </Row>
## <Row>
## <Item><M>y^M</M></Item>
## <Item>=</Item>
## <Item><M>y_{{\alpha_1}}^{(m_1)} \cdots y_{{\alpha_s}}^{(m_s)}</M>,</Item>
## </Row>
## <Row>
## <Item><M>h^K</M></Item>
## <Item>=</Item>
## <Item><M>{{h_1 \choose k_1}} \cdots {{h_l \choose k_l}}</M></Item>
## </Row>
## </Table>
## Then by a theorem of Kostant, the <M>x_{\alpha}^{(n)}</M> and
## <M>y_{\alpha}^{(n)}</M> generate a subring of the universal enveloping algebra
## <M>U(L)</M> spanned (as a free <M>Z</M>-module) by the elements
## <Display Mode="M">
## y^M h^K x^N
## </Display>
## (see, e.g., <Cite Key="Hum72"/> or <Cite Key="Hum78" Where="Section 26"/>)
## So by the Poincare-Birkhoff-Witt theorem
## this subring is a lattice in <M>U(L)</M>. Furthermore, this lattice is
## invariant under the <M>x_{\alpha}^{(n)}</M> and <M>y_{\alpha}^{(n)}</M>.
## Therefore, it is called an admissible lattice in <M>U(L)</M>.
## <P/>
## The next functions enable us to construct the generators of such an
## admissible lattice.
## <#/GAPDoc>
##
##############################################################################
##
#C IsUEALatticeElement( <obj> )
#C IsUEALatticeElementCollection( <obj> )
#C IsUEALatticeElementFamily( <fam> )
##
## <#GAPDoc Label="IsUEALatticeElement">
## <ManSection>
## <Filt Name="IsUEALatticeElement" Arg='obj' Type='Category'/>
## <Filt Name="IsUEALatticeElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsUEALatticeElementFamily" Arg='fam' Type='Category'/>
##
## <Description>
## is the category of elements of an admissible lattice in the universal
## enveloping algebra of a semisimple Lie algebra <C>L</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsUEALatticeElement", IsVector and IsRingElement and
IsMultiplicativeElementWithOne );
DeclareCategoryCollections( "IsUEALatticeElement" );
DeclareCategoryFamily( "IsUEALatticeElement" );
##############################################################################
##
#A LatticeGeneratorsInUEA( <L> )
##
## <#GAPDoc Label="LatticeGeneratorsInUEA">
## <ManSection>
## <Attr Name="LatticeGeneratorsInUEA" Arg='L'/>
##
## <Description>
## Here <A>L</A> must be a semisimple Lie algebra of characteristic <M>0</M>.
## This function returns a list of generators of an admissible lattice
## in the universal enveloping algebra of <A>L</A>, relative to the
## Chevalley basis contained in <C>ChevalleyBasis( <A>L</A> )</C>
## (see <Ref Attr="ChevalleyBasis"/>). First are listed the negative
## root vectors (denoted by <M>y_1, \ldots, y_s</M>),
## then the positive root vectors (denoted by <M>x_1, \ldots, x_s</M>).
## At the end of the list there are the Cartan elements. They are printed as
## <C>( hi/1 )</C>, which means
## <Display Mode="M">
## {{h_i \choose 1}}.
## </Display>
## In general the printed form <C>( hi/ k )</C> means
## <Display Mode="M">
## {{h_i \choose k}}.
## </Display>
## <P/>
## Also <M>y_i^{(m)}</M> is printed as <C>yi^(m)</C>, which means that entering
## <C>yi^m</C> at the &GAP; prompt results in the output <C>m!*yi^(m)</C>.
## <P/>
## Products of lattice generators are collected using the following order:
## first come the <M>y_i^{(m_i)}</M>
## (in the same order as the positive roots),
## then the <M>{h_i \choose k_i}</M>,
## and then the <M>x_i^{(n_i)}</M>
## (in the same order as the positive roots).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LatticeGeneratorsInUEA", IsLieAlgebra );
##############################################################################
##
#F CollectUEALatticeElement( <noPosR>, <BH>, <f>, <vars>, <Rvecs>, <RT>,
## <posR>, <lst> )
##
## <ManSection>
## <Func Name="CollectUEALatticeElement" Arg='noPosR, BH, f, vars, Rvecs, RT, posR, lst'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CollectUEALatticeElement" );
##############################################################################
##
#C IsWeightRepElement( <obj> )
#C IsWeightRepElementCollection( <obj> )
#C IsWeightRepElementFamily( <fam> )
##
## <#GAPDoc Label="IsWeightRepElement">
## <ManSection>
## <Filt Name="IsWeightRepElement" Arg='obj' Type='Category'/>
## <Filt Name="IsWeightRepElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsWeightRepElementFamily" Arg='fam' Type='Category'/>
##
## <Description>
## Is a category of vectors, that is used to construct elements of
## highest-weight modules (by <Ref Oper="HighestWeightModule"/>).
## <P/>
## <C>WeightRepElement</C>s are represented by a list of the form
## <C>[ v1, c1, v2, c2, ....]</C>, where the <C>vi</C> are basis vectors,
## and the <C>ci</C> are coefficients. Furthermore a basis vector <C>v</C>
## is a weight vector. It is represented by a list of the form
## <C>[ k, mon, wt ]</C>, where <C>k</C> is an integer (the basis vectors
## are numbered from <M>1</M> to <M>\dim V</M>, where <M>V</M> is the highest
## weight module), <C>mon</C> is an <C>UEALatticeElement</C> (which means
## that the result of applying <C>mon</C> to a highest weight vector is <C>v</C>;
## see <Ref Filt="IsUEALatticeElement"/>) and <C>wt</C> is the weight
## of <C>v</C>. A <C>WeightRepElement</C> is printed as <C>mon*v0</C>,
## where <C>v0</C> denotes a fixed highest weight vector.
## <P/>
## If <C>v</C> is a <C>WeightRepElement</C>, then <C>ExtRepOfObj( v )</C>
## returns the corresponding list, and if <C>list</C> is such a list and
## <A>fam</A> a <C>WeightRepElementFamily</C>, then
## <C>ObjByExtRep( <A>list</A>, <A>fam</A> )</C> returns the corresponding
## <C>WeightRepElement</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsWeightRepElement", IsVector );
DeclareCategoryCollections( "IsWeightRepElement" );
DeclareCategoryFamily( "IsWeightRepElement" );
##############################################################################
##
#C IsBasisOfWeightRepElementSpace( <B> )
##
## <ManSection>
## <Filt Name="IsBasisOfWeightRepElementSpace" Arg='B' Type='Category'/>
##
## <Description>
## A basis that lies in this category is a basis of a space of weight
## rep elements. If a basis <A>B</A> lies in this category, then it has the
## record components <C><A>B</A>!.echelonBasis</C> (a list of basis vectors of
## the same module as where <A>B</A> is a basis of, but in echelon form),
## <C><A>B</A>!.heads</C> (if <C><A>B</A>!.heads[i] = k</C>, then the number of the first
## weight vector of <C><A>B</A>!.echelonBasis[i]</C> is <C>k</C>; recall that all weight
## vectors carry a number), and <C><A>B</A>!.baseChange</C> (if <C><A>B</A>!.baseChange[i]=
## [ [m1,c1],...,[ms,cs] ]</C> then the <C>i</C>-th element of <C><A>B</A>!.echelonBasis</C>
## is of the form <M>c1 v_{m1}+\cdots +cs v_{ms}</M>, where the <M>v_j</M> are the
## basis vectors of <A>B</A>.
## </Description>
## </ManSection>
##
DeclareCategory( "IsBasisOfWeightRepElementSpace", IsBasis );
#############################################################################
##
#F HighestWeightModule( <L>, <wt> )
##
## <#GAPDoc Label="HighestWeightModule">
## <ManSection>
## <Oper Name="HighestWeightModule" Arg='L, wt'/>
##
## <Description>
## returns the highest weight module with highest weight <A>wt</A> of the
## semisimple Lie algebra <A>L</A> of characteristic <M>0</M>.
## <P/>
## Note that the elements of such a module lie in the category
## <Ref Filt="IsLeftAlgebraModuleElement"/> (and in particular they do not
## lie in the category <Ref Filt="IsWeightRepElement"/>). However, if
## <C>v</C> is an element of such a module, then <C>ExtRepOfObj( v )</C>
## is a <C>WeightRepElement</C>.
## <P/>
## Note that for the following examples of this chapter we increase the line
## length limit from its default value 80 to 81 in order to make some long
## output expressions fit into the lines.
## <P/>
## <Example><![CDATA[
## gap> K1:= SimpleLieAlgebra( "G", 2, Rationals );;
## gap> K2:= SimpleLieAlgebra( "B", 2, Rationals );;
## gap> L:= DirectSumOfAlgebras( K1, K2 );
## <Lie algebra of dimension 24 over Rationals>
## gap> V:= HighestWeightModule( L, [ 0, 1, 1, 1 ] );
## <224-dimensional left-module over <Lie algebra of dimension
## 24 over Rationals>>
## gap> vv:= GeneratorsOfLeftModule( V );;
## gap> vv[100];
## y5*y7*y10*v0
## gap> e:= ExtRepOfObj( vv[100] );
## y5*y7*y10*v0
## gap> ExtRepOfObj( e );
## [ [ 100, y5*y7*y10, [ -3, 2, -1, 1 ] ], 1 ]
## gap> Basis(L)[17]^vv[100];
## -1*y5*y7*y8*v0-1*y5*y9*v0
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "HighestWeightModule", [ IsAlgebra, IsList ] );
#############################################################################
##
#F LeadingUEALatticeMonomial( <novar>, <f> )
##
## <ManSection>
## <Func Name="LeadingUEALatticeMonomial" Arg='novar, f'/>
##
## <Description>
## Here <A>f</A> is an <C>UEALatticeElement</C>, and <A>novar</A> the number of generators
## of the algebra containing <A>f</A>. This function returns a list of four
## elements. The first element is the leading monomial of <A>f</A> (as it
## occurs in the external representation of <A>f</A>). The second element is the
## leading monomial of <A>f</A> represented as a list of length <A>novar</A>. The
## i-th entry in this list is the exponent of the i-th generator in
## the leading monomial. The third and fourth elements are, respectively,
## the coefficient of the leading monomial and the index at which it
## occurs in <A>f</A> (so that <A>f</A>!.[1][ind] is equal to the first element of
## the output).
## </Description>
## </ManSection>
##
DeclareOperation( "LeadingUEALatticeMonomial",
[ IsInt, IsUEALatticeElement ] );
##############################################################################
##
#F LeftReduceUEALatticeElement( <novar>, <G>, <lms>, <p> )
##
## <ManSection>
## <Func Name="LeftReduceUEALatticeElement" Arg='novar, G, lms, p'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "LeftReduceUEALatticeElement" );
##############################################################################
##
#F ExtendRepresentation( <L>, <newelts>, <I>, <mats> )
##
## <ManSection>
## <Func Name="ExtendRepresentation" Arg='L, newelts, I, mats'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ExtendRepresentation" );
#############################################################################
##
#F IsCochainsSpace( <V> )
##
## <ManSection>
## <Func Name="IsCochainsSpace" Arg='V'/>
##
## <Description>
## ...
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsCochainsSpace",
"for free left modules of cochains" );
#############################################################################
##
#V InfoSearchTable
##
## <ManSection>
## <InfoClass Name="InfoSearchTable"/>
##
## <Description>
## is the info class for methods and functions applicable to search tables.
## (see <Ref Sect="Info Functions"/>).
## </Description>
## </ManSection>
##
DeclareInfoClass( "InfoSearchTable" );
#############################################################################
##
#C IsSearchTable( <obj> )
##
## <ManSection>
## <Filt Name="IsSearchTable" Arg='obj' Type='Category'/>
##
## <Description>
## A search table stores elements and provides methods for efficient
## search of particular kinds of elements.
## </Description>
## </ManSection>
##
DeclareCategory( "IsSearchTable", IsObject );
#############################################################################
##
#O Search( <T>, <key> )
##
## <ManSection>
## <Oper Name="Search" Arg='T, key'/>
##
## <Description>
## is the operation for finding element labelled with <A>key</A> in table <A>T</A>.
## The return value depends on the specific implementation of the search
## table, but this will always return <K>fail</K> if an element in <M>T</M> does not
## satisfy the necessary criterion for <A>key</A>.
## </Description>
## </ManSection>
##
DeclareOperation( "Search", [ IsSearchTable, IsObject ] );
#############################################################################
##
#O Insert( <T>, <key>, <data> )
##
## <ManSection>
## <Oper Name="Insert" Arg='T, key, data'/>
##
## <Description>
## is the operation for inserting data into the search table.
## The data <A>data</A> is stored in the table under the key <A>key</A>.
## The operation returns <K>true</K> if the insertion occurs, and
## <K>false</K> otherwise.
## </Description>
## </ManSection>
##
DeclareOperation( "Insert", [ IsSearchTable, IsObject, IsObject ] );
#############################################################################
##
#C IsVectorSearchTable( <obj> )
##
## <ManSection>
## <Filt Name="IsVectorSearchTable" Arg='obj' Type='Category'/>
##
## <Description>
## is a search table encoding integer vectors representing a
## variable/exponent pair for monomials in a commutative polynomial ring
## or in a semisimple Lie algebra given by a PBW basis.
## </Description>
## </ManSection>
##
DeclareCategory( "IsVectorSearchTable", IsSearchTable );
#############################################################################
##
#F VectorSearchTable( )
#F VectorSearchTable( <keys>, <data> )
##
## <ManSection>
## <Func Name="VectorSearchTable" Arg=''/>
## <Func Name="VectorSearchTable" Arg='keys, data'/>
##
## <Description>
## construct an empty search table or a search table containing <A>data</A>
## keyed by <A>keys</A>. The list <A>keys</A> must contain integer lists which are
## interpreted as exponents for variables.
## <P/>
## The lists <A>keys</A> and <A>data</A> must be the same length as well.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "VectorSearchTable" );
#############################################################################
##
#E
|