/usr/share/gap/lib/grpfree.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 | #############################################################################
##
#W grpfree.gi GAP library Thomas Breuer
#W & Frank Celler
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for free groups.
##
## Free groups are treated as special cases of finitely presented groups.
## In addition, elements of a free group are
## (associative) words, that is they have a normal form that allows an easy
## equalitity test.
##
#############################################################################
##
#M Iterator( <G> )
##
## The implementation of iterator and enumerator for free groups is more
## complicated than for free semigroups and monoids, since one has to be
## careful to avoid cancellation of generators and their inverses when
## building words.
## So the iterator for a free group of rank $n$ uses the following ordering.
## Enumerate signless words (that is, forget about the signs of exponents)
## as given by the enumerator of free monoids, and for each such word
## consisting of $k$, say, pairs of generators/exponents, enumerate all
## $2^k$ possibilities of signs for the exponents.
##
## The enumerator for a free group uses a different succession, in order to
## make the bijection of words and positive integers easy to calculate.
##
## There are exactly $2n (2n-1)^{l-1}$ words of length $l$, for $l > 0$.
##
## So the word corresponding to the integer
## $m = 1 + \sum_{i=1}^{l-1} 2n (2n-1)^{i-1} + m^{\prime}$,
## with $1 \leq m^{\prime} \leq 2n (2n-1)^l$,
## is the $m^{\prime}$-th word of length $l$.
##
## Write $m^{\prime} - 1 = c_1 - 1 + \sum_{i=2}^l (c_i - 1) 2n (2n-1)^{i-2}$
## where $1 \leq c_1 \leq 2n$ and $1 \leq c_i \leq 2n-1$ for
## $2 \leq i \leq l$.
##
## Let $(s_1, s_2, \ldots, s_{2n}) = (g_1, g_1^{-1}, g_2, \ldots, g_n^{-1})$
## and translate the coefficient vector $(c_1, c_2, \ldots, c_l)$ to
## $s(c_1) s(c_2) \cdots s(c_l)$, defined by $s(c_1) = s_{c_1}$, and
## \[ s(c_{i+1}) = \left\{ \begin{array}{lcl}
## s_{c_{i+1}} & ; & c_i \equiv 1 \bmod 2, c_{i+1} \leq c_i \\
## s_{c_{i+1}} & ; & c_i \equiv 0 \bmod 2, c_{i+1} \leq c_{i-2} \\
## s_{c_{i+1}+1} & ; & \mbox{\rm otherwise}
## \end{array} \right. \]
##
BindGlobal( "NextIterator_FreeGroup", function( iter )
local word, oldword, exp, len, pos, i;
# Increase the counter.
# Get the next sign distribution of same length if possible.
word:= iter!.word;
oldword:= ShallowCopy( word );
exp:= iter!.exp;
len:= Length( word );
pos:= 2;
while pos <= len and word[ pos ] < 0 do
pos:= pos + 2;
od;
if pos <= len then
for i in [ 2, 4 .. pos ] do
word[i]:= - word[i];
od;
else
# We have enumerated all sign vectors,
# so we must take the next tuple.
FreeSemigroup_NextWordExp( iter );
fi;
return ObjByExtRep( iter!.family, 1, exp, oldword );
end );
BindGlobal( "ShallowCopy_FreeGroup", iter -> rec(
family := iter!.family,
nrgenerators := iter!.nrgenerators,
exp := iter!.exp,
word := ShallowCopy( iter!.word ),
length := iter!.length,
counter := ShallowCopy( iter!.counter ) ) );
InstallMethod( Iterator,
"for a free group",
[ IsAssocWordWithInverseCollection and IsWholeFamily and IsGroup ],
G -> IteratorByFunctions( rec(
IsDoneIterator := ReturnFalse,
NextIterator := NextIterator_FreeGroup,
ShallowCopy := ShallowCopy_FreeGroup,
family := ElementsFamily( FamilyObj( G ) ),
nrgenerators := Length( GeneratorsOfGroup( G ) ),
exp := 0,
word := [],
length := 0,
counter := [ 0, 0 ] ) ) );
#############################################################################
##
#M Enumerator( <G> )
##
BindGlobal( "ElementNumber_FreeGroup",
function( enum, nr )
local n, 2n, nn, l, power, word, exp, maxexp, cc, sign, i, c;
if nr = 1 then
return One( enum!.family );
fi;
n:= enum!.nrgenerators;
2n:= 2 * n;
nn:= 2n - 1;
# Compute the length of the word corresponding to `nr'.
l:= 0;
power:= 2n;
nr:= nr - 1;
while 0 < nr do
nr:= nr - power;
l:= l+1;
power:= power * nn;
od;
nr:= nr + power / nn - 1;
# Compute the vector of the `(nr + 1)'-th element of length `l'.
exp:= 0;
maxexp:= 1;
c:= nr mod 2n;
nr:= ( nr - c ) / 2n;
cc:= c;
if c mod 2 = 0 then
sign:= 1;
else
sign:= -1;
c:= c-1;
fi;
word:= [ c/2 + 1 ];
for i in [ 1 .. l ] do
# translate `c'
if cc < c or ( cc mod 2 = 1 and cc-2 < c ) then
c:= c+1;
fi;
if c = cc then
exp:= exp + 1;
else
Add( word, sign * exp );
if maxexp < exp then
maxexp:= exp;
fi;
exp:= 1;
cc:= c;
if c mod 2 = 0 then
sign:= 1;
else
sign:= -1;
c:= c-1;
fi;
Add( word, c/2 + 1 );
fi;
c:= nr mod nn;
nr:= ( nr - c ) / nn;
od;
Add( word, sign * exp );
# Return the element.
return ObjByExtRep( enum!.family, 1, maxexp, word );
end );
BindGlobal( "NumberElement_FreeGroup",
function( enum, elm )
local l, len, i, n, 2n, nn, nr, j, power, c, cc, exp;
if not IsCollsElms( FamilyObj( enum ), FamilyObj( elm ) ) then
return fail;
fi;
elm:= ExtRepOfObj( elm );
l:= Length( elm );
if l = 0 then
return 1;
fi;
# Calculate the length of the word.
len:= 0;
for i in [ 2, 4 .. l ] do
exp:= elm[i];
if 0 < exp then
len:= len + elm[i];
else
len:= len - elm[i];
fi;
od;
# Calculate the number of words of smaller length, plus 1.
n:= enum!.nrgenerators;
2n:= 2 * n;
nn:= 2n - 1;
nr:= 2;
power:= 2n;
for i in [ 1 .. len-1 ] do
nr:= nr + power;
power:= power * nn;
od;
# Add the position in the words of length 'len'.
c:= 2 * elm[1] - 1;
exp:= elm[2];
if 0 < exp then
c:= c-1;
else
exp:= -exp;
fi;
nr:= nr + c;
power:= 2n;
cc:= c;
c:= c - ( c mod 2 );
for j in [ 2 .. exp ] do
nr:= nr + c * power;
power:= power * nn;
od;
for i in [ 4, 6 .. l ] do
c:= 2 * elm[ i-1 ] - 1;
exp:= elm[i];
if 0 < exp then
c:= c-1;
else
exp:= -exp;
fi;
if cc < c or ( cc mod 2 = 1 and cc - 2 < c ) then
cc:= c;
c:= c - 1;
else
cc:= c;
fi;
nr:= nr + c * power;
power:= power * nn;
c:= cc - ( cc mod 2 );
for j in [ 2 .. exp ] do
nr:= nr + c * power;
power:= power * nn;
od;
od;
return nr;
end );
InstallMethod( Enumerator,
"for enumerator of a free group",
[ IsAssocWordWithInverseCollection and IsWholeFamily and IsGroup ],
G -> EnumeratorByFunctions( G, rec(
NumberElement := NumberElement_FreeGroup,
ElementNumber := ElementNumber_FreeGroup,
family := ElementsFamily( FamilyObj( G ) ),
nrgenerators := Length( ElementsFamily(
FamilyObj( G ) )!.names ) ) ) );
#############################################################################
##
#M IsWholeFamily( <G> )
##
## If all magma generators of the family are among the group generators
## of <G> then <G> contains the whole family of its elements.
##
InstallMethod( IsWholeFamily,
"for a free group",
[ IsAssocWordWithInverseCollection and IsGroup ],
function( M )
if IsSubset( MagmaGeneratorsOfFamily( ElementsFamily( FamilyObj( M ) ) ),
GeneratorsOfGroup( M ) ) then
return true;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M Random( <M> )
##
#T isn't this a generic group method? (without guarantee about distribution)
##
InstallMethod( Random,
"for a free group",
[ IsAssocWordWithInverseCollection and IsGroup ],
function( M )
local len, result, gens, i;
# Get a random length for the word.
len:= Random( Integers );
if 0 < len then
len:= 2 * len;
elif len < 0 then
len:= -2 * len - 1;
else
return One( M );
fi;
# Multiply 'len' random generator powers.
gens:= GeneratorsOfGroup( M );
result:= Random( gens ) ^ Random( Integers );
for i in [ 2 .. len ] do
result:= result * Random( gens ) ^ Random( Integers );
od;
# Return the result.
return result;
end );
#############################################################################
##
#M Size( <G> ) . . . . . . . . . . . . . . . . . . . . . . for a free group
##
InstallMethod( Size,
"for a free group",
[ IsAssocWordWithInverseCollection and IsGroup ],
function( G )
if IsTrivial( G ) then
return 1;
else
return infinity;
fi;
end );
#############################################################################
##
#M MagmaGeneratorsOfFamily( <F> )
##
InstallMethod( MagmaGeneratorsOfFamily,
"for a family of assoc. words",
[ IsAssocWordWithInverseFamily ],
function( F )
local gens;
# Make the generators.
gens:= List( [ 1 .. Length( F!.names ) ],
i -> ObjByExtRep( F, 1, 1, [ i, 1 ] ) );
Append( gens, List( [ 1 .. Length( F!.names ) ],
i -> ObjByExtRep( F, 1, 1, [ i, -1 ] ) ) );
Add( gens, One( F ) );
# Return the magma generators.
return gens;
end );
#############################################################################
##
#M Order <elm> )
##
InstallMethod( Order,
"free group element",
[ IsElementOfFreeGroup ],
0,
function(elt)
if IsOne(elt) then
return 1;
else
return infinity;
fi;
end);
# the following method returns a lex-minimal generating set for a free group
# it relies on the (unguaranteed) ordering of free group elements, that
# inverses of generators come before the generators, and generators of low
# number come before those of higher number.
InstallMethod( GeneratorsSmallest,
"for a free group",
[ IsFreeGroup ],
x->List(GeneratorsOfGroup(x),Inverse));
#############################################################################
##
#F FreeGroup( <rank> ) . . . . . . . . . . . . . . free group of given rank
#F FreeGroup( <rank>, <name> )
#F FreeGroup( <name1>, <name2>, ... )
#F FreeGroup( <names> )
#F FreeGroup( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeGroup, function ( arg )
local names, # list of generators names
zarg,
lesy, # filter for letter or syllable words family
F, # family of free group element objects
G; # free group, result
if ValueOption("FreeGroupFamilyType")="syllable" then
lesy:=IsSyllableWordsFamily; # optional -- used in PQ
else
lesy:=IsLetterWordsFamily; # default
fi;
if IsFilter(arg[1]) then
lesy:=arg[1];
zarg:=arg{[2..Length(arg)]};
else
zarg:=arg;
fi;
# Get and check the argument list, and construct names if necessary.
if Length( zarg ) = 1 and zarg[1] = infinity then
names:= InfiniteListOfNames( "f" );
elif Length( zarg ) = 2 and zarg[1] = infinity then
names:= InfiniteListOfNames( zarg[2] );
elif Length( zarg ) = 3 and zarg[1] = infinity then
names:= InfiniteListOfNames( zarg[2], zarg[3] );
elif Length( zarg ) = 1 and IsInt( zarg[1] ) and 0 <= zarg[1] then
names:= List( [ 1 .. zarg[1] ],
i -> Concatenation( "f", String(i) ) );
MakeImmutable( names );
elif Length( zarg ) = 2 and IsInt( zarg[1] ) and 0 <= zarg[1] then
names:= List( [ 1 .. zarg[1] ],
i -> Concatenation( zarg[2], String(i) ) );
MakeImmutable( names );
elif Length( zarg ) = 1 and IsList( zarg[1] ) and IsEmpty( zarg[1] ) then
names:= zarg[1];
elif 1 <= Length( zarg ) and ForAll( zarg, IsString ) then
names:= zarg;
elif Length( zarg ) = 1 and IsList( zarg[1] )
and ForAll( zarg[1], IsString ) then
names:= zarg[1];
else
Error("usage: FreeGroup(<name1>,<name2>..) or FreeGroup(<rank>)");
fi;
# deal with letter words family types
if lesy=IsLetterWordsFamily then
if Length(names)>127 then
lesy:=IsWLetterWordsFamily;
else
lesy:=IsBLetterWordsFamily;
fi;
elif lesy=IsBLetterWordsFamily and Length(names)>127 then
lesy:=IsWLetterWordsFamily;
fi;
# Construct the family of element objects of our group.
F:= NewFamily( "FreeGroupElementsFamily", IsAssocWordWithInverse
and IsElementOfFreeGroup,
CanEasilySortElements, # the free group can.
CanEasilySortElements # the free group can.
and lesy);
# Install the data (names, no. of bits available for exponents, types).
StoreInfoFreeMagma( F, names, IsAssocWordWithInverse
and IsElementOfFreeGroup );
# Make the group.
if IsEmpty( names ) then
G:= GroupByGenerators( [], One( F ) );
elif IsFinite( names ) then
G:= GroupByGenerators( List( [ 1 .. Length( names ) ],
i -> ObjByExtRep( F, 1, 1, [ i, 1 ] ) ) );
else
G:= GroupByGenerators( InfiniteListOfGenerators( F ) );
SetIsFinitelyGeneratedGroup( G, false );
fi;
SetIsWholeFamily( G, true );
# Store whether the group is trivial.
SetIsTrivial( G, Length( names ) = 0 );
# Store the whole group in the family.
FamilyObj(G)!.wholeGroup := G;
F!.freeGroup:=G;
SetFilterObj(G,IsGroupOfFamily);
# Return the free group.
return G;
end );
#############################################################################
##
#M FreeGeneratorsOfFpGroup( <F> )
##
InstallMethod( FreeGeneratorsOfFpGroup,
"for a free group",
[ IsSubgroupFpGroup and IsGroupOfFamily and IsFreeGroup ],
GeneratorsOfGroup );
#############################################################################
##
#M RelatorsOfFpGroup( <F> )
##
InstallMethod( RelatorsOfFpGroup,
"for a free group",
[ IsSubgroupFpGroup and IsGroupOfFamily and IsFreeGroup ],
F -> [] );
#############################################################################
##
#M FreeGroupOfFpGroup( <F> )
##
InstallMethod( FreeGroupOfFpGroup,
"for a free group",
[ IsSubgroupFpGroup and IsGroupOfFamily and IsFreeGroup ],
IdFunc );
#############################################################################
##
#M UnderlyingElement( w )
##
InstallMethod( UnderlyingElement,
"for an element of a free group",
[ IsElementOfFreeGroup ],
IdFunc );
#############################################################################
##
#M ElementOfFpGroup( w )
##
InstallOtherMethod( ElementOfFpGroup,
"for a family of free group elements, and an assoc. word",
[ IsElementOfFreeGroupFamily and IsAssocWordWithInverseFamily,
IsAssocWordWithInverse ],
function( fam, w ) return w; end );
#############################################################################
##
#M ViewObj(<G>)
##
InstallMethod( ViewObj,
"subgroup of free group",
[ IsFreeGroup ],
function(G)
if IsGroupOfFamily(G) then
if Length(GeneratorsOfGroup(G)) > GAPInfo.ViewLength * 10 then
Print("<free group with ",Length(GeneratorsOfGroup(G))," generators>");
else
Print("<free group on the generators ",GeneratorsOfGroup(G),">");
fi;
else
Print("Group(");
if HasGeneratorsOfGroup(G) then
if not IsBound(G!.gensWordLengthSum) then
G!.gensWordLengthSum:=Sum(List(GeneratorsOfGroup(G),Length));
fi;
if G!.gensWordLengthSum <= GAPInfo.ViewLength * 30 then
Print(GeneratorsOfGroup(G));
else
Print("<",Length(GeneratorsOfGroup(G))," generators>");
fi;
else
Print("<free, no generators known>");
fi;
Print(")");
fi;
end);
#############################################################################
##
#M \.( <F>, <n> ) . . . . . . . . . . access to generators of a free group
##
InstallAccessToGenerators( IsSubgroupFpGroup and IsGroupOfFamily
and IsFreeGroup,
"free group containing the whole family",
GeneratorsOfMagmaWithInverses );
#############################################################################
##
#E
|