This file is indexed.

/usr/share/gap/lib/grpfree.gi is in gap-libs 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
#############################################################################
##
#W  grpfree.gi                  GAP library                     Thomas Breuer
#W                                                             & Frank Celler
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods for free groups.
##
##  Free groups are treated as   special cases of finitely presented  groups.
##  In addition,   elements  of  a free   group are
##  (associative) words, that is they have a normal  form that allows an easy
##  equalitity test.
##


#############################################################################
##
#M  Iterator( <G> )
##
##  The implementation of iterator and enumerator for free groups is more
##  complicated than for free semigroups and monoids, since one has to be
##  careful to avoid cancellation of generators and their inverses when
##  building words.
##  So the iterator for a free group of rank $n$ uses the following ordering.
##  Enumerate signless words (that is, forget about the signs of exponents)
##  as given by the enumerator of free monoids, and for each such word
##  consisting of $k$, say, pairs of generators/exponents, enumerate all
##  $2^k$ possibilities of signs for the exponents.
##
##  The enumerator for a free group uses a different succession, in order to
##  make the bijection of words and positive integers easy to calculate.
##
##  There are exactly $2n (2n-1)^{l-1}$ words of length $l$, for $l > 0$.
##
##  So the word corresponding to the integer
##  $m = 1 + \sum_{i=1}^{l-1} 2n (2n-1)^{i-1} + m^{\prime}$,
##  with $1 \leq m^{\prime} \leq 2n (2n-1)^l$,
##  is the $m^{\prime}$-th word of length $l$.
##
##  Write $m^{\prime} - 1 = c_1 - 1 + \sum_{i=2}^l (c_i - 1) 2n (2n-1)^{i-2}$
##  where $1 \leq c_1 \leq 2n$ and $1 \leq c_i \leq 2n-1$ for
##  $2 \leq i \leq l$.
##
##  Let $(s_1, s_2, \ldots, s_{2n}) = (g_1, g_1^{-1}, g_2, \ldots, g_n^{-1})$
##  and translate the coefficient vector $(c_1, c_2, \ldots, c_l)$ to
##  $s(c_1) s(c_2) \cdots s(c_l)$, defined by $s(c_1) = s_{c_1}$, and
##  \[ s(c_{i+1}) = \left\{ \begin{array}{lcl}
##         s_{c_{i+1}}   & ; & c_i \equiv 1 \bmod 2, c_{i+1} \leq c_i \\
##         s_{c_{i+1}}   & ; & c_i \equiv 0 \bmod 2, c_{i+1} \leq c_{i-2} \\
##         s_{c_{i+1}+1} & ; & \mbox{\rm otherwise}
##                            \end{array} \right.    \]
##
BindGlobal( "NextIterator_FreeGroup", function( iter )
    local word, oldword, exp, len, pos, i;

    # Increase the counter.
    # Get the next sign distribution of same length if possible.
    word:= iter!.word;
    oldword:= ShallowCopy( word );
    exp:= iter!.exp;
    len:= Length( word );
    pos:= 2;
    while pos <= len and word[ pos ] < 0 do
      pos:= pos + 2;
    od;
    if pos <= len then
      for i in [ 2, 4 .. pos ] do
        word[i]:= - word[i];
      od;
    else

      # We have enumerated all sign vectors,
      # so we must take the next tuple.
      FreeSemigroup_NextWordExp( iter );

    fi;

    return ObjByExtRep( iter!.family, 1, exp, oldword );
    end );

BindGlobal( "ShallowCopy_FreeGroup", iter -> rec(
                 family         := iter!.family,
                 nrgenerators   := iter!.nrgenerators,
                 exp            := iter!.exp,
                 word           := ShallowCopy( iter!.word ),
                 length         := iter!.length,
                 counter        := ShallowCopy( iter!.counter ) ) );

InstallMethod( Iterator,
    "for a free group",
    [ IsAssocWordWithInverseCollection and IsWholeFamily and IsGroup ],
    G -> IteratorByFunctions( rec(
             IsDoneIterator := ReturnFalse,
             NextIterator   := NextIterator_FreeGroup,
             ShallowCopy    := ShallowCopy_FreeGroup,

             family         := ElementsFamily( FamilyObj( G ) ),
             nrgenerators   := Length( GeneratorsOfGroup( G ) ),
             exp            := 0,
             word           := [],
             length         := 0,
             counter        := [ 0, 0 ] ) ) );


#############################################################################
##
#M  Enumerator( <G> )
##
BindGlobal( "ElementNumber_FreeGroup",
    function( enum, nr )
    local n, 2n, nn, l, power, word, exp, maxexp, cc, sign, i, c;

    if nr = 1 then
      return One( enum!.family );
    fi;

    n:= enum!.nrgenerators;
    2n:= 2 * n;
    nn:= 2n - 1;

    # Compute the length of the word corresponding to `nr'.
    l:= 0;
    power:= 2n;
    nr:= nr - 1;
    while 0 < nr do
      nr:= nr - power;
      l:= l+1;
      power:= power * nn;
    od;
    nr:= nr + power / nn - 1;

    # Compute the vector of the `(nr + 1)'-th element of length `l'.
    exp:= 0;
    maxexp:= 1;
    c:= nr mod 2n;
    nr:= ( nr - c ) / 2n;
    cc:= c;
    if c mod 2 = 0 then
      sign:= 1;
    else
      sign:= -1;
      c:= c-1;
    fi;
    word:= [ c/2 + 1 ];
    for i in [ 1 .. l ] do

      # translate `c'
      if cc < c or ( cc mod 2 = 1 and cc-2 < c ) then
        c:= c+1;
      fi;

      if c = cc then
        exp:= exp + 1;
      else
        Add( word, sign * exp );
        if maxexp < exp then
          maxexp:= exp;
        fi;
        exp:= 1;

        cc:= c;
        if c mod 2 = 0 then
          sign:= 1;
        else
          sign:= -1;
          c:= c-1;
        fi;
        Add( word, c/2 + 1 );
      fi;
      c:= nr mod nn;
      nr:= ( nr - c ) / nn;
    od;
    Add( word, sign * exp );

    # Return the element.
    return ObjByExtRep( enum!.family, 1, maxexp, word );
    end );

BindGlobal( "NumberElement_FreeGroup",
    function( enum, elm )
    local l, len, i, n, 2n, nn, nr, j, power, c, cc, exp;

    if not IsCollsElms( FamilyObj( enum ), FamilyObj( elm ) ) then
      return fail;
    fi;

    elm:= ExtRepOfObj( elm );
    l:= Length( elm );

    if l = 0 then
      return 1;
    fi;

    # Calculate the length of the word.
    len:= 0;
    for i in [ 2, 4 .. l ] do
      exp:= elm[i];
      if 0 < exp then
        len:= len + elm[i];
      else
        len:= len - elm[i];
      fi;
    od;

    # Calculate the number of words of smaller length, plus 1.
    n:= enum!.nrgenerators;
    2n:= 2 * n;
    nn:= 2n - 1;
    nr:= 2;
    power:= 2n;
    for i in [ 1 .. len-1 ] do
      nr:= nr + power;
      power:= power * nn;
    od;

    # Add the position in the words of length 'len'.
    c:= 2 * elm[1] - 1;
    exp:= elm[2];
    if 0 < exp then
      c:= c-1;
    else
      exp:= -exp;
    fi;
    nr:= nr + c;
    power:= 2n;
    cc:= c;
    c:= c - ( c mod 2 );
    for j in [ 2 .. exp ] do
      nr:= nr + c * power;
      power:= power * nn;
    od;

    for i in [ 4, 6 .. l ] do
      c:= 2 * elm[ i-1 ] - 1;
      exp:= elm[i];
      if 0 < exp then
        c:= c-1;
      else
        exp:= -exp;
      fi;
      if cc < c or ( cc mod 2 = 1 and cc - 2 < c ) then
        cc:= c;
        c:= c - 1;
      else
        cc:= c;
      fi;
      nr:= nr + c * power;
      power:= power * nn;
      c:= cc - ( cc mod 2 );
      for j in [ 2 .. exp ] do
        nr:= nr + c * power;
        power:= power * nn;
      od;
    od;

    return nr;
    end );

InstallMethod( Enumerator,
    "for enumerator of a free group",
    [ IsAssocWordWithInverseCollection and IsWholeFamily and IsGroup ],
    G -> EnumeratorByFunctions( G, rec(
             NumberElement := NumberElement_FreeGroup,
             ElementNumber := ElementNumber_FreeGroup,

             family        := ElementsFamily( FamilyObj( G ) ),
             nrgenerators  := Length( ElementsFamily(
                                          FamilyObj( G ) )!.names ) ) ) );

#############################################################################
##
#M  IsWholeFamily( <G> )
##
##  If all magma generators of the family are among the group generators
##  of <G> then <G> contains the whole family of its elements.
##
InstallMethod( IsWholeFamily,
    "for a free group",
    [ IsAssocWordWithInverseCollection and IsGroup ],
    function( M )
    if IsSubset( MagmaGeneratorsOfFamily( ElementsFamily( FamilyObj( M ) ) ),
                 GeneratorsOfGroup( M ) ) then
      return true;
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  Random( <M> )
##
#T isn't this a generic group method? (without guarantee about distribution)
##
InstallMethod( Random,
    "for a free group",
    [ IsAssocWordWithInverseCollection and IsGroup ],
    function( M )
    local len, result, gens, i;

    # Get a random length for the word.
    len:= Random( Integers );
    if 0 < len then
      len:= 2 * len;
    elif len < 0 then
      len:= -2 * len - 1;
    else
      return One( M );
    fi;

    # Multiply 'len' random generator powers.
    gens:= GeneratorsOfGroup( M );
    result:= Random( gens ) ^ Random( Integers );
    for i in [ 2 .. len ] do
      result:= result * Random( gens ) ^ Random( Integers );
    od;

    # Return the result.
    return result;
    end );


#############################################################################
##
#M  Size( <G> ) . . . . . . . . . . . . . . . . . . . . . .  for a free group
##
InstallMethod( Size,
    "for a free group",
    [ IsAssocWordWithInverseCollection and IsGroup ],
    function( G )
    if IsTrivial( G ) then
      return 1;
    else
      return infinity;
    fi;
    end );


#############################################################################
##
#M  MagmaGeneratorsOfFamily( <F> )
##
InstallMethod( MagmaGeneratorsOfFamily,
    "for a family of assoc. words",
    [ IsAssocWordWithInverseFamily ],
    function( F )
    local gens;

    # Make the generators.
    gens:= List( [ 1 .. Length( F!.names ) ],
                 i -> ObjByExtRep( F, 1, 1, [ i, 1 ] ) );
    Append( gens, List( [ 1 .. Length( F!.names ) ],
                 i -> ObjByExtRep( F, 1, 1, [ i, -1 ] ) ) );
    Add( gens, One( F ) );

    # Return the magma generators.
    return gens;
    end );

#############################################################################
##
#M  Order <elm> )
##
InstallMethod( Order,
        "free group element",
        [ IsElementOfFreeGroup ],
        0,
        function(elt)
           if IsOne(elt) then
               return 1;
           else
               return infinity;
           fi;
        end);

# the following method returns a lex-minimal generating set for a free group
# it relies on the (unguaranteed) ordering of free group elements, that
# inverses of generators come before the generators, and generators of low
# number come before those of higher number.
    
InstallMethod( GeneratorsSmallest,
        "for a free group",
        [ IsFreeGroup ],
        x->List(GeneratorsOfGroup(x),Inverse));

#############################################################################
##
#F  FreeGroup( <rank> ) . . . . . . . . . . . . . .  free group of given rank
#F  FreeGroup( <rank>, <name> )
#F  FreeGroup( <name1>, <name2>, ... )
#F  FreeGroup( <names> )
#F  FreeGroup( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeGroup, function ( arg )
    local names,      # list of generators names
          zarg,
          lesy,       # filter for letter or syllable words family
          F,          # family of free group element objects
          G;          # free group, result

    if ValueOption("FreeGroupFamilyType")="syllable" then
      lesy:=IsSyllableWordsFamily; # optional -- used in PQ
    else
      lesy:=IsLetterWordsFamily; # default
    fi;
    if IsFilter(arg[1]) then
      lesy:=arg[1];
      zarg:=arg{[2..Length(arg)]};
    else
      zarg:=arg;
    fi;

    # Get and check the argument list, and construct names if necessary.
    if   Length( zarg ) = 1 and zarg[1] = infinity then
      names:= InfiniteListOfNames( "f" );
    elif Length( zarg ) = 2 and zarg[1] = infinity then
      names:= InfiniteListOfNames( zarg[2] );
    elif Length( zarg ) = 3 and zarg[1] = infinity then
      names:= InfiniteListOfNames( zarg[2], zarg[3] );
    elif Length( zarg ) = 1 and IsInt( zarg[1] ) and 0 <= zarg[1] then
      names:= List( [ 1 .. zarg[1] ],
                    i -> Concatenation( "f", String(i) ) );
      MakeImmutable( names );
    elif Length( zarg ) = 2 and IsInt( zarg[1] ) and 0 <= zarg[1] then
      names:= List( [ 1 .. zarg[1] ],
                    i -> Concatenation( zarg[2], String(i) ) );
      MakeImmutable( names );
    elif Length( zarg ) = 1 and IsList( zarg[1] ) and IsEmpty( zarg[1] ) then
      names:= zarg[1];
    elif 1 <= Length( zarg ) and ForAll( zarg, IsString ) then
      names:= zarg;
    elif Length( zarg ) = 1 and IsList( zarg[1] )
                            and ForAll( zarg[1], IsString ) then
      names:= zarg[1];
    else
      Error("usage: FreeGroup(<name1>,<name2>..) or FreeGroup(<rank>)");
    fi;

    # deal with letter words family types
    if lesy=IsLetterWordsFamily then
      if Length(names)>127 then
        lesy:=IsWLetterWordsFamily;
      else
        lesy:=IsBLetterWordsFamily;
      fi;
    elif lesy=IsBLetterWordsFamily and Length(names)>127 then
      lesy:=IsWLetterWordsFamily;
    fi;

    # Construct the family of element objects of our group.
    F:= NewFamily( "FreeGroupElementsFamily", IsAssocWordWithInverse
                                              and IsElementOfFreeGroup,
  			  CanEasilySortElements, # the free group can.
  			  CanEasilySortElements # the free group can.
  			  and lesy);

    # Install the data (names, no. of bits available for exponents, types).
    StoreInfoFreeMagma( F, names, IsAssocWordWithInverse
                                  and IsElementOfFreeGroup );

    # Make the group.
    if IsEmpty( names ) then
      G:= GroupByGenerators( [], One( F ) );
    elif IsFinite( names ) then
      G:= GroupByGenerators( List( [ 1 .. Length( names ) ],
                                   i -> ObjByExtRep( F, 1, 1, [ i, 1 ] ) ) );
    else
      G:= GroupByGenerators( InfiniteListOfGenerators( F ) );
      SetIsFinitelyGeneratedGroup( G, false );
    fi;

    SetIsWholeFamily( G, true );

    # Store whether the group is trivial.
    SetIsTrivial( G, Length( names ) = 0 );

    # Store the whole group in the family.
    FamilyObj(G)!.wholeGroup := G;
    F!.freeGroup:=G;
    SetFilterObj(G,IsGroupOfFamily);

    # Return the free group.
    return G;
end );


#############################################################################
##
#M  FreeGeneratorsOfFpGroup( <F> )
##
InstallMethod( FreeGeneratorsOfFpGroup,
    "for a free group",
    [ IsSubgroupFpGroup and IsGroupOfFamily and IsFreeGroup ],
    GeneratorsOfGroup );


#############################################################################
##
#M  RelatorsOfFpGroup( <F> )
##
InstallMethod( RelatorsOfFpGroup,
    "for a free group",
    [ IsSubgroupFpGroup and IsGroupOfFamily and IsFreeGroup ],
    F -> [] );


#############################################################################
##
#M  FreeGroupOfFpGroup( <F> )
##
InstallMethod( FreeGroupOfFpGroup,
    "for a free group",
    [ IsSubgroupFpGroup and IsGroupOfFamily and IsFreeGroup ],
    IdFunc );


#############################################################################
##
#M  UnderlyingElement( w )
##
InstallMethod( UnderlyingElement,
    "for an element of a free group",
    [ IsElementOfFreeGroup ],
    IdFunc );


#############################################################################
##
#M  ElementOfFpGroup( w )
##
InstallOtherMethod( ElementOfFpGroup,
    "for a family of free group elements, and an assoc. word",
    [ IsElementOfFreeGroupFamily and IsAssocWordWithInverseFamily,
      IsAssocWordWithInverse ],
    function( fam, w ) return w; end );


#############################################################################
##
#M  ViewObj(<G>)
##
InstallMethod( ViewObj,
    "subgroup of free group",
    [ IsFreeGroup ],
function(G)
  if IsGroupOfFamily(G) then
    if Length(GeneratorsOfGroup(G)) > GAPInfo.ViewLength * 10 then
      Print("<free group with ",Length(GeneratorsOfGroup(G))," generators>");
    else
      Print("<free group on the generators ",GeneratorsOfGroup(G),">");
    fi;
  else
    Print("Group(");
    if HasGeneratorsOfGroup(G) then
      if not IsBound(G!.gensWordLengthSum) then
	G!.gensWordLengthSum:=Sum(List(GeneratorsOfGroup(G),Length));
      fi;
      if G!.gensWordLengthSum <= GAPInfo.ViewLength * 30 then
        Print(GeneratorsOfGroup(G));
      else
        Print("<",Length(GeneratorsOfGroup(G))," generators>");
      fi;
    else
      Print("<free, no generators known>");
    fi;
    Print(")");
  fi;
end);


#############################################################################
##
#M  \.( <F>, <n> )  . . . . . . . . . .  access to generators of a free group
##
InstallAccessToGenerators( IsSubgroupFpGroup and IsGroupOfFamily
                                             and IsFreeGroup,
                           "free group containing the whole family",
                           GeneratorsOfMagmaWithInverses );


#############################################################################
##
#E