/usr/share/gap/lib/integer.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 | #############################################################################
##
#W integer.gi GAP library Thomas Breuer
#W & Frank Celler
#W & Stefan Kohl
#W & Werner Nickel
#W & Alice Niemeyer
#W & Martin Schönert
#W & Alex Wegner
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#V Integers . . . . . . . . . . . . . . . . . . . . . ring of the integers
##
InstallValue( Integers, Objectify( NewType(
CollectionsFamily( CyclotomicsFamily ),
IsIntegers and IsAttributeStoringRep ),
rec() ) );
SetName( Integers, "Integers" );
SetString( Integers, "Integers" );
SetIsLeftActedOnByDivisionRing( Integers, false );
SetSize( Integers, infinity );
SetLeftActingDomain( Integers, Integers );
SetGeneratorsOfRing( Integers, [ 1 ] );
SetGeneratorsOfLeftModule( Integers, [ 1 ] );
SetIsFiniteDimensional( Integers, true );
SetUnits( Integers, [ -1, 1 ] );
SetIsWholeFamily( Integers, false );
#############################################################################
##
#V NonnegativeIntegers . . . . . . . . . . semiring of nonnegative integers
##
InstallValue( NonnegativeIntegers, Objectify( NewType(
CollectionsFamily( CyclotomicsFamily ),
IsNonnegativeIntegers and IsAttributeStoringRep ),
rec() ) );
SetName( NonnegativeIntegers, "NonnegativeIntegers" );
SetString( NonnegativeIntegers, "NonnegativeIntegers" );
SetSize( NonnegativeIntegers, infinity );
SetGeneratorsOfSemiringWithZero( NonnegativeIntegers, [ 1 ] );
SetGeneratorsOfAdditiveMagmaWithZero( NonnegativeIntegers, [ 1 ] );
SetIsWholeFamily( NonnegativeIntegers, false );
#############################################################################
##
#V PositiveIntegers . . . . . . . . . . . . . semiring of positive integers
##
InstallValue( PositiveIntegers, Objectify( NewType(
CollectionsFamily( CyclotomicsFamily ),
IsPositiveIntegers and IsAttributeStoringRep ),
rec() ) );
SetName( PositiveIntegers, "PositiveIntegers" );
SetString( PositiveIntegers, "PositiveIntegers" );
SetSize( PositiveIntegers, infinity );
SetGeneratorsOfSemiring( PositiveIntegers, [ 1 ] );
SetGeneratorsOfAdditiveMagma( PositiveIntegers, [ 1 ] );
SetIsWholeFamily( PositiveIntegers, false );
#############################################################################
##
#V GaussianIntegers . . . . . . . . . . . . . . . ring of Gaussian integers
##
InstallValue( GaussianIntegers, Objectify( NewType(
CollectionsFamily(CyclotomicsFamily),
IsGaussianIntegers and IsAttributeStoringRep ),
rec() ) );
SetLeftActingDomain( GaussianIntegers, Integers );
SetName( GaussianIntegers, "GaussianIntegers" );
SetString( GaussianIntegers, "GaussianIntegers" );
SetIsLeftActedOnByDivisionRing( GaussianIntegers, false );
SetSize( GaussianIntegers, infinity );
SetGeneratorsOfRing( GaussianIntegers, [ E(4) ] );
SetGeneratorsOfLeftModule( GaussianIntegers, [ 1, E(4) ] );
SetUnits( GaussianIntegers, [ -1, 1, -E(4), E(4) ] );
SetIsWholeFamily( GaussianIntegers, false );
#############################################################################
##
#R IsCanonicalBasisIntegersRep
##
DeclareRepresentation(
"IsCanonicalBasisIntegersRep",
IsAttributeStoringRep,
[] );
#T is this needed at all?
#############################################################################
##
#M Basis( Integers )
##
InstallMethod( Basis,
"for integers (delegate to `CanonicalBasis')",
[ IsIntegers ], CANONICAL_BASIS_FLAGS,
CanonicalBasis );
#############################################################################
##
#M CanonicalBasis( Integers )
##
InstallMethod( CanonicalBasis,
"for Integers",
true,
[ IsIntegers ], 0,
function( Integers )
local B;
B:= Objectify( NewType( FamilyObj( Integers ),
IsFiniteBasisDefault
and IsCanonicalBasis
and IsCanonicalBasisIntegersRep ),
rec() );
SetUnderlyingLeftModule( B, Integers );
SetBasisVectors( B, [ 1 ] );
return B;
end );
InstallMethod( Coefficients,
"for the canonical basis of Integers",
IsCollsElms,
[ IsBasis and IsCanonicalBasis and IsCanonicalBasisIntegersRep,
IsCyc ], 0,
function( B, v )
if IsInt( v ) then
return [ v ];
else
return fail;
fi;
end );
#############################################################################
##
#V Primes . . . . . . . . . . . . . . . . . . . . . . list of small primes
##
InstallValue( Primes,
[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97,101,103,107,109,113,127,131,137,139,149,151,
157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,
257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,
367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,
467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,
599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,
709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,
829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,
967,971,977,983,991,997 ] );
MakeImmutable( Primes );
#############################################################################
##
#V Primes2 . . . . . . . . . . . . . . . . . . . . . . additional prime list
#V ProbablePrimes2 . . . . . . . . . . . . . . . . . . additional prime list
##
## Some primes in `Primes2' are taken from the tables of Richard Brent,
## which are available at
## ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/factors/
##
## More factors of cyclotomic numbers are now available via the FactInt
## package. This should be cleaned up.
##
InstallFlushableValue( Primes2, [
10047871, 10567201, 10746341, 12112549, 12128131, 12207031, 12323587,
12553493, 12865927, 13097927, 13264529, 13473433, 13821503, 13960201,
14092193, 14597959, 15216601, 15790321, 16018507, 18837001, 20381027,
20394401, 20515111, 20515909, 21207101, 21523361, 22253377, 22366891,
22996651, 23850061, 25781083, 26295457, 28325071, 28878847, 29010221,
29247661, 29423041, 29866451, 32234893, 32508061, 36855109, 41540861,
42521761, 43249589, 44975113, 47392381, 47763361, 48544121, 48912491,
49105547, 49892851, 51457561, 55527473, 56409643, 56737873, 59302051,
59361349, 59583967, 60816001, 62020897, 63512437, 65628751, 69566521,
75068993, 76066181, 85280581, 93507247, 96656723, 97685839,
106431697, 107367629, 109688713, 110211473, 112901153, 119782433, 127540261,
134818753, 134927809, 136151713, 147300841, 155072369, 160465489, 164511353,
177237331, 183794551, 184481113, 190295821, 190771747, 193707721, 195019441,
202029703, 206244761, 212601841, 212885833, 228511817, 231769777, 234750601,
272010961, 280314943, 283763713, 297315901, 305175781, 308761441, 319020217,
359390389, 407865361, 420778751, 424256201, 432853009, 457315063, 466344409,
510810301, 515717329, 527093491, 529510939, 536903681, 540701761, 550413361,
603926681, 616318177, 632133361, 715827883, 724487149, 745988807, 763539787,
815702161, 834019001, 852133201, 857643277, 879399649, 909139159,
1001523179, 1036745531, 1065264019, 1106131489, 1169382127, 1390636259,
1503418321, 1527007411, 1636258751, 1644512641, 1743831169, 1824179209,
1824726041, 1826934301, 1866013003, 1990415149, 2127357527, 2127431041,
2147483647, 2238236249, 2316281689, 2413941289, 2481791513, 2550183799,
2576743207, 2664097031, 2767631689, 2903110321, 2931542417, 3021012311,
3158528101, 3173389601, 3357897971, 3652120847, 4011586307, 4058036683,
4278255361, 4375578271, 4562284561, 4649919401, 4698932281, 4795973261,
4885168129, 5960555749, 6622733113, 6630274723, 6809710909, 6860024417,
7068569257, 7151459701, 7484047069, 7685542369, 7830118297, 7866608083,
8209475377, 8831418697, 9598959833,
10879733611, 11368765063, 11898664849, 12447002677, 13455809771, 13564461457,
13841169553, 13971969971, 14425532687, 15085812853, 15768033143, 15888756269,
16055056483, 16148168401, 17056050293, 17154094481, 17189128703, 19707683773,
22434744889, 23140471537, 23535794707, 24127552321, 25194773531, 25480398173,
25829691707, 25994736109, 27669118297, 27989941729, 28086211607, 30327152671,
32952799801, 33057806959, 35532364099, 39940132241, 43872038849, 45076044553,
47072139617, 50150933101, 54410972897, 56625998353, 56770350869, 60726444167,
61070817601, 62983048367, 65247271367, 69238518539, 70845409351, 76831835389,
77158673929, 77192844961, 78009515593, 83960385389, 86950696619, 87423871753,
88959882481, 99810171997,
115868130379, 125096112091, 127522693159, 128011456717, 128653413121,
129924628343, 131105292137, 152587500001, 158822951431, 159248456569,
164504919713, 165768537521, 168749965921, 213657222007, 229890275929,
241931001601, 269089806001, 282429005041, 301077652751, 332207361361,
368592716837, 374857981681, 386478495679, 392038110671, 402011881627,
441019876741, 447600088289, 461587317509, 487824887233, 531968664833,
555915824341, 593554036769, 598761682261, 641625222857, 654652168021,
761838257287, 810221830361, 840139875599, 918585913061,
1030330938209, 1047623475541, 1113491139767, 1133836730401, 1273880539247,
1284297400723, 1408429185797, 1534179947851, 1628744948329, 1654058017289,
1759217765581, 1856458657451, 2098303812601, 2454335007529, 2481357870461,
2549755542947, 2663568851051, 2738039191709, 2879347902817, 2932031007403,
3138426605161, 3203431780337, 3421169496361, 3740221981231, 4363953127297,
4432676798593, 4446437759531, 4534166740403, 4981857697937, 5625767248687,
6090817323763, 6493405343627, 6713103182899, 6740339310641, 7432339208719,
8090594434231, 8157179360521, 8737481256739, 8868050880709, 9361973132609,
9468940004449, 9857737155463,
10052678938039, 10979607179423, 13952598148481, 15798461357509,
15919793462773, 17175865789597, 18158209813151, 22125996444329,
22542470482159, 22735632934561, 23161037562937, 23792163643711,
24517014940753, 24587411156281, 28059810762433, 29078814248401,
31280679788951, 31479823396757, 32688470798197, 33232924804801,
42272797713043, 44479210368001, 45920153384867, 49971617830801,
57583418699431, 62911130477521, 67280421310721, 70601370627701,
71316922984999, 83181652304609, 89620825374601, 94404837727799,
95052547721497,
110133112994711, 140737471578113, 145295143558111, 150224123975857,
160026187716961, 204064664440913, 205367807127911, 242099935645987,
270547105429567, 303567967057423, 332584516519201, 434502978835771,
475384700124973, 500805747488153, 520518327319589, 560088668384411,
608459012088799, 637265428480297, 643170158708221, 707179356161321,
866802946161469, 926510094425921, 990643452963163,
1034150930241911, 1066818132868207, 1120648576818041, 1357105535093947,
1416258521793067, 1587855697992791, 1611479891519807, 1628413557556843,
1900857799450121, 1958423494433591, 2134387368610417, 2646507710984041,
2649263870814793, 2752135920929651, 2864226125209369, 3208002856867129,
4557772677741827, 4889988840047743, 5420506947192709, 6957533874046531,
9460375336977361, 9472026608675509,
11264087821629961, 12557612956332313, 13722816749522711, 14436295738510501,
18584774046020617, 18624275418445601, 20986207825565581, 21180247636732981,
22666879066355177, 27145365052629449, 32233368385529653, 39392783590192547,
46329453543600481, 50544702849929377, 59509429687890001, 60081451169922001,
70084436712553223, 76394148218203559, 77001139434480073, 79787519018560501,
96076791871613611,
133088039373662309, 144542918285300809, 145171177264407947,
153560376376050799, 166003607842448777, 177722253954175633,
196915704073465747, 316825425410373433, 341117531003194129,
380808546861411923, 489769993189671059, 538953023961943033,
581283643249112959, 617886851384381281, 625552508473588471,
645654335737185721, 646675035253258729, 658812288653553079,
768614336404564651, 862970652262943171, 909456847814334401,
1100876018364883721, 1195857367853217109, 1245576402371959291,
1795918038741070627, 2192537062271178641, 2305843009213693951,
2312581841562813841, 2461243576713869557, 2615418118891695851,
2691614274040036601, 3011347479614249131, 3358335487319458201,
3421093417510114543, 3602372010909260861, 3747607031112307667,
3999088279399464409, 4710883168879506001, 5079304643216687969,
5559917315850179173, 5782172113400990737, 6106505825833677713,
6115909044841454629, 9213624084535989031, 9520972806333758431,
10527743181888260981, 14808607715315782481, 18446744069414584321,
26831423036065352611, 32032215596496435569, 34563155350221618511,
36230454570129675721, 58523123221688392679, 60912916512835721519,
82064241848634269407, 86656268566282183151, 87274497124602996457,
105668621839502584913, 157571957584602258799, 162715052426691233701,
172827552198815888791, 195489390796456327201, 240031591394168814433,
266834785363181152127, 344120456368919234899, 358475907408445923469,
846041103974872866961,
2519545342349331183143, 3658524738455131951223, 3793685967117002179453,
3976656429941438590393, 5439042183600204290159, 8198241112969626815581,
11600321878916922053491, 12812432238302009985937, 17551032119981679046729,
18489605314740987765913, 27665283091695977275201, 42437717969530394595211,
57912614113275649087721, 61654440233248340616559, 63681511996418550459487,
105293313660391861035901, 155285743288572277679887, 201487636602438195784363,
231669654363683130095909, 235169662395069356312233, 402488219476647465854701,
535347624791488552837151, 604088623657497125653141, 870035986098720987332873,
950996059627210897943351,
1412900479108654932024439, 1431185706701868962383741,
2047572230657338751575051, 2048568835297380486760231,
2741672362528725535068727, 3042645634792541312037847,
3745603812007166116831643, 4362139336229068656094783,
4805345109492315767981401, 5042939439565996049162197,
7289088383388253664437433, 8235109336690846723986161,
9680647790568589086355559, 9768997162071483134919121,
9842332430037465033595921,
11053036065049294753459639, 11735415506748076408140121,
13842607235828485645766393, 17499733663152976533452519,
26273701844015319144827917, 75582488424179347083438319,
88040095945103834627376781,
100641220283951395639601683, 140194179307171898833699259,
207617485544258392970753527, 291280009243618888211558641,
303309617049998388989376043, 354639323684545612988577649,
618970019642690137449562111, 913242407367610843676812931,
7222605228105536202757606969, 7248808599285760001152755641,
8170509011431363408568150369, 8206973609150536446402438593,
9080418348371887359375390001,
14732265321145317331353282383, 15403468930064931175264655869,
15572244900182528777225808449, 18806327041824690595747113889,
21283620033217629539178799361, 37201708625305146303973352041,
42534656091583268045915654719, 48845962828028421155731228333,
123876132205208335762278423601, 134304196845099262572814573351,
172974812463239310024750410929, 217648180992721729506406538251,
227376585863531112677002031251,
1786393878363164227858270210279, 2598696228942460402343442913969,
2643999917660728787808396988849, 3340762283952395329506327023033,
5465713352000770660547109750601,
28870194250662203210437116612769, 70722308812401674174993533367023,
78958087694609321439660131899631, 88262612316754526107621113329689,
162259276829213363391578010288127, 163537220852725398851434325720959,
177635683940025046467781066894531,
2679895157783862814690027494144991, 3754733257489862401973357979128773,
5283012903770196631383821046101707, 5457586804596062091175455674392801,
10052011757370829033540932021825161, 11419697846380955982026777206637491,
38904276017035188056372051839841219,
1914662449813727660680530326064591907, 7923871097285295625344647665764672671,
9519524151770349914726200576714027279,
10350794431055162386718619237468234569,
170141183460469231731687303715884105727,
1056836588644853738704557482552056406147,
6918082374901313855125397665325977135579,
235335702141939072378977155172505285655211,
360426336941693434048414944508078750920763,
1032670816743843860998850056278950666491537,
1461808298382111034194027645506019619578037,
79638304766856507377778616296087448490695649,
169002145064468556765676975247413756542145739,
8166146875847876762859119015147004762656450569,
18607929421228039083223253529869111644362732899,
33083146850190391025301565142735000331370209599,
138497973518827432485604572537024087153816681041,
673267426712748387612994804392183645147042355211,
1489459109360039866456940197095433721664951999121,
4884164093883941177660049098586324302977543600799,
466345922275629775763320748688970211803553256223529,
26828803997912886929710867041891989490486893845712448833,
153159805660301568024613754993807288151489686913246436306439,
1051153199500053598403188407217590190707671147285551702341089650185945215953
] );
IsSSortedList( Primes2 );
# for 41^41-1
ADD_SET(Primes2, 5926187589691497537793497756719);
# for 89^89-1
ADD_SET(Primes2, 4330075309599657322634371042967428373533799534566765522517);
# for 97^97-1
ADD_SET(Primes2, 549180361199324724418373466271912931710271534073773);
ADD_SET(Primes2, 85411410016592864938535742262164288660754818699519364051241927961077872028620787589587608357877);
InstallFlushableValue(ProbablePrimes2, []);
IsSSortedList( ProbablePrimes2 );
#############################################################################
##
#F BestQuoInt( <n>, <m> )
##
## `BestQuoInt' returns the best quotient <q> of the integers <n> and <m>.
## This is the quotient such that `<n>-<q>\*<m>' has minimal absolute value.
## If there are two quotients whose remainders have the same absolute value,
## then the quotient with the smaller absolute value is choosen.
##
InstallGlobalFunction(BestQuoInt,function ( n, m )
if 0 <= m and 0 <= n then
return QuoInt( n + QuoInt( m - 1, 2 ), m );
elif 0 <= m then
return QuoInt( n - QuoInt( m - 1, 2 ), m );
elif 0 <= n then
return QuoInt( n - QuoInt( m + 1, 2 ), m );
else
return QuoInt( n + QuoInt( m + 1, 2 ), m );
fi;
end);
#############################################################################
##
#F ChineseRem( <moduli>, <residues> ) . . . . . . . . . . chinese remainder
##
InstallGlobalFunction(ChineseRem,function ( moduli, residues )
local i, c, l, g;
# combine the residues modulo the moduli
i := 1;
c := residues[1];
l := moduli[1];
while i < Length(moduli) do
i := i + 1;
g := Gcdex( l, moduli[i] );
if g.gcd <> 1 and (residues[i]-c) mod g.gcd <> 0 then
Error("the residues must be equal modulo ",g.gcd);
fi;
c := l * (((residues[i]-c) / g.gcd * g.coeff1) mod moduli[i]) + c;
l := moduli[i] / g.gcd * l;
od;
# reduce c into the range [0..l-1]
c := c mod l;
return c;
end);
#############################################################################
##
#F CoefficientsQadic( <i>, <q> ) . . . . . . <q>-adic representation of <i>
##
InstallMethod( CoefficientsQadic, "for two integers",
true, [ IsInt, IsInt ], 0,
function( i, q )
local v;
if q <= 1 then
Error("2nd argument of CoefficientsQadic should be greater than 1\n");
fi;
if i < 0 then
# if FR package is loaded and supplies an implementation
# to return a periodic list for negative i
TryNextMethod();
fi;
# represent the integer <i> as <q>-adic number
v := [];
while i > 0 do
Add( v, RemInt( i, q ) );
i := QuoInt( i, q );
od;
return v;
end);
#############################################################################
##
#F CoefficientsMultiadic( ints, int )
##
InstallGlobalFunction(CoefficientsMultiadic, function( ints, int )
local vec, i;
vec := List( ints, x -> 0 );
for i in Reversed( [1..Length(ints)] ) do
vec[i] := RemInt( int, ints[i] );
int := QuoInt( int, ints[i] );
od;
return vec;
end);
#############################################################################
##
#F DivisorsInt( <n> ) . . . . . . . . . . . . . . . divisors of an integer
##
BindGlobal("DivisorsIntCache",
List([[1],[1,2],[1,3],[1,2,4],[1,5],[1,2,3,6],[1,7]], Immutable));
InstallGlobalFunction(DivisorsInt,function ( n )
local divisors, factors, divs;
# make <n> it nonnegative, handle trivial cases, and get prime factors
if n < 0 then n := -n; fi;
if n = 0 then Error("DivisorsInt: <n> must not be 0"); fi;
if n <= Length(DivisorsIntCache) then
return DivisorsIntCache[n];
fi;
factors := FactorsInt( n );
# recursive function to compute the divisors
divs := function ( i, m )
if Length(factors) < i then return [ m ];
elif m mod factors[i] = 0 then return divs(i+1,m*factors[i]);
else return Concatenation( divs(i+1,m), divs(i+1,m*factors[i]) );
fi;
end;
divisors := divs( 1, 1 );
Sort( divisors );
return Immutable(divisors);
end);
#############################################################################
##
#F FactorsRho( <n>, <inc>, <cluster>, <limit> ) Pollards rho factorization
##
## `FactorsInt' does trial divisions by the primes less than 1000 to detect
## all composites with a factor less than 1000 and primes less than 1000000.
## After that it calls `FactorsRho(<n>,1,16,8192)' to do the hard work.
##
## `FactorsRho' will return a list of factors and a list of composite
## number. Usually `FactorsInt' factors integers with prime factors
## $\<1000$ faster. However for integers with no factor $\<1000$
## `FactorsRho' will be faster.
##
## `FactorsRho' uses Pollards $\rho$ method to factor the integer $n = p q$.
## For a small simple example lets assume we want to factor $667 = 23 * 29$.
## `FactorsRho' first calls `IsPrimeInt' to avoid trying to factor a prime.
##
## Then it uses the sequence defined by $x_0=1, x_{i+1}=(x_i^2+1)$ mod $n$.
## In our example this is $1, 2, 5, 26, 10, 101, 197, 124, 36, 630, .. $.
##
## Modulo $p$ it takes on at most $p-1$ different values, thus it eventually
## becomes recurrent, usually this happens after roughly $2 \sqrt{p}$ steps.
## In our example modulo 23 we get $1, 2, 5, 3, 10, 9, 13, 9, 13, 9, .. $.
##
## Thus there exist pairs $i, j$ such that $x_i = x_j$ mod $p$, i.e., such
## that $p$ divides $Gcd( n, x_j-x_i )$. With a bit of luck no other factor
## of $n$ divides $x_j - x_i$ so we find $p$ if we know such a pair. In our
## example $5, 7$ is the first pair, $x_7-x_5=23$, and $Gcd(667,23) = 23$.
##
## Now it is too expensive to check all pairs, but there also must be pairs
## of the form $2^i-1, j$ with $3*2^{i-1} <= j < 4*2^{i-1}$. In our example
## $7, 13$ is the first such pair, $x_13-x_7=506$, and $Gcd(667,506) = 23$.
##
## Thus by taking the gcds of $n$ and $x_j-x_i$ for such pairs, we will find
## the factor $p$ after approximately $2 \sqrt{p} \<= 2 \sqrt^4{n}$ steps.
##
## If $Gcd( n, x_j - x_i )$ is not a prime `FactorsRho' will call itself
## recursivly with a different value for <inc>, i.e., it will try to factor
## the gcd using a different sequence $x_{i+1} = (x_i^2 + inc)$ mod $n$.
##
## Since the gcd computations are by far the most time consuming part of the
## algorithm one can save time by clustering differences and computing the
## gcd only every <cluster> iteration. This slightly increases the chance
## that a gcd is composite, but reduces the runtime by a large amount.
##
## Finally `FactorsRho' accepts an argument <limit> which is the number of
## iterations performed by `FactorsRho' before giving up. The default value
## is 8192 which corresponds to a few minutes while guaranteing that all
## prime factors less than $10^6$ and most less than $10^9$ are found.
##
## Better descriptions of the algorithm and related topics can be found in:
## J. Pollard, A Monte Carlo Method for Factorization, BIT 15, 1975, 331-334
## R. Brent, An Improved Monte Carlo Method for Fact., BIT 20, 1980, 176-184
## D. Knuth, Seminumerical Algorithms (TACP II), AddiWesl, 1973, 369-371
##
FactorsRho := function ( n, inc, cluster, limit )
local i, sign, factors, composite, x, y, k, z, g, tmp,
IsPrimeOrProbablyPrimeInt;
# make $n$ positive and handle trivial cases
sign := 1;
if n < 0 then sign := -sign; n := -n; fi;
if n < 4 then return [ [ sign * n ], [] ]; fi;
factors := [];
composite := [];
while n mod 2 = 0 do Add( factors, 2 ); n := n / 2; od;
while n mod 3 = 0 do Add( factors, 3 ); n := n / 3; od;
if ValueOption("UseProbabilisticPrimalityTest") = true
then IsPrimeOrProbablyPrimeInt := IsProbablyPrimeInt;
else IsPrimeOrProbablyPrimeInt := IsPrimeInt; fi;
if IsPrimeOrProbablyPrimeInt(n) then Add( factors, n ); n := 1; fi;
# initialize $x_0$
x := 1; z := 1; i := 0;
# loop until we have factored $n$ completely or run out of patience
while 1 < n and 2^i <= limit do
# $y = x_{2^i-1}$
y := x; i := i + 1;
# $x_{2^i}, .., x_{3*2^{i-1}-1}$ need not be compared to $x_{2^i-1}$
for k in [1..2^(i-1)] do
x := (x^2 + inc) mod n;
od;
# compare $x_{3*2^{i-1}}, .., x_{4*2^{i-1}-1}$ with $x_{2^i-1}$
for k in [1..2^(i-1)] do
x := (x^2 + inc) mod n;
z := z * (x - y) mod n;
# from time to time compute the gcd
if k mod cluster = 0 then
g := GcdInt( n, z );
# if it is > 1 we have found a factor which need not be prime
if g > 1 then
tmp := FactorsRho(g,inc+1,QuoInt(cluster+1,2),limit);
factors := Concatenation( factors, tmp[1] );
composite := Concatenation( composite, tmp[2] );
n := n / g;
if IsPrimeOrProbablyPrimeInt(n) then
Add( factors, n ); n := 1;
fi;
fi;
fi;
od;
od;
# add <n> to the list of composite numbers
if 1 < n then
Add( composite, n );
fi;
# sort the list of factors and composite numbers and return it
Sort(factors);
Sort(composite);
if 0 < Length(factors) then
factors[1] := sign * factors[1];
else
composite[1] := sign * composite[1];
fi;
return [ factors, composite ];
end;
MakeReadOnlyGlobal( "FactorsRho" );
#############################################################################
##
#F FactorsInt( <n> ) . . . . . . . . . . . . . . prime factors of an integer
#F FactorsInt( <n> : RhoTrials := <trials>)
#F FactorsInt( <n> : quiet)
##
## In the second form, FactorsRho is called with a limit of <trials>
## on the number of trials is performs. The default is 8192.
##
## The option `quiet' makes the function return even if the `rho'
## factorization failed and return the factorization found so far.
##
InstallGlobalFunction(FactorsInt,function ( n )
local sign, factors, p, tmp, n_orig, len, rt, tmp2;
n_orig := n;
# make $n$ positive and handle trivial cases
sign := 1;
if n < 0 then sign := -sign; n := -n; fi;
if n < 4 then return [ sign * n ]; fi;
factors := [];
# do trial divisions by the primes less than 1000
# faster than anything fancier because $n$ mod <small int> is very fast
for p in Primes do
while n mod p = 0 do Add( factors, p ); n := n / p; od;
if n < (p+1)^2 and 1 < n then Add(factors,n); n := 1; fi;
if n = 1 then factors[1] := sign*factors[1]; return factors; fi;
od;
# do trial divisions by known primes
for p in Primes2 do
while n mod p = 0 do Add( factors, p ); n := n / p; od;
if p^2 > n then break; fi;
if n = 1 then factors[1] := sign*factors[1]; return factors; fi;
od;
# do trial divisions by known probable primes (and issue warning, if found)
tmp := [];
for p in ProbablePrimes2 do
while n mod p = 0 do
AddSet(tmp, p);
Add( factors, p );
n := n / p;
od;
if n = 1 then break; fi;
od;
if Length(tmp) > 0 then
Info(InfoPrimeInt, 1 ,
"FactorsInt: used the following factor(s) which are probably primes:");
for p in tmp do
Info(InfoPrimeInt, 1, " ", p);
od;
fi;
if n = 1 then factors[1] := sign*factors[1]; return factors; fi;
# handle perfect powers
p := SmallestRootInt( n );
if p < n then
while 1 < n do
Append( factors, FactorsInt(p) );
n := n / p;
od;
Sort( factors );
factors[1] := sign * factors[1];
return factors;
fi;
# let `FactorsRho' do the work
if ValueOption("RhoTrials") <> fail then
tmp := FactorsRho( n, 1, 16, ValueOption("RhoTrials") );
else
tmp := FactorsRho( n, 1, 16, 8192 );
fi;
if 0 < Length(tmp[2]) then
if ValueOption("quiet")<>true then
len := Length(tmp[2]);
if LoadPackage("FactInt") = true then
## # in general cases we should proceed with the found factors:
## while len > 0 do
## Append(tmp[1], Factors(tmp[2][len]));
## Unbind(tmp[2][len]);
## len := len-1;
## od;
# but this way we miss that FactInt can detect certain numbers of
# special shape for which it uses lookup tables, therefore for the
# moment:
return Factors(n_orig);
else
Error( "sorry, cannot factor ", tmp[2],
"\ntype 'return;' to try again with a larger number of trials in\n",
"FactorsRho (or use option 'RhoTrials')\n");
if ValueOption("RhoTrials") <> fail then
rt := 5 * ValueOption("RhoTrials");
else
rt := 5 * 8192;
fi;
while len > 0 do
tmp2 := FactorsInt(tmp[2][len]: RhoTrials := rt);
Append(tmp[1], tmp2);
Unbind(tmp[2][len]);
len := len-1;
od;
fi;
else
factors := Concatenation( factors, tmp[2] );
fi;
fi;
factors := Concatenation( factors, tmp[1] );
Sort( factors );
factors[1] := sign * factors[1];
return factors;
end);
#############################################################################
##
#F PrimeDivisors( <n> ) . . . . . . . . . . . . . . list of prime divisors
##
## delegating to FactorsInt
##
InstallMethod( PrimeDivisors, "for integer", [ IsInt ], function(n)
if n = 0 then
Error("PrimeDivisors: 0 has an infinite number of prime divisors.");
return;
fi;
if n < 0 then
n := -n;
fi;
if n = 1 then
return [];
fi;
return Set(FactorsInt(n));
end);
#############################################################################
##
#M PartialFactorization( <n>, <effort> ) . . . . . . . . . . generic method
##
InstallMethod( PartialFactorization,
"generic method", true, [ IsInt, IsInt ], 0,
function ( n, effort )
local N, sign, factors, p, k, root, rootfactors, rhotrials,
tmp, CheckAndSortFactors;
CheckAndSortFactors := function ( )
factors := SortedList(factors);
factors[1] := sign*factors[1];
if Product(factors) <> N
then Error("PartialFactorization: Internal error, wrong result!"); fi;
end;
N := n;
if effort < 0 then effort := 5; fi;
# make $n$ positive and handle trivial cases
sign := 1;
if n < 0 then sign := -sign; n := -n; fi;
if n < 4 then return [ sign * n ]; fi;
factors := [];
# least effort: do trial divisions by the primes less than 100
if effort = 0 then
for p in Primes{[1..25]} do
while n mod p = 0 do Add( factors, p ); n := n / p; od;
if n < (p+1)^2 and 1 < n then Add(factors,n); n := 1; fi;
if n = 1 then CheckAndSortFactors(); return factors; fi;
od;
Add(factors,n); CheckAndSortFactors(); return factors;
fi;
# do trial divisions by the primes less than 1000
# faster than anything fancier because $n$ mod <small int> is very fast
for p in Primes do
while n mod p = 0 do Add( factors, p ); n := n / p; od;
if n < (p+1)^2 and 1 < n then Add(factors,n); n := 1; fi;
if n = 1 then CheckAndSortFactors(); return factors; fi;
od;
if effort <= 1 then
Add(factors,n); CheckAndSortFactors();
return factors;
fi;
# do trial divisions by known primes
for p in Primes2 do
while n mod p = 0 do Add( factors, p ); n := n / p; od;
if n = 1 then CheckAndSortFactors(); return factors; fi;
od;
# do trial divisions by known probable primes
tmp := [];
for p in ProbablePrimes2 do
while n mod p = 0 do
AddSet(tmp, p);
Add( factors, p );
n := n / p;
od;
if n = 1 then break; fi;
od;
if n = 1 then CheckAndSortFactors(); return factors; fi;
# handle perfect powers
root := SmallestRootInt( n );
if root < n then
rootfactors := PartialFactorization(root,effort);
k := LogInt(n,root);
rootfactors := Concatenation(List([1..k],i->rootfactors));
factors := SortedList(Concatenation(factors,rootfactors));
CheckAndSortFactors();
return factors;
fi;
if effort = 2 or IsProbablyPrimeInt(n) then
Add(factors,n); CheckAndSortFactors(); return factors;
fi;
# if effort >= 3, use `FactorsRho'
if ValueOption("RhoTrials") <> fail then
tmp := FactorsRho(n,1,16,ValueOption("RhoTrials"):
UseProbabilisticPrimalityTest);
else
if effort = 3 then rhotrials := 256;
elif effort = 4 then rhotrials := 2048;
elif effort >= 5 then rhotrials := 8192; fi;
tmp := FactorsRho(n,1,16,rhotrials:UseProbabilisticPrimalityTest);
fi;
factors := SortedList(Concatenation(factors,tmp[1],tmp[2]));
CheckAndSortFactors();
return factors;
end );
#############################################################################
##
#M PartialFactorization( <n> ) . . . . . partial factorization of an integer
##
InstallOtherMethod( PartialFactorization,
"for integers", true, [ IsInt ], 0,
n -> PartialFactorization(n,5) );
#############################################################################
##
#F Gcdex( <m>, <n> ) . . . . . . . . . . greatest common divisor of integers
##
InstallGlobalFunction(Gcdex,function ( m, n )
local f, g, h, fm, gm, hm, q;
if 0 <= m then f:=m; fm:=1; else f:=-m; fm:=-1; fi;
if 0 <= n then g:=n; gm:=0; else g:=-n; gm:=0; fi;
while g <> 0 do
q := QuoInt( f, g );
h := g; hm := gm;
g := f - q * g; gm := fm - q * gm;
f := h; fm := hm;
od;
if n = 0 then
return rec( gcd := f, coeff1 := fm, coeff2 := 0,
coeff3 := gm, coeff4 := 1 );
else
return rec( gcd := f, coeff1 := fm, coeff2 := (f - fm * m) / n,
coeff3 := gm, coeff4 := (0 - gm * m) / n );
fi;
end);
#############################################################################
##
#F IsEvenInt( <n> ) . . . . . . . . . . . . . . . . . . test if <n> is even
##
InstallGlobalFunction( IsEvenInt, n -> n mod 2 = 0 );
#############################################################################
##
#F IsOddInt( <n> ) . . . . . . . . . . . . . . . . . . . test if <n> is odd
##
InstallGlobalFunction( IsOddInt, n -> n mod 2 = 1 );
#############################################################################
##
#F IsPrimeInt( <n> ) . . . . . . . . . . . . . . . . . . . test for a prime
##
## `IsPrimeInt' does trial divisions by the primes less than 1000 to detect
## composites with a factor less than 1000 and primes less than 1000000.
##
## `IsPrimeInt' then checks that $n$ is a strong pseudoprime to the base 2.
## This uses Fermats theorem which says $2^{n-1}=1$ mod $n$ for a prime $n$.
## If $2^{n-1}\<>1$ mod $n$, $n$ is composite, `IsPrimeInt' returns `false'.
## There are composite numbers for which $2^{n-1}=1$, but they are seldom.
##
## Then `IsPrimeInt' checks that $n$ is a Lucas pseudoprime for $p$, choosen
## so that the discriminant $d=p^2/4-1$ is an quadratic nonresidue mod $n$.
## I.e., `IsPrimeInt' takes the root $a = p/2+\sqrt{d}$ of $x^2 - px + 1$ in
## the ring $Z_n[\sqrt{d}] and computes the traces of $a^n$ and $a^{n+1}$.
## If $n$ is a prime, this ring is the field of order $n^2$ and raising to
## the $n$th power is conjugation, so $trace(a^n)=p$ and $trace(a^{n+1})=2$.
## However, these identities hold only for extremely few composite numbers.
##
## Note that this test for $trace(a^n) = p$ and $trace(a^{n+1}) = 2$ is
## usually formulated using the Lucas sequences $U_k = (a^k-b^k)/(a-b)$ and
## $V_k = (a^k+b^k)=trace(a^k)$, where one tests $U_{n+1} = 0, V_{n+1} = 2$.
## However, the trace test is equivalent and requires fewer multiplications.
## Thanks to Daniel R. Grayson (dan@symcom.math.uiuc.edu) for telling me.
##
## `IsPrimeInt' can be shown to return the correct answer for $n < 10^{13}$,
## by testing against R.G.E. Pinch's list of all pseudoprimes to base 2 less
## than $10^{13}$ ('ftp://dpmms.cam.ac.uk/pub/rgep/PSP/psp13.gz').
##
## Better descriptions of the algorithm and related topics can be found in:
## G. Miller, cf. Algorithms and Complexity ed. Traub, AcademPr, 1976, 35-36
## C. Pomerance et.al., Pseudoprimes to 25*10^9, MathComp 35 1980, 1003-1026
## D. Knuth, Seminumerical Algorithms (TACP II), AddiWesl, 1973, 378-380
## G. Gonnet, Heuristic Primality Testing, Maple Newsletter 4, 1989, 36-38
## R. Baillie, S. Wagstaff, Lucas Pseudoprimes, MathComp 35 1980, 1391-1417
## R. Pinch, Some Primality Testing Algorithms, Notic. AMS 9 1993, 1203-1210
##
# a non-recursive version, nowadays the algorithm can be applied to
# numbers with many thousand digits
InstallGlobalFunction(TraceModQF, function ( p, k, n )
local kb, trc, i;
kb := [];
while k <> 1 do
if k mod 2 = 0 then
k := k/2;
Add(kb, 0);
else
k := (k+1)/2;
Add(kb, 1);
fi;
od;
trc := [p, 2];
i := Length(kb);
while i >= 1 do
if kb[i] = 0 then
trc := [ (trc[1]^2 - 2) mod n, (trc[1]*trc[2] - p) mod n ];
else
trc := [ (trc[1]*trc[2] - p) mod n, (trc[2]^2 - 2) mod n ];
fi;
i := i-1;
od;
return trc;
end);
## returns `false' for proven composite, `true' for proven prime and
## `fail' for probable prime.
BindGlobal( "IsProbablyPrimeIntWithFail", function( n )
local p, e, o, x, i;
# make $n$ positive and handle trivial cases
if n < 0 then n := -n; fi;
if n in Primes then return true; fi;
if n in Primes2 then return true; fi;
if n in ProbablePrimes2 then return fail; fi;
if n <= 1000 then return false; fi;
# do trial divisions by the primes less than 1000
# faster than anything fancier because $n$ mod <small int> is very fast
for p in Primes do
if n mod p = 0 then return false; fi;
if n < (p+1)^2 then AddSet( Primes2, n ); return true; fi;
od;
# do trial division by the other known primes
for p in Primes2 do
if n mod p = 0 then return false; fi;
od;
# do trial division by the other known probable primes
for p in ProbablePrimes2 do
if n mod p = 0 then return false; fi;
od;
# find $e$ and $o$ odd such that $n-1 = 2^e * o$
e := 0; o := n-1; while o mod 2 = 0 do e := e+1; o := o/2; od;
# look at the seq $2^o, 2^{2 o}, 2^{4 o}, .., 2^{2^e o}=2^{n-1}$
x := PowerModInt( 2, o, n );
i := 0;
while i < e and x <> 1 and x <> n-1 do
x := x * x mod n;
i := i + 1;
od;
# if it is not of the form $.., -1, 1, 1, ..$ then $n$ is composite
if not (x = n-1 or (i = 0 and x = 1)) then
return false;
fi;
## # there are no strong pseudo-primes to base 2 smaller than 2047
## FL: never used
## if n < 2047 then
## AddSet( Primes2, n );
## return true;
## fi;
# make sure that $n$ is not a perfect power (especially not a square)
if SmallestRootInt(n) < n then
return false;
fi;
# find a quadratic nonresidue $d = p^2/4-1$ mod $n$
p := 2; while Jacobi( p^2-4, n ) <> -1 do p := p+1; od;
# for a prime $n$ the trace of $(p/2+\sqrt{d})^n$ must be $p$
# and the trace of $(p/2+\sqrt{d})^{n+1}$ must be 2
if TraceModQF( p, n+1, n ) = [ 2, p ] then
# n < 10^13 fulfilling the tests so far are prime
if n < 10^13 then
return true;
else
return fail;
fi;
fi;
# $n$ is not a prime
return false;
end);
InstallGlobalFunction(IsPrimeIntOld,function ( n )
local res;
res := IsProbablyPrimeIntWithFail(n);
if res = false then
return false;
else
if res = fail then
Info(InfoPrimeInt, 1,
"IsPrimeInt: probably prime, but not proven: ", n);
AddSet( ProbablePrimes2, n );
else
AddSet( Primes2, n );
fi;
return true;
fi;
end);
#############################################################################
##
#F IsPrimePowerInt( <n> ) . . . . . . . . . . . test for a power of a prime
##
InstallGlobalFunction( IsPrimePowerInt,
n -> IsPrimeInt( SmallestRootInt( n ) ) );
#############################################################################
##
#F LcmInt( <m>, <n> ) . . . . . . . . . . least common multiple of integers
##
InstallGlobalFunction(LcmInt,function ( n, m )
if m = 0 and n = 0 then
return 0;
else
return AbsInt( m / GcdInt( m, n ) * n );
fi;
end);
#############################################################################
##
#F LogInt( <n>, <base> ) . . . . . . . . . . . . . . logarithm of an integer
##
InstallGlobalFunction(LogInt,function ( n, base )
local log, p;
# check arguments
if not IsInt(n) or n <= 0 then
Error("<n> must be a positive integer");
fi;
if not IsInt(base) or base <= 1 then
Error("<base> must be an integer greater than 1");
fi;
# `log(b)' returns $log_b(n)$ and divides `n' by `b^log(b)'
## log := function ( b )
## local i;
## if b > n then return 0; fi;
## i := log( b^2 );
## if b > n then return 2 * i;
## else n := QuoInt( n, b ); return 2 * i + 1; fi;
## end;
##
## return log( base );
if n < base then
return 0;
elif base = 2 then
return Log2Int(n);
elif base = 8 then
return QuoInt(Log2Int(n), 3);
elif base = 16 then
return QuoInt(Log2Int(n), 4);
elif IsSmallIntRep(n) then
log := 1;
p := base * base;
while p <= n do
log := log + 1;
p := p * base;
od;
return log;
elif base = 10 then
log := QuoInt(Log2Int(n) * 10^6 , 3321929);
return log + LogInt(QuoInt(n, 10^log), 10);
else
log := QuoInt(Log2Int(n), Log2Int(base)+1);
if log = 0 then
log := 1;
fi;
return log + LogInt(QuoInt(n, base^log), base);
fi;
end);
#############################################################################
##
#F NextPrimeInt( <n> ) . . . . . . . . . . . . . . . . . . next larger prime
##
InstallGlobalFunction(NextPrimeInt,function ( n )
if -3 = n then n := -2;
elif -3 < n and n < 2 then n := 2;
elif n mod 2 = 0 then n := n+1;
else n := n+2;
fi;
while not IsPrimeInt(n) do
if n mod 6 = 1 then n := n+4;
else n := n+2;
fi;
od;
return n;
end);
#############################################################################
##
#F PowerModInt(<r>,<e>,<m>) . . . . . . power of one integer modulo another
##
InstallGlobalFunction(PowerModInt,function ( r, e, m )
local pow, f;
# handle special cases
if m = 1 then
return 0;
elif e = 0 then
return 1;
fi;
# reduce `r' initially
r := r mod m;
# if `e' is negative then invert `r' modulo `m' with Euclids algorithm
if e < 0 then
r := 1/r mod m;
e := -e;
fi;
# now use the repeated squaring method (right-to-left)
pow := 1;
f := 2 ^ (LogInt( e, 2 ) + 1);
while 1 < f do
pow := (pow * pow) mod m;
f := QuoInt( f, 2 );
if f <= e then
pow := (pow * r) mod m;
e := e - f;
fi;
od;
# return the power
return pow;
end);
#############################################################################
##
#F PrevPrimeInt( <n> ) . . . . . . . . . . . . . . . previous smaller prime
##
## `PrevPrimeInt' returns the largest prime which is strictly smaller than
## the integer <n>.
##
InstallGlobalFunction(PrevPrimeInt,function ( n )
if 3 = n then n := 2;
elif -2 < n and n < 3 then n := -2;
elif n mod 2 = 0 then n := n-1;
else n := n-2;
fi;
while not IsPrimeInt(n) do
if n mod 6 = 5 then n := n-4;
else n := n-2;
fi;
od;
return n;
end);
#############################################################################
##
#F PrimePowerInt( <n> ) . . . . . . . . . . . . . . . . prime powers of <n>
##
InstallGlobalFunction(PrimePowersInt,function( n )
local p, pows, lst;
if n = 1 then
return [];
elif n = 0 then
Error( "<n> must be non zero" );
elif n < 0 then
n := -1 * n;
fi;
lst := Factors( Integers, n );
pows := [];
for p in Set( lst ) do
Add( pows, p );
Add( pows, Number( lst, x -> x = p ) );
od;
return pows;
end);
#############################################################################
##
#F RootInt( <n> ) . . . . . . . . . . . . . . . . . . . root of an integer
#F RootInt( <n>, <k> )
##
InstallGlobalFunction(RootInt,function ( arg )
local n, k, r, s, t;
# get the arguments
if Length(arg) = 1 then n := arg[1]; k := 2;
elif Length(arg) = 2 then n := arg[1]; k := arg[2];
else Error("usage: `Root( <n> )' or `Root( <n>, <k> )'");
fi;
# check the arguments and handle trivial cases
if k <= 0 then Error("<k> must be positive");
elif k = 1 then return n;
elif n < 0 and k mod 2 = 0 then Error("<n> must be positive");
elif n < 0 and k mod 2 = 1 then return -RootInt( -n, k );
elif n = 0 then return 0;
elif n <= k then return 1;
fi;
# r is the first approximation, s the second, we need: root <= s < r
r := n; s := 2^( QuoInt( LogInt(n,2), k ) + 1 ) - 1;
# do Newton iterations until the approximations stop decreasing
while s < r do
r := s; t := r^(k-1); s := QuoInt( n + (k-1)*r*t, k*t );
od;
# and thats the integer part of the root
return r;
end);
#############################################################################
##
#F AbsInt( <n> ) . . . . . . . . . . . . . . . absolute value of an integer
##
InstallGlobalFunction( AbsInt, function( n )
if 0 <= n then return n;
else return -n;
fi;
end );
#############################################################################
##
#F AbsoluteValue( <n> )
##
# uses the particular form of AbsInt
InstallMethod(AbsoluteValue,"rationals",true,[IsRat],0,AbsInt);
#############################################################################
##
#F SignInt( <n> ) . . . . . . . . . . . . . . . . . . . sign of an integer
##
InstallGlobalFunction( SignInt, function( n )
if 0 = n then
return 0;
elif 0 <= n then
return 1;
else
return -1;
fi;
end );
#############################################################################
##
#F SmallestRootInt( <n> ) . . . . . . . . . . . smallest root of an integer
##
InstallGlobalFunction(SmallestRootInt,function ( n )
local k, r, s, p, l, q;
# check the argument
if n > 0 then k := 2; s := 1;
elif n < 0 then k := 3; s := -1; n := -n;
else return 0;
fi;
# exclude small divisors, and thereby large exponents
if n mod 2 = 0 then
p := 2;
else
p := 3; while p < 100 and n mod p <> 0 do p := p+2; od;
fi;
l := LogInt( n, p );
# loop over the possible prime divisors of exponents
# use Euler's criterion to cast out impossible ones
while k <= l do
q := 2*k+1; while not IsPrimeInt(q) do q := q+2*k; od;
if PowerModInt( n, (q-1)/k, q ) <= 1 then
r := RootInt( n, k );
if r ^ k = n then
n := r;
l := QuoInt( l, k );
else
k := NextPrimeInt( k );
fi;
else
k := NextPrimeInt( k );
fi;
od;
return s * n;
end);
#############################################################################
##
#M RingByGenerators( <elms> ) . . . . . . . ring generated by some integers
##
InstallMethod( RingByGenerators,
"method that catches the cases of `Integers' and subrings of `Integers'",
[ IsCyclotomicCollection ],
SUM_FLAGS, # test this before doing anything else
function( elms )
if ForAll( elms, IsInt ) then
# check that the number of generators is bigger than one
# to avoid infinite recursion
if Length( elms ) > 1 then
return RingByGenerators( [ Gcd(elms) ] );
elif elms[1] = 1 then
return Integers;
else
TryNextMethod();
fi;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M RingWithOneByGenerators( <elms> ) . . . . ring generated by some integers
##
InstallMethod( RingWithOneByGenerators,
"method that catches the cases of `Integers'",
[ IsCyclotomicCollection ],
SUM_FLAGS, # test this before doing anything else
function( elms )
if ForAll( elms, IsInt ) then
return Integers;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M DefaultRingByGenerators( <elms> ) default ring generated by some integers
##
InstallMethod( DefaultRingByGenerators,
"method that catches the cases of `(Gaussian)Integers' and cycl. fields",
[ IsCyclotomicCollection ],
SUM_FLAGS, # test this before doing anything else
function( elms )
if ForAll( elms, IsInt ) then
return Integers;
elif ForAll( elms, IsGaussInt ) then
return GaussianIntegers;
else
return DefaultField( elms );
fi;
end );
#############################################################################
##
#M DefaultRingByGenerators( <mats> ) . for a list of n x n integer matrices
##
InstallMethod( DefaultRingByGenerators,
"for lists of n x n integer matrices", true,
[ IsCyclotomicCollCollColl and IsFinite ],
function ( mats )
local d;
if IsEmpty(mats) or not ForAll(mats,IsRectangularTable and IsMatrix) then
TryNextMethod();
fi;
d := Length( mats[1] );
if d=0 then
TryNextMethod();
fi;
if not ForAll( mats, m -> Length(m)=d and Length(m[1])=d ) then
TryNextMethod();
fi;
if not ForAll( mats, m -> ForAll( m, r -> ForAll(r,IsInt))) then
TryNextMethod();
fi;
return FullMatrixAlgebra(Integers,d);
end );
#############################################################################
##
#M Enumerator( Integers )
##
## $a_n = \frac{n}{2}$ if $n$ is even, and
## $a_n = \frac{1-n}{2}$ otherwise.
##
InstallMethod( Enumerator,
"for integers",
[ IsIntegers ],
Integers -> EnumeratorByFunctions( Integers,
rec( ElementNumber := function( e, n )
if n mod 2 = 0 then
return n / 2;
else
return ( 1 - n ) / 2;
fi;
end,
NumberElement := function( e, x )
local pos;
if not IsInt( x ) then
return fail;
elif 0 < x then
pos:= 2 * x;
else
pos:= -2 * x + 1;
fi;
return pos;
end ) ) );
#############################################################################
##
#M EuclideanDegree( Integers, <n> ) . . . . . . . . . . . . . absolut value
##
InstallMethod( EuclideanDegree,
"for integers",
true,
[ IsIntegers, IsInt ], 0,
function ( Integers, n )
if n < 0 then
return -n;
else
return n;
fi;
end );
#############################################################################
##
#M EuclideanQuotient( Integers, <n>, <m> ) . . . . . . Euclidean quotient
##
InstallMethod( EuclideanQuotient,
"for integers",
true,
[ IsIntegers, IsInt, IsInt ], 0,
function ( Integers, n, m )
return QuoInt( n, m );
end );
#############################################################################
##
#M EuclideanRemainder( Integers, <n>, <m> ) . . . . . . Euclidean remainder
##
InstallMethod( EuclideanRemainder,
"for integers",
true,
[ IsIntegers, IsInt, IsInt ], 0,
function ( Integers, n, m )
return RemInt( n, m );
end );
#############################################################################
##
#M Factors( Integers, <n> ) . . . . . . . . . . factorization of an integer
##
InstallMethod( Factors,
"for integers",
true,
[ IsIntegers, IsInt ], 0,
function ( Integers, n )
return FactorsInt( n );
end );
#############################################################################
##
#M GcdOp( Integers, <n>, <m> ) . . . . . . . . . . . . . gcd of two integers
##
InstallMethod( GcdOp,
"for integers",
true,
[ IsIntegers, IsInt, IsInt ], 0,
function ( Integers, n, m )
return GcdInt( n, m );
end );
#############################################################################
##
#M IsIrreducibleRingElement( Integers, <n> )
##
InstallMethod( IsIrreducibleRingElement,
"for integers",
true,
[ IsIntegers, IsInt ], 0,
function ( Integers, n )
return IsPrimeInt( n );
end );
#############################################################################
##
#M IsPrime( Integers, <n> ) . . . . . . test whether an integer is a prime
##
InstallMethod( IsPrime,
"for integers",
true,
[ IsIntegers, IsInt ], 0,
function ( Integers, n )
return IsPrimeInt( n );
end );
#############################################################################
##
#M Iterator( Integers )
##
## uses the succession $0, 1, -1, 2, -2, 3, -3, \ldots$, that is,
## $a_n = \frac{n}{2}$ if $n$ is even, and $a_n = \frac{1-n}{2}$
## otherwise.
##
InstallMethod( Iterator,
"for `Integers'",
[ IsIntegers ],
Integers -> IteratorByFunctions( rec(
NextIterator := function( iter )
iter!.counter:= iter!.counter + 1;
if iter!.counter mod 2 = 0 then
return iter!.counter / 2;
else
return ( 1 - iter!.counter ) / 2;
fi;
end,
IsDoneIterator := ReturnFalse,
ShallowCopy := iter -> rec( counter:= iter!.counter ),
PrintObj := function(iter)
local msg;
msg := "<iterator of Integers at ";
if iter!.counter mod 2 = 0 then
Append(msg, String(iter!.counter / 2));
else
Append(msg, String((1 - iter!.counter) / 2));
fi;
Append(msg,">");
Print(msg);
end,
counter := 0 ) ) );
#############################################################################
##
#M Iterator( PositiveIntegers )
##
InstallMethod( Iterator,
"for `PositiveIntegers'",
[ IsPositiveIntegers ],
IsPositiveIntegers -> IteratorByFunctions( rec(
NextIterator := function( iter )
iter!.counter:= iter!.counter + 1;
return iter!.counter;
end,
IsDoneIterator := ReturnFalse,
ShallowCopy := iter -> rec( counter:= iter!.counter ),
counter := 0 ) ) ); # 0, since we first increment then return
#############################################################################
##
#M LcmOp( Integers, <n>, <m> ) . . . . . . least common multiple of integers
##
InstallMethod( LcmOp,
"for integers",
true,
[ IsIntegers, IsInt, IsInt ], 0,
function ( Integers, n, m )
return LcmInt( n, m );
end );
#############################################################################
##
#M Log( <n>, <base> )
##
InstallMethod( Log,
"for two integers",
true,
[ IsInt, IsInt ], 0,
LogInt );
#############################################################################
##
#M PowerMod( Integers, <r>, <e>, <m> ) . . . power of an integer mod another
##
InstallMethod( PowerMod,
"for integers",
true,
[ IsIntegers, IsInt, IsInt, IsInt ], 0,
function ( Integers, r, e, m )
return PowerModInt( r, e, m );
end );
#############################################################################
##
#M Quotient( <Integers>, <n>, <m> ) . . . . . . . quotient of two integers
##
InstallMethod( Quotient,
"for integers",
true,
[ IsIntegers, IsInt, IsInt ], 0,
function ( Integers, n, m )
local q;
q := QuoInt( n, m );
if n <> q * m then
q := fail;
fi;
return q;
end );
#############################################################################
##
#M QuotientMod( Integers , <r>, <s>, <m> ) . . . . . . . quotient modulo <m>
##
InstallMethod( QuotientMod,
"for integers",
true,
[ IsIntegers, IsInt, IsInt, IsInt ], 0,
function ( Integers, r, s, m )
if s > m then
s := s mod m;
fi;
if m = 1 then
return 0;
elif GcdInt( s, m ) <> 1 then
return fail;
else
return r/s mod m;
fi;
end );
#############################################################################
##
#M QuotientRemainder( Integers, <n>, <m> ) . . . . . . . . . . . quo and rem
##
InstallMethod( QuotientRemainder,
"for integers",
true,
[ IsIntegers, IsInt, IsInt ], 0,
function ( Integers, n, m )
local q;
q := QuoInt(n,m);
#T kernel function should compute remainder at same time
return [ q, n - q * m ];
end );
#############################################################################
##
#M Random( Integers ) . . . . . . . . . . . . . . . . . . . random integer
##
## returns pseudo random integers between $-10$ and $10$
## distributed according to a binomial distribution.
##
## \begintt
## gap> Random( Integers );
## 1
## gap> Random( Integers );
## -4
## \endtt
##
## To generate uniformly distributed integers from a range, use the
## construct `Random( [ <low> .. <high> ] )'.
##
NrBitsInt := function ( n )
local nr, nr64;
nr64:=[0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6];
nr := 0;
while 0 < n do
nr := nr + nr64[ n mod 64 + 1 ];
n := QuoInt( n, 64 );
od;
return nr;
end;
InstallMethod( Random,
"for `Integers'",
true,
[ IsIntegers ], 0,
function( Integers )
return NrBitsInt( Random( [0..2^20-1] ) ) - 10;
end );
#############################################################################
##
#M Root( <n>, <k> )
##
InstallMethod( Root,
"for two integers",
true,
[ IsInt, IsInt ], 0,
RootInt );
#############################################################################
##
#M RoundCyc( <cyc> ) . . . . . . . . . . cyclotomic integer near to <cyc>
##
InstallMethod( RoundCyc, "Integer", true, [ IsInt ], 0, x->x );
#############################################################################
##
#M RoundCycDown( <cyc> ) . . . . . . . . . . cyclotomic integer near to <cyc>
##
InstallMethod( RoundCycDown, "Integer", true, [ IsInt ], 0, x->x );
#############################################################################
##
#M StandardAssociate( Integers, <n> ) . . . . . . . . . . . absolute value
##
InstallMethod( StandardAssociate,
"for integers",
true,
[ IsIntegers, IsInt ], 0,
function ( Integers, n )
if n < 0 then
return -n;
else
return n;
fi;
end );
#############################################################################
##
#M StandardAssociateUnit( Integers, <n> )
##
InstallMethod( StandardAssociateUnit,
"for integers",
true,
[ IsIntegers, IsInt ], 0,
function ( Integers, n )
if n < 0 then
return -1;
else
return 1;
fi;
end );
#############################################################################
##
#M Valuation( <n>, <m> )
##
InstallOtherMethod( Valuation,
"for two integers",
IsIdenticalObj,
[ IsInt,
IsInt ],
0,
function( n, m )
local val;
if n = 0 then
val := infinity;
else
val := 0;
while n mod m = 0 do
val := val + 1;
n := n / m;
od;
fi;
return val;
end );
#############################################################################
##
#M \in( <n>, <Integers> ) . . . . . . . . . . membership test for integers
##
InstallMethod( \in,
"for integers",
IsElmsColls,
[ IsCyclotomic, IsIntegers ], 0,
function( n, Integers )
return IsInt( n );
end );
#############################################################################
##
#M \in( <n>, <PositiveIntegers> )
##
InstallMethod( \in,
"for positive integers",
IsElmsColls,
[ IsCyclotomic, IsPositiveIntegers ], 0,
function( n, PositiveIntegers )
return IsPosInt( n );
end );
#############################################################################
##
#M \in( <n>, <NonnegativeIntegers> )
##
InstallMethod( \in,
"for nonnegative integers",
IsElmsColls,
[ IsCyclotomic, IsNonnegativeIntegers ], 0,
function( n, NonnegativeIntegers )
return IsPosInt( n ) or IsZeroCyc( n );
end );
#############################################################################
##
#F PrintFactorsInt( <n> ) . . . . . . . . print factorization of an integer
##
InstallGlobalFunction(PrintFactorsInt,function ( n )
local decomp, i;
if -4 < n and n < 4 then
Print( n );
else
decomp := Collected( Factors( AbsInt( n ) ) );
if n > 0 then
Print( decomp[1][1] );
else
Print( -decomp[1][1] );
fi;
if decomp[1][2] > 1 then
Print( "^", decomp[1][2] );
fi;
for i in [ 2 .. Length( decomp ) ] do
Print( "*", decomp[i][1] );
if decomp[i][2] > 1 then
Print( "^", decomp[i][2] );
fi;
od;
fi;
end);
#############################################################################
##
#M Iterator( <posint> ) . . . . . . . . . . . . .give more informative error
##
## This method is mainly there to trap the "natural" error
## for i in 3 do ... od;
##
InstallOtherMethod(Iterator, "more helpful error for integers", true,
[IsPosInt], 0,
function(n)
Error("You cannot loop over the integer ",n,
" did you mean the range [1..",n,"]");
end);
InstallGlobalFunction(PowerDecompositions,function(n)
local d,i,r;
i:=2;
d:=[];
repeat
r:=RootInt(n,i);
if n=r^i then
Add(d,[r,i]);
fi;
i:=i+1;
until r<2;
return d;
end);
## The behaviour of View(String) for large integers can be configured via a
## user preference.
DeclareUserPreference( rec(
name:= "MaxBitsIntView",
description:= [
"Maximal bit length of integers to 'view' unabbreviated. \
Default is about 30 lines of a 80 character wide terminal. \
Set this to '0' to avoid abbreviated ints."
],
default:= 8000,
check:= val -> IsInt( val ) and 0 <= val,
) );
## give only a short info if |n| is larger than 2^GAPInfo.MaxBitsIntView
InstallMethod(ViewString, "for integer", [IsInt], function(n)
local mb, l, start, trail;
mb := UserPreference("MaxBitsIntView");
if not IsSmallIntRep(n) and mb <> fail and
mb > 64 and Log2Int(n) > mb then
if n < 0 then
l := LogInt(-n, 10);
trail := String(-n mod 1000);
else
l := LogInt(n, 10);
trail := String(n mod 1000);
fi;
start := String(QuoInt(n, 10^(l-2)));
while Length(trail) < 3 do
trail := Concatenation("0", trail);
od;
return Concatenation("<integer ",start,"...",trail," (",
String(l+1)," digits)>");
else
return String(n);
fi;
end);
#############################################################################
##
#E
|