This file is indexed.

/usr/share/gap/lib/invsgp.gi is in gap-libs 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#############################################################################
##
#W  invsgp.gd              GAP library                         J. D. Mitchell
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of operations for inverse semigroups.
##

InstallMethod(GeneratorsOfInverseSemigroup,
"for a group with known generators",
[IsGroup and HasGeneratorsOfGroup],
GeneratorsOfGroup);

InstallMethod(GeneratorsOfInverseMonoid,
"for a group with known generators",
[IsGroup and HasGeneratorsOfGroup],
GeneratorsOfGroup);

InstallImmediateMethod(GeneratorsOfSemigroup,
IsInverseSemigroup and HasGeneratorsOfInverseSemigroup, 0,
function(S)
  local gens, out, x;
  gens := GeneratorsOfInverseSemigroup(S);
  out := ShallowCopy(gens);
  for x in gens do
    if not IsIdempotent(x) then
      Add(out, x ^ -1);
    fi;
  od;
  MakeImmutable(out);
  return out;
end);

#

InstallMethod(IsInverseSubsemigroup, "for a semigroup and a semigroup",
[IsSemigroup, IsSemigroup],
function(s, t)
  return IsSubsemigroup(s, t) and IsInverseSemigroup(t);
end);

#

InstallMethod(AsInverseMonoid, "for an inverse monoid", 
[IsInverseMonoid], 100, IdFunc );

#

InstallMethod(AsInverseMonoid,
"for an inverse semigroup with known generators",
[IsInverseSemigroup and HasGeneratorsOfInverseSemigroup],
function(S)
  local gens, pos;

  if not (IsMultiplicativeElementWithOneCollection(S)
          and One(S) <> fail and One(S) in S) then
    return fail;
  fi;

  gens := GeneratorsOfInverseSemigroup(S);

  if CanEasilyCompareElements(gens) then
    pos := Position(gens, One(S));
    if pos <> fail then
      gens := ShallowCopy(gens);
      Remove(gens, pos);
    fi;
  fi;
  return InverseMonoid(gens);
end);

#

InstallOtherMethod(IsInverseSemigroup, "for an object", [IsObject], ReturnFalse);

#

InstallMethod(\.,"for an inverse semigroup with generators and pos int",
[IsInverseSemigroup and HasGeneratorsOfInverseSemigroup, IsPosInt],
function(s, n)
  s:=GeneratorsOfInverseSemigroup(s);
  n:=NameRNam(n);
  n:=Int(n);
  if n=fail or Length(s)<n then
    Error("the second argument should be a positive integer not greater than",
     " the number of generators of the semigroup in the first argument");
  fi;
  return s[n];
end);

#

InstallMethod(\., "for an inverse monoid with generators and pos int",
[IsInverseMonoid and HasGeneratorsOfInverseMonoid, IsPosInt],
function(s, n)
  s:=GeneratorsOfInverseMonoid(s);
  n:=NameRNam(n);
  n:=Int(n);
  if n=fail or Length(s)<n then
    Error("usage: the second argument should be a pos int not greater than",
     " the number of generators of the semigroup in the first argument");
  fi;
  return s[n];
end);

#

InstallGlobalFunction(InverseMonoid,
function(arg)
  local out, i;

  if Length(arg) = 0 or (Length(arg) = 1 and HasIsEmpty(arg[1]) 
      and IsEmpty(arg[1])) then 
    ErrorNoReturn("Usage: cannot create an inverse monoid with no ",
                  "generators,");
  fi;
  
  out := []; 
  for i in [1 .. Length(arg)] do 
    if i = Length(arg) and IsRecord(arg[i]) then 
      if not IsGeneratorsOfInverseSemigroup(out) then 
        ErrorNoReturn("Usage: InverseMonoid(<gen>,...), ", 
                      "InverseMonoid(<gens>), InverseMonoid(<D>),");
      fi;
      return InverseMonoidByGenerators(out, arg[i]);
    elif IsMultiplicativeElementWithOne(arg[i]) or IsMatrix(arg[i]) then 
      Add(out, arg[i]);
    elif IsListOrCollection(arg[i]) then 
      if IsGeneratorsOfInverseSemigroup(arg[i]) then 
        if HasGeneratorsOfInverseSemigroup(arg[i]) then 
          Append(out, GeneratorsOfInverseSemigroup(arg[i]));
        elif HasGeneratorsOfSemigroup(arg[i]) or IsMagmaIdeal(arg[i]) then
          Append(out, GeneratorsOfSemigroup(arg[i]));
        elif IsList(arg[i]) then 
          Append(out, arg[i]);
        else
          Append(out, AsList(arg[i]));
        fi;
      elif not IsEmpty(arg[i]) then 
          ErrorNoReturn("Usage: InverseMonoid(<gen>,...), ", 
                        "InverseMonoid(<gens>), InverseMonoid(<D>),");
      fi;
    else 
        ErrorNoReturn("Usage: InverseMonoid(<gen>,...), ", 
                      "InverseMonoid(<gens>), InverseMonoid(<D>),");
    fi;
  od;
  if not IsGeneratorsOfInverseSemigroup(out) then 
    ErrorNoReturn("Usage: InverseMonoid(<gen>,...), ", 
                  "InverseMonoid(<gens>), InverseMonoid(<D>),");
  fi;
  return InverseMonoidByGenerators(out);
end);

#

InstallGlobalFunction(InverseSemigroup,
function(arg)
  local out, i;

  if Length(arg) = 0 or (Length(arg) = 1 and HasIsEmpty(arg[1]) 
      and IsEmpty(arg[1])) then 
    ErrorNoReturn("Usage: cannot create an inverse semigroup with no ", 
                  "generators,");
  fi;

  out := []; 
  for i in [1 .. Length(arg)] do 
    if i = Length(arg) and IsRecord(arg[i]) then 
      if not IsGeneratorsOfInverseSemigroup(out) then 
        ErrorNoReturn("Usage: InverseSemigroup(<gen>, ...), ", 
                      "InverseSemigroup(<gens>), InverseSemigroup(<D>),");
      fi;
      return InverseSemigroupByGenerators(out, arg[i]);
    elif IsMultiplicativeElement(arg[i]) or IsMatrix(arg[i]) then 
      Add(out, arg[i]);
    elif IsListOrCollection(arg[i]) then 
      if IsGeneratorsOfInverseSemigroup(arg[i]) then 
        if HasGeneratorsOfInverseSemigroup(arg[i]) then 
          Append(out, GeneratorsOfInverseSemigroup(arg[i]));
        elif HasGeneratorsOfSemigroup(arg[i]) or IsMagmaIdeal(arg[i]) then
          Append(out, GeneratorsOfSemigroup(arg[i]));
        elif IsList(arg[i]) then 
          Append(out, arg[i]);
        else
          Append(out, AsList(arg[i]));
        fi;
      elif not IsEmpty(arg[i]) then 
          ErrorNoReturn("Usage: InverseSemigroup(<gen>, ...), ", 
                        "InverseSemigroup(<gens>), InverseSemigroup(<D>),");
      fi;
    else 
      ErrorNoReturn("Usage: InverseSemigroup(<gen>, ...), ", 
                    "InverseSemigroup(<gens>), InverseSemigroup(<D>),");
    fi;
  od;
  if not IsGeneratorsOfInverseSemigroup(out) then 
    ErrorNoReturn("Usage: InverseSemigroup(<gen >, ...), ", 
                  "InverseSemigroup(<gens>), InverseSemigroup(<D>),");
  fi;
  return InverseSemigroupByGenerators(out);
end);

#

InstallMethod(InverseMonoidByGenerators,
[IsCollection],
function(gens)
  local S, one, pos;

  S := Objectify(NewType(FamilyObj(gens), IsMagmaWithOne
                                          and IsInverseSemigroup
                                          and IsAttributeStoringRep), rec());

  gens := AsList(gens);

  if CanEasilyCompareElements(gens) and IsFinite(gens)
      and IsMultiplicativeElementWithOneCollection(gens) then
    one := One(gens);
    SetOne(S, one);
    pos := Position(gens, one);
    if pos <> fail  then
      SetGeneratorsOfInverseSemigroup(S, gens);
      if Length(gens) = 1 then # Length(gens) <> 0 since One(gens) in gens
        SetIsTrivial(S, true);
      elif not IsPartialPermCollection(gens) or One(gens) =
        One(gens{Concatenation([1 .. pos - 1], [pos + 1 .. Length(gens)])}) then
        # if gens = [PartialPerm([1,2]), PartialPerm([1])], then removing the One
        # = gens[1] from this, it is not possible to recreate the semigroup using
        # Monoid(PartialPerm([1])) (since the One in this case is
        # PartialPerm([1]) not PartialPerm([1,2]) as it should be.
        gens := ShallowCopy(gens);
        Remove(gens, pos);
      fi;
      SetGeneratorsOfInverseMonoid(S, gens);
    else
      SetGeneratorsOfInverseMonoid(S, gens);
      gens := ShallowCopy(gens);
      Add(gens, one);
      SetGeneratorsOfInverseSemigroup(S, gens);
    fi;
  else
    SetGeneratorsOfInverseMonoid(S, gens);
  fi;

  return S;
end);

#

InstallMethod(InverseSemigroupByGenerators, "for a collection",
[IsCollection],
function(gens)
  local S, pos;

  S := Objectify(NewType (FamilyObj(gens), IsMagma
                                           and IsInverseSemigroup
                                           and IsAttributeStoringRep), rec());
  gens := AsList(gens);
  SetGeneratorsOfInverseSemigroup(S, gens);

  if IsMultiplicativeElementWithOneCollection(gens)
      and CanEasilyCompareElements(gens)
      and IsFinite(gens) then
    pos := Position(gens, One(gens));
    if pos <> fail then
      SetFilterObj(S, IsMonoid);
      if Length(gens) = 1 then # Length(gens) <> 0 since One(gens) in gens
        SetIsTrivial(S, true);
      elif not IsPartialPermCollection(gens) or One(gens) =
          One(gens{Concatenation([1 .. pos - 1], [pos + 1 .. Length(gens)])}) then
        # if gens = [PartialPerm([1,2]), PartialPerm([1])], then removing the One
        # = gens[1] from this, it is not possible to recreate the semigroup using
        # Monoid(PartialPerm([1])) (since the One in this case is
        # PartialPerm([1]) not PartialPerm([1,2]) as it should be.
        gens := ShallowCopy(gens);
        Remove(gens, pos);
      fi;
      SetGeneratorsOfInverseMonoid(S, gens);
    fi;
  fi;
  return S;
end);

#

InstallMethod(InverseSubsemigroupNC, 
"for an inverse semigroup and collection",
[IsInverseSemigroup, IsCollection],
function(s, gens)
  local t;
  t:=InverseSemigroup(gens);
  SetParent(t, s);
  return t;
end);

#

InstallMethod(InverseSubsemigroup, 
"for an inverse semigroup and collection",
[IsInverseSemigroup, IsCollection],
function(s, gens)
  if ForAll(gens, x-> x in s) then 
    return InverseSubsemigroupNC(s, gens);
  fi;
  Error("the specified elements do not belong to the first argument,");
  return;
end);

#

InstallMethod(InverseSubmonoidNC, 
"for an inverse monoid and collection",
[IsInverseMonoid, IsCollection],
function(s, gens)
  local t;

  t:=InverseMonoid(gens);
  SetParent(t, s);
  return t;
end);

#

InstallMethod(InverseSubmonoid, 
"for an inverse monoid and collection",
[IsInverseMonoid, IsCollection],
function(s, gens)
  if ForAll(gens, x-> x in s) then 
    if One(s)<>One(gens) then 
      Append(gens, One(s));
    fi;
    return InverseSubmonoidNC(s, gens);
  fi;
  Error("the specified elements do not belong to the first argument,");
  return;
end);

#

InstallMethod(IsSubsemigroup, 
"for an inverse semigroup and inverse semigroup with generators",
[IsInverseSemigroup, IsInverseSemigroup and HasGeneratorsOfInverseSemigroup],
function(s, t)
  return ForAll(GeneratorsOfInverseSemigroup(t), x-> x in s);
end);

#

InstallMethod(\=, "for an inverse semigroups with generators",
[IsInverseSemigroup and HasGeneratorsOfInverseSemigroup, 
IsInverseSemigroup and HasGeneratorsOfInverseSemigroup],
function(s, t)
return ForAll(GeneratorsOfInverseSemigroup(s), x-> x in t) 
 and ForAll(GeneratorsOfInverseSemigroup(t), x-> x in s);
end);

InstallMethod( String,
    "for a inverse semigroup",
    [ IsInverseSemigroup ],
    function( S )
    return "InverseSemigroup( ... )";
    end );

InstallMethod( PrintObj,
    "for a inverse semigroup with known generators",
    [ IsInverseSemigroup and HasGeneratorsOfInverseSemigroup ],
    function( S )
    Print( "InverseSemigroup( ", GeneratorsOfInverseSemigroup( S ), " )" );
    end );

InstallMethod( String,
    "for a inverse semigroup with known generators",
    [ IsInverseSemigroup and HasGeneratorsOfInverseSemigroup ],
    function( S )
    return STRINGIFY( "InverseSemigroup( ", 
     GeneratorsOfInverseSemigroup( S ), " )" );
    end );

InstallMethod( PrintString,
    "for a inverse semigroup with known generators",
    [ IsInverseSemigroup and HasGeneratorsOfInverseSemigroup ],
    function( S )
    return PRINT_STRINGIFY( "InverseSemigroup( ", 
     GeneratorsOfInverseSemigroup( S ), " )" );
    end );

InstallMethod( ViewString,
    "for a inverse semigroup",
    [ IsInverseSemigroup ],
    function( S )
    return "<inverse semigroup>" ;
    end );

#InstallMethod( ViewString,
#    "for a inverse semigroup with generators",
#    [ IsInverseSemigroup and HasGeneratorsOfInverseSemigroup ],
#    function( S )
#    if Length(GeneratorsOfInverseSemigroup(S)) = 1 then
#      return STRINGIFY( "<inverse semigroup with ",
#       Length( GeneratorsOfInverseSemigroup( S ) ), " generator>" );
#    else
#      return STRINGIFY( "<inverse semigroup with ",
#       Length( GeneratorsOfInverseSemigroup( S ) ),
#           " generators>" );
#    fi;
#    end );

#

InstallMethod( String,
    "for a inverse monoid",
    [ IsInverseMonoid ],
    function( S )
    return "InverseMonoid( ... )";
    end );

InstallMethod( PrintObj,
    "for a inverse monoid with known generators",
    [ IsInverseMonoid and HasGeneratorsOfInverseMonoid ],
    function( S )
    Print( "InverseMonoid( ", GeneratorsOfInverseMonoid( S ), " )" );
    end );

InstallMethod( String,
    "for a inverse monoid with known generators",
    [ IsInverseMonoid and HasGeneratorsOfInverseMonoid ],
    function( S )
    return STRINGIFY( "InverseMonoid( ", 
     GeneratorsOfInverseMonoid( S ), " )" );
    end );

InstallMethod( PrintString,
    "for a inverse monoid with known generators",
    [ IsInverseMonoid and HasGeneratorsOfInverseMonoid ],
    function( S )
    return PRINT_STRINGIFY( "InverseMonoid( ", 
     GeneratorsOfInverseMonoid( S ), " )" );
    end );

InstallMethod( ViewString,
    "for a inverse monoid",
    [ IsInverseMonoid ],
    function( S )
    return "<inverse monoid>" ;
    end );

#InstallMethod( ViewString,
#    "for a inverse monoid with generators",
#    [ IsInverseMonoid and HasGeneratorsOfInverseMonoid ],
#    function( S )
#    if Length(GeneratorsOfInverseMonoid(S)) = 1 then
#      return STRINGIFY( "<inverse monoid with ",
#       Length( GeneratorsOfInverseMonoid( S ) ), " generator>" );
#    else
#      return STRINGIFY( "<inverse monoid with ",
#       Length( GeneratorsOfInverseMonoid( S ) ),
#           " generators>" );
#    fi;
#    end );

#

InstallMethod( AsInverseSemigroup,
    "for an inverse semigroup",
    [ IsInverseSemigroup ], 100,
    IdFunc );

InstallMethod( AsInverseMonoid,
    "for an inverse monoid",
    [ IsInverseMonoid ], 100,
    IdFunc );


#

InstallMethod( IsRegularSemigroupElement, 
"for an inverse semigroup", IsCollsElms, 
[IsInverseSemigroup, IsAssociativeElement],
function(s, x)
return x in s;
end);

#EOF