This file is indexed.

/usr/share/gap/lib/grptbl.gd is in gap-libs 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#############################################################################
##
#W  grptbl.gd                   GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the implementation of magmas, monoids, and groups from
##  a multiplication table.
##


#############################################################################
##  
#F  MagmaByMultiplicationTableCreator( <A>, <domconst> )
##
##  <ManSection>
##  <Func Name="MagmaByMultiplicationTableCreator" Arg='A, domconst'/>
##
##  <Description>
##  This is a utility for the uniform construction of a magma,
##  a magma-with-one, or a magma-with-inverses from a multiplication table.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "MagmaByMultiplicationTableCreator" );
DeclareGlobalFunction( "MagmaByMultiplicationTableCreatorNC" );


#############################################################################
##
#F  MagmaByMultiplicationTable( <A> )
##
##  <#GAPDoc Label="MagmaByMultiplicationTable">
##  <ManSection>
##  <Func Name="MagmaByMultiplicationTable" Arg='A'/>
##
##  <Description>
##  For a square matrix <A>A</A> with <M>n</M> rows such that all entries of
##  <A>A</A> are in the range <M>[ 1 .. n ]</M>,
##  <Ref Func="MagmaByMultiplicationTable"/> returns a magma
##  <M>M</M> with multiplication <C>*</C> defined by <A>A</A>.
##  That is, <M>M</M> consists of the elements <M>m_1, m_2, \ldots, m_n</M>,
##  and <M>m_i * m_j = m_k</M>, with <M>k =</M> <A>A</A><M>[i][j]</M>.
##  <P/>
##  The ordering of elements is defined by
##  <M>m_1 &lt; m_2 &lt; \cdots &lt; m_n</M>,
##  so <M>m_i</M> can be accessed as
##  <C>MagmaElement( <A>M</A>, <A>i</A> )</C>,
##  see&nbsp;<Ref Func="MagmaElement"/>.
##  <Example><![CDATA[
##  gap> MagmaByMultiplicationTable([[1,2,3],[2,3,1],[1,1,1]]);
##  <magma with 3 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MagmaByMultiplicationTable" );


#############################################################################
##
#F  MagmaWithOneByMultiplicationTable( <A> )
##
##  <#GAPDoc Label="MagmaWithOneByMultiplicationTable">
##  <ManSection>
##  <Func Name="MagmaWithOneByMultiplicationTable" Arg='A'/>
##
##  <Description>
##  The only differences between <Ref Func="MagmaByMultiplicationTable"/> and
##  <Ref Func="MagmaWithOneByMultiplicationTable"/> are that the latter
##  returns a magma-with-one (see&nbsp;<Ref Func="MagmaWithOne"/>)
##  if the magma described by the matrix <A>A</A> has an identity,
##  and returns <K>fail</K> if not.
##  <Example><![CDATA[
##  gap> MagmaWithOneByMultiplicationTable([[1,2,3],[2,3,1],[3,1,1]]);
##  <magma-with-one with 3 generators>
##  gap> MagmaWithOneByMultiplicationTable([[1,2,3],[2,3,1],[1,1,1]]);
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MagmaWithOneByMultiplicationTable" );


#############################################################################
##
#F  MagmaWithInversesByMultiplicationTable( <A> )
##
##  <#GAPDoc Label="MagmaWithInversesByMultiplicationTable">
##  <ManSection>
##  <Func Name="MagmaWithInversesByMultiplicationTable" Arg='A'/>
##
##  <Description>
##  <Ref Func="MagmaByMultiplicationTable"/> and
##  <Ref Func="MagmaWithInversesByMultiplicationTable"/>
##  differ only in that the latter returns
##  magma-with-inverses (see&nbsp;<Ref Func="MagmaWithInverses"/>)
##  if each element in the magma described by the matrix <A>A</A>
##  has an inverse,
##  and returns <K>fail</K> if not.
##  <Example><![CDATA[
##  gap> MagmaWithInversesByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);
##  <magma-with-inverses with 3 generators>
##  gap> MagmaWithInversesByMultiplicationTable([[1,2,3],[2,3,1],[3,2,1]]);
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MagmaWithInversesByMultiplicationTable" );


#############################################################################
##
#F  MagmaElement( <M>, <i> ) . . . . . . . . . .  <i>-th element of magma <M>
##
##  <#GAPDoc Label="MagmaElement">
##  <ManSection>
##  <Func Name="MagmaElement" Arg='M, i'/>
##
##  <Description>
##  For a magma <A>M</A> and a positive integer <A>i</A>,
##  <Ref Func="MagmaElement"/> returns the <A>i</A>-th element of <A>M</A>,
##  w.r.t.&nbsp;the ordering <C>&lt;</C>.
##  If <A>M</A> has less than <A>i</A> elements then <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MagmaElement" );


#############################################################################
##
#F  SemigroupByMultiplicationTable( <A> )
##
##  <#GAPDoc Label="SemigroupByMultiplicationTable">
##  <ManSection>
##  <Func Name="SemigroupByMultiplicationTable" Arg='A'/>
##
##  <Description>
##  returns the semigroup whose multiplication is defined by the square
##  matrix <A>A</A> (see&nbsp;<Ref Func="MagmaByMultiplicationTable"/>)
##  if such a semigroup exists.
##  Otherwise <K>fail</K> is returned.
##  <Example><![CDATA[
##  gap> SemigroupByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);
##  <semigroup of size 3, with 3 generators>
##  gap> SemigroupByMultiplicationTable([[1,2,3],[2,3,1],[3,2,1]]);
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SemigroupByMultiplicationTable" );


#############################################################################
##
#F  MonoidByMultiplicationTable( <A> )
##
##  <#GAPDoc Label="MonoidByMultiplicationTable">
##  <ManSection>
##  <Func Name="MonoidByMultiplicationTable" Arg='A'/>
##
##  <Description>
##  returns the monoid whose multiplication is defined by the square
##  matrix <A>A</A> (see&nbsp;<Ref Func="MagmaByMultiplicationTable"/>)
##  if such a monoid exists.
##  Otherwise <K>fail</K> is returned.
##  <Example><![CDATA[
##  gap> MonoidByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);
##  <monoid of size 3, with 3 generators>
##  gap> MonoidByMultiplicationTable([[1,2,3],[2,3,1],[1,3,2]]);
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MonoidByMultiplicationTable" );


#############################################################################
##
#F  GroupByMultiplicationTable( <A> )
##
##  <ManSection>
##  <Func Name="GroupByMultiplicationTable" Arg='A'/>
##
##  <Description>
##  returns the group whose multiplication is defined by the square
##  matrix <A>A</A> (see&nbsp;<Ref Func="MagmaByMultiplicationTable"/>)
##  if such a group exists.
##  Otherwise <K>fail</K> is returned.
##  <Example><![CDATA[
##  gap> GroupByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);
##  <group of size 3 with 3 generators>
##  gap> GroupByMultiplicationTable([[1,2,3],[2,3,1],[3,2,1]]);
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "GroupByMultiplicationTable" );


#############################################################################
##
#A  MultiplicationTable( <elms> )
#A  MultiplicationTable( <M> )
##
##  <#GAPDoc Label="MultiplicationTable">
##  <ManSection>
##  <Heading>MultiplicationTable</Heading>
##  <Attr Name="MultiplicationTable" Arg='elms'
##   Label="for a list of elements"/>
##  <Attr Name="MultiplicationTable" Arg='M' Label="for a magma"/>
##
##  <Description>
##  For a list <A>elms</A> of elements that form a magma <M>M</M>,
##  <Ref Func="MultiplicationTable" Label="for a list of elements"/> returns
##  a square matrix <M>A</M> of positive integers such that
##  <M>A[i][j] = k</M> holds if and only if
##  <A>elms</A><M>[i] *</M> <A>elms</A><M>[j] =</M> <A>elms</A><M>[k]</M>.
##  This matrix can be used to construct a magma isomorphic to <M>M</M>,
##  using <Ref Func="MagmaByMultiplicationTable"/>.
##  <P/>
##  For a magma <A>M</A>,
##  <Ref Func="MultiplicationTable" Label="for a magma"/> returns
##  the multiplication table w.r.t.&nbsp;the sorted list of elements of
##  <A>M</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> l:= [ (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ];;
##  gap> a:= MultiplicationTable( l );
##  [ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ]
##  gap> m:= MagmaByMultiplicationTable( a );
##  <magma with 4 generators>
##  gap> One( m );
##  m1
##  gap> elm:= MagmaElement( m, 2 );  One( elm );  elm^2;
##  m2
##  m1
##  m1
##  gap> Inverse( elm );
##  m2
##  gap> AsGroup( m );
##  <group of size 4 with 2 generators>
##  gap> a:= [ [ 1, 2 ], [ 2, 2 ] ];
##  [ [ 1, 2 ], [ 2, 2 ] ]
##  gap> m:= MagmaByMultiplicationTable( a );
##  <magma with 2 generators>
##  gap> One( m );  Inverse( MagmaElement( m, 2 ) );
##  m1
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MultiplicationTable", IsHomogeneousList );
DeclareAttribute( "MultiplicationTable", IsMagma );


#############################################################################
##
#E