/usr/share/gap/lib/liefam.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | #############################################################################
##
#W liefam.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## 1. general methods for Lie elements
## 2. methods for free left modules of Lie elements
## (there are special methods for Lie matrix spaces)
## 3. methods for FLMLORs (and ideals) of Lie elements
## (there are special methods for Lie matrix spaces)
##
#############################################################################
##
## 1. general methods for Lie elements
##
#############################################################################
##
#M LieFamily( <Fam> )
##
## We need to distinguish families of arbitrary ring elements and families
## that contain matrices,
## since in the latter case the Lie elements shall also be matrices.
## Note that matrices cannot be detected from their family,
## so we decide that the Lie family of a collections family will consist
## of Lie matrices.
##
InstallMethod( LieFamily,
"for family of ring elements",
true,
[ IsRingElementFamily ], 0,
function( Fam )
local F, filt;
if HasCharacteristic(Fam) and Characteristic(Fam)>0 then
filt := IsRestrictedLieObject;
else
filt := IsLieObject;
fi;
# Make the family of Lie elements.
F:= NewFamily( "LieFamily(...)", filt,CanEasilySortElements,
CanEasilySortElements);
SetUnderlyingFamily( F, Fam );
if HasCharacteristic( Fam ) then
SetCharacteristic( F, Characteristic( Fam ) );
fi;
#T maintain other req/imp properties as implied properties of `F'?
# Enter the type of objects in the image.
F!.packedType:= NewType( F, filt and IsPackedElementDefaultRep );
# Return the Lie family.
return F;
end );
InstallMethod( LieFamily,
"for a collections family (special case of Lie matrices)",
true,
[ IsCollectionFamily ], 0,
function( Fam )
local F, filt;
if HasCharacteristic(Fam) and Characteristic(Fam)>0 then
filt := IsRestrictedLieObject;
else
filt := IsLieObject;
fi;
# Make the family of Lie elements.
F:= NewFamily( "LieFamily(...)", filt and IsMatrix );
SetUnderlyingFamily( F, Fam );
if HasCharacteristic( Fam ) then
SetCharacteristic( F, Characteristic( Fam ) );
fi;
#T maintain other req/imp properties as implied properties of `F'?
# Enter the type of objects in the image.
F!.packedType:= NewType( F, filt
and IsPackedElementDefaultRep
and IsLieMatrix );
# Return the Lie family.
return F;
end );
#############################################################################
##
#M LieObject( <obj> ) . . . . . . . . . . . . . . . . . for a ring element
##
InstallMethod( LieObject,
"for a ring element",
true,
[ IsRingElement ], 0,
obj -> Objectify( LieFamily( FamilyObj( obj ) )!.packedType,
[ Immutable( obj ) ] ) );
#############################################################################
##
#M UnderlyingRingElement( <obj> ) . . . . . . . . . . . . for a Lie object
##
InstallMethod( UnderlyingRingElement,
"for a Lie object in default representation",
true,
[ IsLieObject and IsPackedElementDefaultRep], 0,
obj -> obj![1] );
#############################################################################
##
#M PrintObj( <obj> ) . . . . . . . . . . . . . . . . . . . for a Lie object
##
InstallMethod( PrintObj,
"for a Lie object in default representation",
true,
[ IsLieObject and IsPackedElementDefaultRep ], SUM_FLAGS,
function( obj )
Print( "LieObject( ", obj![1], " )" );
end );
#############################################################################
##
#M ViewObj( <obj> ) . . . . . . . . . . . . . . . . . . . for a Lie matrix
##
## For Lie matrices, we want to override the special `ViewObj' method for
## lists.
##
InstallMethod( ViewObj,
"for a Lie matrix in default representation",
true,
[ IsLieMatrix and IsPackedElementDefaultRep ], SUM_FLAGS,
function( obj )
Print( "LieObject( " ); View( obj![1] ); Print( " )" );
end );
#############################################################################
##
#M \=( <x>, <y> ) . . . . . . . . . . . . . . . . . . . for two Lie objects
#M \<( <x>, <y> ) . . . . . . . . . . . . . . . . . . . for two Lie objects
##
InstallMethod( \=,
"for two Lie objects in default representation",
IsIdenticalObj,
[ IsLieObject and IsPackedElementDefaultRep,
IsLieObject and IsPackedElementDefaultRep ], 0,
function( x, y ) return x![1] = y![1]; end );
InstallMethod( \<,
"for two Lie objects in default representation",
IsIdenticalObj,
[ IsLieObject and IsPackedElementDefaultRep,
IsLieObject and IsPackedElementDefaultRep ], 0,
function( x, y ) return x![1] < y![1]; end );
#############################################################################
##
#M \+( <x>, <y> ) . . . . . . . . . . . . . . . . . . . for two Lie objects
#M \-( <x>, <y> ) . . . . . . . . . . . . . . . . . . . for two Lie objects
#M \*( <x>, <y> ) . . . . . . . . . . . . . . . . . . . for two Lie objects
#M \^( <x>, <n> ) . . . . . . . . . . . . . . . . . . . for two Lie objects
##
## The addition, subtraction, and multiplication of Lie objects is obvious.
## If only one operand is a Lie object then we suspect that the operation
## for the unpacked object is defined, and that the Lie object shall behave
## as the unpacked object.
##
InstallMethod( \+,
"for two Lie objects in default representation",
IsIdenticalObj,
[ IsLieObject and IsPackedElementDefaultRep,
IsLieObject and IsPackedElementDefaultRep ], 0,
function( x, y ) return LieObject( x![1] + y![1] ); end );
InstallMethod( \+,
"for Lie object in default representation, and ring element",
true,
[ IsLieObject and IsPackedElementDefaultRep, IsRingElement ], 0,
function( x, y )
local z;
z:= x![1] + y;
if IsFamLieFam( FamilyObj( z ), FamilyObj( x ) ) then
return LieObject( z );
else
TryNextMethod();
fi;
end );
InstallMethod( \+,
"for ring element, and Lie object in default representation",
true,
[ IsRingElement, IsLieObject and IsPackedElementDefaultRep ], 0,
function( x, y )
local z;
z:= x + y![1];
if IsFamLieFam( FamilyObj( z ), FamilyObj( x ) ) then
return LieObject( z );
else
TryNextMethod();
fi;
end );
InstallMethod( \-,
"for two Lie objects in default representation",
IsIdenticalObj,
[ IsLieObject and IsPackedElementDefaultRep,
IsLieObject and IsPackedElementDefaultRep ], 0,
function( x, y ) return LieObject( x![1] - y![1] ); end );
InstallMethod( \-,
"for Lie object in default representation, and ring element",
true,
[ IsLieObject and IsPackedElementDefaultRep, IsRingElement ], 0,
function( x, y )
local z;
z:= x![1] - y;
if IsFamLieFam( FamilyObj( z ), FamilyObj( x ) ) then
return LieObject( z );
else
TryNextMethod();
fi;
end );
InstallMethod( \-,
"for ring element, and Lie object in default representation",
true,
[ IsRingElement, IsLieObject and IsPackedElementDefaultRep ], 0,
function( x, y )
local z;
z:= x - y![1];
if IsFamLieFam( FamilyObj( z ), FamilyObj( x ) ) then
return LieObject( z );
else
TryNextMethod();
fi;
end );
InstallMethod( \*,
"for two Lie objects in default representation",
IsIdenticalObj,
[ IsLieObject and IsPackedElementDefaultRep,
IsLieObject and IsPackedElementDefaultRep ], 0,
function( x, y ) return LieObject( LieBracket( x![1], y![1] ) ); end );
InstallMethod( \*,
"for Lie object in default representation, and ring element",
true,
[ IsLieObject and IsPackedElementDefaultRep, IsRingElement ], 0,
function( x, y )
local z;
z:= x![1] * y;
if IsFamLieFam( FamilyObj( z ), FamilyObj( x ) ) then
return LieObject( z );
else
TryNextMethod();
fi;
end );
InstallMethod( \*,
"for ring element, and Lie object in default representation",
true,
[ IsRingElement, IsLieObject and IsPackedElementDefaultRep ], 0,
function( x, y )
local z;
z:= x * y![1];
if IsFamLieFam( FamilyObj( z ), FamilyObj( y ) ) then
return LieObject( z );
else
TryNextMethod();
fi;
end );
InstallMethod( \^,
"for Lie object in default representation, and positive integer",
true,
[ IsLieObject and IsPackedElementDefaultRep, IsPosInt ], 0,
function( x, n )
if 1 < n then
return LieObject( Zero( x![1] ) );
else
return x;
fi;
end );
#############################################################################
##
#M PthPowerImage( <lie_obj> ) . . . . . . . . . for a restricted Lie object
##
InstallMethod(PthPowerImage, "for restricted Lie object",
[ IsRestrictedLieObject ],
function(x)
return LieObject(x![1]^Characteristic(FamilyObj(x)));
end);
InstallMethod(PthPowerImage, "for restricted Lie object and integer",
[ IsRestrictedLieObject, IsInt ],
function(x,n)
local y;
y := x![1];
while n>0 do
y := y^Characteristic(FamilyObj(x));
n := n-1;
od;
return LieObject(y);
end);
#############################################################################
##
#M ZeroOp( <lie_obj> ) . . . . . . . . . . . . . . . . . . for a Lie object
##
InstallMethod( ZeroOp,
"for Lie object in default representation",
true,
[ IsLieObject and IsPackedElementDefaultRep ], SUM_FLAGS,
x -> LieObject( Zero( x![1] ) ) );
#############################################################################
##
#M OneOp( <lie_obj> ) . . . . . . . . . . . . . . . . . . for a Lie object
##
InstallOtherMethod( OneOp,
"for Lie object",
true,
[ IsLieObject ], 0,
ReturnFail );
#############################################################################
##
#M InverseOp( <lie_obj> ) . . . . . . . . . . . . . . . . for a Lie object
##
InstallOtherMethod( InverseOp,
"for Lie object",
true,
[ IsLieObject ], 0,
ReturnFail );
#############################################################################
##
#M AdditiveInverseOp( <lie_obj> ) . . . . . . . . . . . . for a Lie object
##
InstallMethod( AdditiveInverseOp,
"for Lie object in default representation",
true,
[ IsLieObject and IsPackedElementDefaultRep ], 0,
x -> LieObject( - x![1] ) );
#############################################################################
##
#M \[\]( <mat>, <i> ) . . . . . . . . . . . . . . . . . . for a Lie matrix
#M Length( <mat> )
#M IsBound\[\]( <mat>, <i> )
#M Position( <mat>, <obj> )
##
InstallMethod( \[\],
"for Lie matrix in default representation, and positive integer",
true,
[ IsLieMatrix and IsPackedElementDefaultRep, IsPosInt ], 0,
function( mat, i ) return mat![1][i]; end );
InstallMethod( Length,
"for Lie matrix in default representation",
true,
[ IsLieMatrix and IsPackedElementDefaultRep ], 0,
mat -> Length( mat![1] ) );
InstallMethod( IsBound\[\],
"for Lie matrix in default representation, and integer",
true,
[ IsLieMatrix and IsPackedElementDefaultRep, IsPosInt ], 0,
function( mat, i ) return IsBound( mat![1][i] ); end );
InstallMethod( Position,
"for Lie matrix in default representation, row vector, and integer",
true,
[ IsLieMatrix and IsPackedElementDefaultRep, IsRowVector, IsInt ], 0,
function( mat, v, pos ) return Position( mat![1], v, pos ); end );
#############################################################################
##
#R IsLieEmbeddingRep( <map> )
##
## representation of the embedding of a family into its Lie family
##
DeclareRepresentation( "IsLieEmbeddingRep", IsAttributeStoringRep,
[ "packedType" ] );
#############################################################################
##
#M Embedding( <Fam>, <LieFam> )
##
InstallOtherMethod( Embedding,
"for two families, the first with known Lie family",
true,
[ IsFamily and HasLieFamily, IsFamily ], 0,
function( Fam, LieFam )
local emb;
# Is this the right method?
if not IsFamLieFam( Fam, LieFam ) then
TryNextMethod();
fi;
# Make the mapping object.
emb := Objectify( TypeOfDefaultGeneralMapping( Fam, LieFam,
IsLieEmbeddingRep
and IsNonSPGeneralMapping
and IsMapping
and IsInjective
and IsSurjective ),
rec() );
# Enter preimage and image.
SetPreImagesRange( emb, Fam );
SetImagesSource( emb, LieFam );
# Return the embedding.
return emb;
end );
InstallMethod( ImagesElm,
"for Lie embedding and object",
FamSourceEqFamElm,
[ IsGeneralMapping and IsLieEmbeddingRep, IsObject ], 0,
function( emb, elm )
return [ LieObject( elm ) ];
end );
InstallMethod( PreImagesElm,
"for Lie embedding and Lie object in default representation",
FamRangeEqFamElm,
[ IsGeneralMapping and IsLieEmbeddingRep,
IsLieObject and IsPackedElementDefaultRep ], 0,
function( emb, elm )
return [ elm![1] ];
end );
#############################################################################
##
#M IsUnit( <lie_obj> )
##
InstallOtherMethod( IsUnit,
"for a Lie object (return `false')",
true,
[ IsLieObject ], 0,
ReturnFalse );
#############################################################################
##
## 2. methods for free left modules of Lie elements
##
## There are special methods for Lie matrix spaces, both Gaussian and
## non-Gaussian (see ...).
## Note that in principle the non-Gaussian Lie matrix spaces could be
## handled via the generic methods for spaces of Lie elements,
## but the special methods are more efficient; they avoid one indirection
## by assigning a row vector to each Lie matrix.
##
#############################################################################
##
#M MutableBasis( <R>, <lieelms> )
#M MutableBasis( <R>, <lieelms>, <zero> )
##
## In general, we choose a mutable basis that stores a mutable basis for a
## nice module.
##
## Note that the case of Lie matrices must *not* be treated by these methods
## since the space may be Gaussian and thus handled in a completely
## different way.
##
InstallMethod( MutableBasis,
"for ring and collection of Lie elements",
function( F1, F2 ) return not IsElmsCollLieColls( F1, F2 ); end,
[ IsRing, IsLieObjectCollection ], 0,
MutableBasisViaNiceMutableBasisMethod2 );
InstallOtherMethod( MutableBasis,
"for ring, (possibly empty) list, and Lie zero",
function( F1, F2, F3 ) return not IsElmsLieColls( F1, F3 ); end,
[ IsRing, IsList, IsLieObject ], 0,
MutableBasisViaNiceMutableBasisMethod3 );
#############################################################################
##
#M NiceFreeLeftModuleInfo( <liemodule> )
#M NiceVector( <M>, <lieelm> )
#M UglyVector( <M>, <vector> ) . for left module of Lie objects, and vector
##
InstallHandlingByNiceBasis( "IsLieObjectsModule", rec(
# Note that the case of Lie matrices must *not* be treated by these
# methods since the space may be Gaussian and thus handled in a
# completely different way.
detect := function( R, gens, V, zero )
if not IsLieObjectCollection( V ) then
return false;
elif zero = false then
return not IsElmsCollLieColls( FamilyObj( R ), FamilyObj( gens ) );
else
return not IsElmsLieColls( FamilyObj( R ), FamilyObj( zero ) );
fi;
end,
NiceFreeLeftModuleInfo := ReturnFalse,
NiceVector := function( M, lieelm )
if IsPackedElementDefaultRep( lieelm ) then
return lieelm![1];
else
TryNextMethod();
fi;
end,
UglyVector := function( M, vector )
return LieObject( vector );
end ) );
#############################################################################
##
#M TwoSidedIdealByGenerators( <L>, <elms> )
#M LeftIdealByGenerators( <L>, <elms> )
#M RightIdealByGenerators( <L>, <elms> )
##
## For Lie algebras <L>, we construct two-sided ideals in all three cases.
##
IdealByGeneratorsForLieAlgebra := function( L, elms )
local I, lad;
I:= Objectify( NewType( FamilyObj( L ),
IsFLMLOR
and IsAttributeStoringRep
and IsLieAlgebra ),
rec() );
lad:= LeftActingDomain( L );
SetLeftActingDomain( I, lad );
SetGeneratorsOfTwoSidedIdeal( I, elms );
SetGeneratorsOfLeftIdeal( I, elms );
SetGeneratorsOfRightIdeal( I, elms );
SetLeftActingRingOfIdeal( I, L );
SetRightActingRingOfIdeal( I, L );
if IsEmpty( elms ) then
SetIsTrivial( I, true );
fi;
CheckForHandlingByNiceBasis( lad, elms, I, false );
return I;
end;
InstallMethod( TwoSidedIdealByGenerators,
"for Lie algebra and collection of Lie objects",
IsIdenticalObj,
[ IsLieAlgebra, IsLieObjectCollection and IsList ], 0,
IdealByGeneratorsForLieAlgebra );
InstallMethod( LeftIdealByGenerators,
"for Lie algebra and collection of Lie objects",
IsIdenticalObj,
[ IsLieAlgebra, IsLieObjectCollection and IsList ], 0,
IdealByGeneratorsForLieAlgebra );
InstallMethod( RightIdealByGenerators,
"for Lie algebra and collection of Lie objects",
IsIdenticalObj,
[ IsLieAlgebra, IsLieObjectCollection and IsList ], 0,
IdealByGeneratorsForLieAlgebra );
InstallMethod( TwoSidedIdealByGenerators,
"for Lie algebra and empty list",
true,
[ IsLieAlgebra, IsList and IsEmpty ], 0,
IdealByGeneratorsForLieAlgebra );
InstallMethod( LeftIdealByGenerators,
"for Lie algebra and empty list",
true,
[ IsLieAlgebra, IsList and IsEmpty ], 0,
IdealByGeneratorsForLieAlgebra );
InstallMethod( RightIdealByGenerators,
"for Lie algebra and empty list",
true,
[ IsLieAlgebra, IsList and IsEmpty ], 0,
IdealByGeneratorsForLieAlgebra );
#############################################################################
##
#E
|