/usr/share/gap/lib/coll.gd is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 | #############################################################################
##
#W coll.gd GAP library Martin Schönert
#W & Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for collections.
##
#T change the installation of isomorphism and factor maintained methods
#T in the same way as that of subset maintained methods!
#############################################################################
##
## <#GAPDoc Label="[1]{coll}">
## A <E>collection</E> in &GAP; consists of elements in the same family
## (see <Ref Sect="Families"/>).
## The most important kinds of collections are <E>homogeneous lists</E>
## (see <Ref Chap="Lists"/>)
## and <E>domains</E> (see <Ref Chap="Domains"/>).
## Note that a list is never a domain, and a domain is never a list.
## A list is a collection if and only if it is nonempty and homogeneous.
## <P/>
## Basic operations for collections are <Ref Func="Size"/>
## and <Ref Func="Enumerator"/>;
## for <E>finite</E> collections,
## <Ref Func="Enumerator"/> admits to delegate the other
## operations for collections
## (see <Ref Sect="Attributes and Properties for Collections"/>
## and <Ref Sect="Operations for Collections"/>)
## to functions for lists (see <Ref Chap="Lists"/>).
## Obviously, special methods depending on the arguments are needed for
## the computation of e.g. the intersection of two <E>infinite</E>
## domains.
## <#/GAPDoc>
##
#############################################################################
##
#C IsListOrCollection( <obj> )
##
## <#GAPDoc Label="IsListOrCollection">
## <ManSection>
## <Filt Name="IsListOrCollection" Arg='obj' Type='Category'/>
##
## <Description>
## Several functions are defined for both lists and collections,
## for example <Ref Func="Intersection" Label="for a list"/>,
## <Ref Func="Iterator"/>,
## and <Ref Func="Random" Label="for a list or collection"/>.
## <Ref Func="IsListOrCollection"/> is a supercategory of
## <Ref Func="IsList"/> and <Ref Func="IsCollection"/>
## (that is, all lists and collections lie in this category),
## which is used to describe the arguments of functions such as the ones
## listed above.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsListOrCollection", IsObject );
#############################################################################
##
#C IsCollection( <obj> ) . . . . . . . . . test if an object is a collection
##
## <#GAPDoc Label="IsCollection">
## <ManSection>
## <Filt Name="IsCollection" Arg='obj' Type='Category'/>
##
## <Description>
## tests whether an object is a collection.
## <P/>
## Some of the functions for lists and collections are described in the
## chapter about lists,
## mainly in Section <Ref Sect="Operations for Lists"/>.
## In the current chapter, we describe those functions for which the
## <Q>collection aspect</Q> seems to be more important than the
## <Q>list aspect</Q>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsCollection", IsListOrCollection );
#############################################################################
##
#A CollectionsFamily( <Fam> ) . . . . . . . . . . make a collections family
##
## <#GAPDoc Label="CollectionsFamily">
## <ManSection>
## <Attr Name="CollectionsFamily" Arg='Fam'/>
##
## <Description>
## For a family <A>Fam</A>, <Ref Func="CollectionsFamily"/> returns the
## family of all collections over <A>Fam</A>,
## that is, of all dense lists and domains that consist of objects in
## <A>Fam</A>.
## <P/>
## The <Ref Func="NewFamily"/> call in the standard method of
## <Ref Func="CollectionsFamily"/> is executed with second argument
## <Ref Func="IsCollection"/>,
## since every object in the collections family must be a collection,
## and with third argument the collections categories of the involved
## categories in the implied filter of <A>Fam</A>.
## <P/>
## Note that families (see <Ref Sect="Families"/>)
## are used to describe relations between objects.
## Important such relations are that between an element <M>e</M> and each
## collection of elements that lie in the same family as <M>e</M>,
## and that between two collections whose elements lie in the same family.
## Therefore, all collections of elements in the family <A>Fam</A> form the
## new family <C>CollectionsFamily( <A>Fam</A> )</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CollectionsFamily", IsFamily );
#############################################################################
##
#C IsCollectionFamily( <Fam> ) test if an object is a family of collections
##
## <#GAPDoc Label="IsCollectionFamily">
## <ManSection>
## <Filt Name="IsCollectionFamily" Arg='obj' Type='Category'/>
##
## <Description>
## is <K>true</K> if <A>Fam</A> is a family of collections,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryFamily( "IsCollection" );
#############################################################################
##
#A ElementsFamily( <Fam> ) . . . . . . . . . . . . fetch the elements family
##
## <#GAPDoc Label="ElementsFamily">
## <ManSection>
## <Attr Name="ElementsFamily" Arg='Fam'/>
##
## <Description>
## If <A>Fam</A> is a collections family
## (see <Ref Func="IsCollectionFamily"/>)
## then <Ref Func="ElementsFamily"/>
## returns the family from which <A>Fam</A> was created
## by <Ref Func="CollectionsFamily"/>.
## The way a collections family is created, it always has its elements
## family stored.
## If <A>Fam</A> is not a collections family then an error is signalled.
## <P/>
## <Example><![CDATA[
## gap> fam:= FamilyObj( (1,2) );;
## gap> collfam:= CollectionsFamily( fam );;
## gap> fam = collfam; fam = ElementsFamily( collfam );
## false
## true
## gap> collfam = FamilyObj( [ (1,2,3) ] );
## true
## gap> collfam = FamilyObj( Group( () ) );
## true
## gap> collfam = CollectionsFamily( collfam );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ElementsFamily", IsFamily );
#############################################################################
##
#V CATEGORIES_COLLECTIONS . . . . . . global list of collections categories
##
## <ManSection>
## <Var Name="CATEGORIES_COLLECTIONS"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "CATEGORIES_COLLECTIONS", [] );
#############################################################################
##
#F CategoryCollections( <filter> ) . . . . . . . . . . collections category
##
## <#GAPDoc Label="CategoryCollections">
## <ManSection>
## <Func Name="CategoryCollections" Arg='filter'/>
##
## <Description>
## Let <A>filter</A> be a filter that is <K>true</K> for all elements of a
## family <A>Fam</A>, by the construction of <A>Fam</A>.
## Then <Ref Func="CategoryCollections"/> returns the
## <E>collections category</E> of <A>filter</A>.
## This is a category that is <K>true</K> for all elements in
## <C>CollectionsFamily( <A>Fam</A> )</C>.
## <P/>
## For example, the construction of
## <Ref Var="PermutationsFamily"/> guarantees that
## each of its elements lies in the filter
## <Ref Func="IsPerm"/>,
## and each collection of permutations (permutation group or dense list of
## permutations) lies in the category <C>CategoryCollections( IsPerm )</C>.
## <C>CategoryCollections( IsPerm )</C>.
## Note that this works only if the collections category is created
## <E>before</E> the collections family.
## So it is necessary to construct interesting collections categories
## immediately after the underlying category has been created.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "CategoryCollections", function ( elms_filter )
local pair, super, flags, name, coll_filter;
# Check whether the collections category is already defined.
for pair in CATEGORIES_COLLECTIONS do
if IsIdenticalObj( pair[1], elms_filter ) then
return pair[2];
fi;
od;
# Find the super category among the known collections categories.
super := IsCollection;
flags := WITH_IMPS_FLAGS( FLAGS_FILTER( elms_filter ) );
for pair in CATEGORIES_COLLECTIONS do
if IS_SUBSET_FLAGS( flags, FLAGS_FILTER( pair[1] ) ) then
super := super and pair[2];
fi;
od;
# Construct the name of the category.
name := "CategoryCollections(";
APPEND_LIST_INTR( name, SHALLOW_COPY_OBJ( NameFunction(elms_filter) ) );
APPEND_LIST_INTR( name, ")" );
CONV_STRING( name );
# Construct the collections category.
coll_filter:= NewCategory( name, super );
ADD_LIST( CATEGORIES_COLLECTIONS, [ elms_filter, coll_filter ] );
return coll_filter;
end );
#############################################################################
##
#f DeclareCategoryCollections( <name> )
##
## binds the collections category of the category that is bound to the
## global variable with name <name> to the global variable associated to the
## name <nname>.
## If <name> is of the form `<initname>Collection' then <nname> is equal to
## `<initname>CollColl',
## if <name> is of the form `<initname>Coll' then <nname> is equal to
## `<initname>CollColl',
## otherwise we have <nname> equal to `<name>Collection'.
##
BIND_GLOBAL( "DeclareCategoryCollections", function( name )
local len, coll_name;
len:= LEN_LIST( name );
if 3 < len and name{ [ len-3 .. len ] } = "Coll" then
coll_name:= SHALLOW_COPY_OBJ( name );
APPEND_LIST_INTR( coll_name, "Coll" );
elif 9 < len and name{ [ len-9 .. len ] } = "Collection" then
coll_name:= name{ [ 1 .. len-6 ] };
APPEND_LIST_INTR( coll_name, "Coll" );
else
coll_name:= SHALLOW_COPY_OBJ( name );
APPEND_LIST_INTR( coll_name, "Collection" );
fi;
BIND_GLOBAL( coll_name, CategoryCollections( VALUE_GLOBAL( name ) ) );
end );
#############################################################################
##
#F DeclareSynonym( <name>, <value> )
#F DeclareSynonymAttr( <name>, <value> )
##
## <#GAPDoc Label="DeclareSynonym">
## <ManSection>
## <Func Name="DeclareSynonym" Arg='name, value'/>
## <Func Name="DeclareSynonymAttr" Arg='name, value'/>
##
## <Description>
## <Ref Func="DeclareSynonym"/> assigns the string <A>name</A> to a global
## variable as a synonym for <A>value</A>.
## Two typical intended usages are to declare an <Q>and-filter</Q>, e.g.
## <P/>
## <Log><![CDATA[
## DeclareSynonym( "IsGroup", IsMagmaWithInverses and IsAssociative );
## ]]></Log>
## <P/>
## and to provide a previously declared global function with an alternative
## name, e.g.
## <P/>
## <Log><![CDATA[
## DeclareGlobalFunction( "SizeOfSomething" );
## DeclareSynonym( "OrderOfSomething", SizeOfSomething );
## ]]></Log>
## <P/>
## <E>Note:</E> Before using <Ref Func="DeclareSynonym"/> in the way of this
## second example,
## one should determine whether the synonym is really needed.
## Perhaps an extra index entry in the documentation would be sufficient.
## <P/>
## When <A>value</A> is actually an attribute then
## <Ref Func="DeclareSynonymAttr"/> should be used;
## this binds also globals variables <C>Set</C><A>name</A> and
## <C>Has</C><A>name</A> for its setter and tester, respectively.
## <P/>
## <Log><![CDATA[
## DeclareSynonymAttr( "IsField", IsDivisionRing and IsCommutative );
## DeclareAttribute( "GeneratorsOfDivisionRing", IsDivisionRing );
## DeclareSynonymAttr( "GeneratorsOfField", GeneratorsOfDivisionRing );
## ]]></Log>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "DeclareSynonym", function( name, value )
BIND_GLOBAL( name, value );
end );
BIND_GLOBAL( "DeclareSynonymAttr", function( name, value )
local nname;
BIND_GLOBAL( name, value );
nname:= "Set";
APPEND_LIST_INTR( nname, name );
BIND_GLOBAL( nname, Setter( value ) );
nname:= "Has";
APPEND_LIST_INTR( nname, name );
BIND_GLOBAL( nname, Tester( value ) );
end );
#############################################################################
##
#V SUBSET_MAINTAINED_INFO
##
## <ManSection>
## <Var Name="SUBSET_MAINTAINED_INFO"/>
##
## <Description>
## is a list of length two.
## At the first position, a list of lists of the form
## <C>[ <A>filtsuper</A>, <A>filtsub</A>, <A>opr</A>, <A>testopr</A>, <A>settopr</A> ]</C>
## is stored,
## which is used for calls of <C>UseSubsetRelation( <A>super</A>, <A>sub</A> )</C>.
## At the second position, a corresponding list of lists of the form
## <C>[ <A>flagsopr</A>, <A>flagssub</A>, <A>rank</A> ]</C>
## is stored, which is used for choosing an appropriate ordering of the
## entries when the lists are enlarged in a call to
## <C>InstallSubsetMaintenance</C>.
## <P/>
## The meaning of the entries is as follows.
## <List>
## <Mark><A>filtsuper</A> </Mark>
## <Item>
## required filter for <A>super</A>,
## </Item>
## <Mark><A>filtsub</A> </Mark>
## <Item>
## required filter for <A>sub</A>,
## </Item>
## <Mark><A>opr</A> </Mark>
## <Item>
## operation whose value is inherited from <A>super</A> to <A>sub</A>,
## </Item>
## <Mark><A>testopr</A> </Mark>
## <Item>
## tester filter of <A>opr</A>,
## </Item>
## <Mark><A>settopr</A> </Mark>
## <Item>
## setter filter of <A>opr</A>,
## </Item>
## <Mark><A>flagsopr</A> </Mark>
## <Item>
## list of those true flags of <A>opr</A>
## that belong neither to categories nor to representations,
## </Item>
## <Mark><A>flagssub</A> </Mark>
## <Item>
## list of those true flags of <A>filtsub</A>
## that belong neither to categories nor to representations,
## </Item>
## <Mark><A>rank</A> </Mark>
## <Item>
## a rational number that denotes the priority of the information
## in the list; <C>SUBSET_MAINTAINED_INFO</C> is sorted according to
## decreasing <A>rank</A> value.
## <!-- We must be careful to choose the right succession of the methods.-->
## <!-- Note that one method may require a property that is acquired using-->
## <!-- another method.-->
## <!-- For that, we give a method a rank that is lower than that of all methods-->
## <!-- that may yield some of the requirements and that is higher than that of-->
## <!-- all methods that require <A>opr</A>;-->
## <!-- if this is not possible then a warning is printed.-->
## <!-- (Maybe the mechanism has to be changed at some time because of this.-->
## <!-- Another reason would be the direct installation of methods for-->
## <!-- <C>UseSubsetRelation</C>, i.e., the ranks of these methods are not affected-->
## <!-- by the code in <C>InstallSubsetMaintenance</C>.) -->
## </Item>
## </List>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "SUBSET_MAINTAINED_INFO", [ [], [] ] );
#############################################################################
##
#O UseSubsetRelation( <super>, <sub> )
##
## <#GAPDoc Label="UseSubsetRelation">
## <ManSection>
## <Oper Name="UseSubsetRelation" Arg='super, sub'/>
##
## <Description>
## Methods for this operation transfer possibly useful information from the
## domain <A>super</A> to its subset <A>sub</A>, and vice versa.
## <P/>
## <Ref Oper="UseSubsetRelation"/> is designed to be called automatically
## whenever substructures of domains are constructed.
## So the methods must be <E>cheap</E>, and the requirements should be as
## sharp as possible!
## <P/>
## To achieve that <E>all</E> applicable methods are executed, all methods for
## this operation except the default method must end with <C>TryNextMethod()</C>.
## This default method deals with the information that is available by
## the calls of <Ref Func="InstallSubsetMaintenance"/> in the &GAP; library.
## <P/>
## <Example><![CDATA[
## gap> g:= Group( (1,2), (3,4), (5,6) );; h:= Group( (1,2), (3,4) );;
## gap> IsAbelian( g ); HasIsAbelian( h );
## true
## false
## gap> UseSubsetRelation( g, h );; HasIsAbelian( h ); IsAbelian( h );
## true
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "UseSubsetRelation", [ IsCollection, IsCollection ] );
InstallMethod( UseSubsetRelation,
"default method that checks maintenances and then returns `true'",
IsIdenticalObj,
[ IsCollection, IsCollection ],
# Make sure that this method is installed with ``real'' rank zero.
- 2 * RankFilter( IsCollection ),
function( super, sub )
local entry;
for entry in SUBSET_MAINTAINED_INFO[1] do
if entry[1]( super ) and entry[2]( sub ) and not entry[4]( sub ) then
entry[5]( sub, entry[3]( super ) );
fi;
od;
return true;
end );
#############################################################################
##
#F InstallSubsetMaintenance( <opr>, <super_req>, <sub_req> )
##
## <#GAPDoc Label="InstallSubsetMaintenance">
## <ManSection>
## <Func Name="InstallSubsetMaintenance" Arg='opr, super_req, sub_req'/>
##
## <Description>
## <A>opr</A> must be a property or an attribute.
## The call of <Ref Func="InstallSubsetMaintenance"/> has the effect that
## for a domain <M>D</M> in the filter <A>super_req</A>,
## and a domain <M>S</M> in the filter <A>sub_req</A>,
## the call <C>UseSubsetRelation</C><M>( D, S )</M>
## (see <Ref Func="UseSubsetRelation"/>)
## sets a known value of <A>opr</A> for <M>D</M> as value of <A>opr</A> also
## for <M>S</M>.
## A typical example for which <Ref Func="InstallSubsetMaintenance"/> is
## applied is given by <A>opr</A> <C>= IsFinite</C>,
## <A>super_req</A> <C>= IsCollection and IsFinite</C>,
## and <A>sub_req</A> <C>= IsCollection</C>.
## <P/>
## If <A>opr</A> is a property and the filter <A>super_req</A> lies in the
## filter <A>opr</A> then we can use also the following inverse implication.
## If <M>D</M> is in the filter whose intersection with <A>opr</A> is
## <A>super_req</A> and if <M>S</M> is in the filter <A>sub_req</A>,
## <M>S</M> is a subset of <M>D</M>, and the value of <A>opr</A> for
## <M>S</M> is <K>false</K> then the value of <A>opr</A> for <M>D</M> is
## also <K>false</K>.
## <!-- This is implemented only for the case <A>super_req</A> = <A>opr</A>
## and <A>sub_req</A>.-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "InstallSubsetMaintenance",
function( operation, super_req, sub_req )
local setter, # setter filter of `operation'
tester, # tester filter of `operation'
upper,
lower,
attrprop, # id `operation' an attribute/property?
rank,
filtssub, # property and attribute flags of `sub_req'
filtsopr, # property and attribute flags of `operation'
triple, # loop over `SUBSET_MAINTAINED_INFO[2]'
req,
flag,
filt1,
filt2,
i;
setter:= Setter( operation );
tester:= Tester( operation );
# Are there methods that may give us some of the requirements?
upper:= SUM_FLAGS;
# (We must not call `SUBTR_SET' here because the lists types may be
# not yet defined.)
filtssub:= [];
for flag in TRUES_FLAGS( FLAGS_FILTER( sub_req ) ) do
if not flag in CATS_AND_REPS then
ADD_LIST_DEFAULT( filtssub, flag );
fi;
od;
for triple in SUBSET_MAINTAINED_INFO[2] do
req:= SHALLOW_COPY_OBJ( filtssub );
INTER_SET( req, triple[1] );
if LEN_LIST( req ) <> 0 and triple[3] < upper then
upper:= triple[3];
fi;
od;
# Are there methods that require `operation'?
lower:= 0;
attrprop:= true;
filt1:= FLAGS_FILTER( operation );
if filt1 = false then
# `operation' is an attribute.
filt1:= FLAGS_FILTER( tester );
else
# Special treatment of categories, representations (makes sense?),
# and filters created by `NewFilter'.
if FLAG2_FILTER( operation ) = 0 then
attrprop:= false;
fi;
fi;
# (We must not call `SUBTR_SET' here because the lists types may be
# not yet defined.)
filtsopr:= [];
for flag in TRUES_FLAGS( filt1 ) do
if not flag in CATS_AND_REPS then
ADD_LIST_DEFAULT( filtsopr, flag );
fi;
od;
for triple in SUBSET_MAINTAINED_INFO[2] do
req:= SHALLOW_COPY_OBJ( filtsopr );
INTER_SET( req, triple[2] );
if LEN_LIST( req ) <> 0 and lower < triple[3] then
lower:= triple[3];
fi;
od;
# Compute the ``rank'' of the maintenance.
# (Do we have a cycle?)
if upper <= lower then
Print( "#W warning: cycle in `InstallSubsetMaintenance'\n" );
rank:= lower;
else
rank:= ( upper + lower ) / 2;
fi;
filt1:= IsCollection and Tester( super_req ) and super_req and tester;
filt2:= IsCollection and Tester( sub_req ) and sub_req;
# Update the info list.
i:= LEN_LIST( SUBSET_MAINTAINED_INFO[2] );
while 0 < i and SUBSET_MAINTAINED_INFO[2][i][3] < rank do
SUBSET_MAINTAINED_INFO[1][ i+1 ]:= SUBSET_MAINTAINED_INFO[1][ i ];
SUBSET_MAINTAINED_INFO[2][ i+1 ]:= SUBSET_MAINTAINED_INFO[2][ i ];
i:= i-1;
od;
SUBSET_MAINTAINED_INFO[2][ i+1 ]:= [ filtsopr, filtssub, rank ];
if attrprop then
SUBSET_MAINTAINED_INFO[1][ i+1 ]:=
[ filt1, filt2, operation, tester, setter ];
else
SUBSET_MAINTAINED_INFO[1][ i+1 ]:=
[ filt1, filt2, operation, operation,
function( sub, val )
SetFeatureObj( sub, operation, val );
end ];
fi;
#T missing in new implementation!
# # Install the method.
# if FLAGS_FILTER( operation ) <> false
# and IS_EQUAL_FLAGS( FLAGS_FILTER( operation and sub_req ),
# FLAGS_FILTER( super_req ) ) then
# InstallMethod( UseSubsetRelation, infostring, IsIdenticalObj,
# [ sub_req, sub_req ], 0,
# function( super, sub )
# if tester( sub ) and not operation( sub ) then
# setter( super, false );
# fi;
# TryNextMethod();
# end );
# fi;
end );
#############################################################################
##
#V ISOMORPHISM_MAINTAINED_INFO
##
## <ManSection>
## <Var Name="ISOMORPHISM_MAINTAINED_INFO"/>
##
## <Description>
## is a list of lists of the form
## <C>[ <A>filtsold</A>, <A>filtsnew</A>, <A>opr</A>, <A>testopr</A>, <A>settopr</A>, <A>old_req</A>,
## <A>new-req</A> ]</C>
## which is used for calls of <C>UseIsomorphismRelation( <A>old</A>, <A>new</A> )</C>.
## This list is enlarged by calls to <C>InstallIsomorphismMaintenance</C>.
## <P/>
## The meaning of the entries is as follows.
## <List>
## <Mark><A>filtsold</A> </Mark>
## <Item>
## required filter for <A>old</A>,
## </Item>
## <Mark><A>filtsnew</A> </Mark>
## <Item>
## required filter for <A>new</A>,
## </Item>
## <Mark><A>opr</A> </Mark>
## <Item>
## operation whose value is inherited from <A>old</A> to <A>new</A>,
## </Item>
## <Mark><A>testopr</A> </Mark>
## <Item>
## tester filter of <A>opr</A>,
## </Item>
## <Mark><A>settopr</A> </Mark>
## <Item>
## setter filter of <A>opr</A>,
## </Item>
## <Mark><A>old-req</A> </Mark>
## <Item>
## requirements for <A>old</A> in the <C>InstallIsomorphismMaintenance</C> call,
## </Item>
## <Mark><A>new-req</A> </Mark>
## <Item>
## requirements for <A>new</A> in the <C>InstallIsomorphismMaintenance</C> call.
## </Item>
## </List>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "ISOMORPHISM_MAINTAINED_INFO", [] );
#############################################################################
##
#O UseIsomorphismRelation( <old>, <new> )
##
## <#GAPDoc Label="UseIsomorphismRelation">
## <ManSection>
## <Oper Name="UseIsomorphismRelation" Arg='old, new'/>
##
## <Description>
## Methods for this operation transfer possibly useful information from the
## domain <A>old</A> to the isomorphic domain <A>new</A>.
## <P/>
## <Ref Oper="UseIsomorphismRelation"/> is designed to be called
## automatically whenever isomorphic structures of domains are constructed.
## So the methods must be <E>cheap</E>, and the requirements should be as
## sharp as possible!
## <P/>
## To achieve that <E>all</E> applicable methods are executed, all methods
## for this operation except the default method must end with a call to
## <Ref Func="TryNextMethod"/>.
## This default method deals with the information that is available by
## the calls of <Ref Func="InstallIsomorphismMaintenance"/> in the &GAP;
## library.
## <P/>
## <Example><![CDATA[
## gap> g:= Group( (1,2) );; h:= Group( [ [ -1 ] ] );;
## gap> Size( g ); HasSize( h );
## 2
## false
## gap> UseIsomorphismRelation( g, h );; HasSize( h ); Size( h );
## true
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "UseIsomorphismRelation", [ IsCollection, IsCollection ] );
InstallMethod( UseIsomorphismRelation,
"default method that checks maintenances and then returns `true'",
[ IsCollection, IsCollection ],
# Make sure that this method is installed with ``real'' rank zero.
- 2 * RankFilter( IsCollection ),
function( old, new )
local entry;
for entry in ISOMORPHISM_MAINTAINED_INFO do
if entry[1]( old ) and entry[2]( new ) and not entry[4]( new ) then
entry[5]( new, entry[3]( old ) );
fi;
od;
return true;
end );
#############################################################################
##
#F InstallIsomorphismMaintenanceFunction( <func> )
##
## <ManSection>
## <Func Name="InstallIsomorphismMaintenanceFunction" Arg='func'/>
##
## <Description>
## <C>InstallIsomorphismMaintenanceFunction</C> installs <A>func</A>, so that
## <C><A>func</A>( <A>filtsold</A>, <A>filtsnew</A>, <A>opr</A>, <A>testopr</A>, <A>settopr</A>, <A>old_req</A>,
## <A>new-req</A> )</C> is called for each isomorphism maintenance.
## More precisely, <A>func</A> is called for each entry in the global list
## <C>ISOMORPHISM_MAINTAINED_INFO</C>, also to those that are entered into this
## list after the installation of <A>func</A>.
## (The mechanism is the same as for attributes, which is installed in the
## file <C>lib/oper.g</C>.)
## </Description>
## </ManSection>
##
BIND_GLOBAL( "ISOM_MAINT_FUNCS", [] );
BIND_GLOBAL( "InstallIsomorphismMaintenanceFunction", function( func )
local entry;
for entry in ISOMORPHISM_MAINTAINED_INFO do
CallFuncList( func, entry );
od;
ADD_LIST( ISOM_MAINT_FUNCS, func );
end );
BIND_GLOBAL( "RUN_ISOM_MAINT_FUNCS",
function( arglist )
local func;
for func in ISOM_MAINT_FUNCS do
CallFuncList( func, arglist );
od;
ADD_LIST( ISOMORPHISM_MAINTAINED_INFO, arglist );
end );
#############################################################################
##
#F InstallIsomorphismMaintenance( <opr>, <old_req>, <new_req> )
##
## <#GAPDoc Label="InstallIsomorphismMaintenance">
## <ManSection>
## <Func Name="InstallIsomorphismMaintenance" Arg='opr, old_req, new_req'/>
##
## <Description>
## <A>opr</A> must be a property or an attribute.
## The call of <Ref Func="InstallIsomorphismMaintenance"/> has the effect
## that for a domain <M>D</M> in the filter <A>old_req</A>,
## and a domain <M>E</M> in the filter <A>new_req</A>,
## the call <C>UseIsomorphismRelation</C><M>( D, E )</M>
## (see <Ref Func="UseIsomorphismRelation"/>)
## sets a known value of <A>opr</A> for <M>D</M> as value of <A>opr</A> also
## for <M>E</M>.
## A typical example for which <Ref Func="InstallIsomorphismMaintenance"/>
## is applied is given by <A>opr</A> <C>= Size</C>,
## <A>old_req</A> <C>= IsCollection</C>,
## and <A>new_req</A> <C>= IsCollection</C>.
## <!-- Up to now, there are no dependencies between the maintenances-->
## <!-- (contrary to the case of subset maintenances),-->
## <!-- so we do not take care of the succession.-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "InstallIsomorphismMaintenance",
function( opr, old_req, new_req )
local tester;
tester:= Tester( opr );
RUN_ISOM_MAINT_FUNCS(
[ IsCollection and Tester( old_req ) and old_req and tester,
IsCollection and Tester( new_req ) and new_req,
opr,
tester,
Setter( opr ),
old_req,
new_req ] );
end );
#############################################################################
##
#V FACTOR_MAINTAINED_INFO
##
## <ManSection>
## <Var Name="FACTOR_MAINTAINED_INFO"/>
##
## <Description>
## is a list of lists of the form
## <C>[ <A>filtsnum</A>, <A>filtsden</A>, <A>filtsfac</A>, <A>opr</A>, <A>testopr</A>, <A>settopr</A> ]</C>
## which is used for calls of <C>UseFactorRelation( <A>num</A>, <A>den</A>, <A>fac</A> )</C>.
## This list is enlarged by calls to <C>InstallFactorMaintenance</C>.
## <P/>
## The meaning of the entries is as follows.
## <List>
## <Mark><A>filtsnum</A> </Mark>
## <Item>
## required filter for <A>num</A>,
## </Item>
## <Mark><A>filtsden</A> </Mark>
## <Item>
## required filter for <A>den</A>,
## </Item>
## <Mark><A>filtsfac</A> </Mark>
## <Item>
## required filter for <A>fac</A>,
## </Item>
## <Mark><A>opr</A> </Mark>
## <Item>
## operation whose value is inherited from <A>num</A> to <A>fac</A>,
## </Item>
## <Mark><A>testopr</A> </Mark>
## <Item>
## tester filter of <A>opr</A>,
## </Item>
## <Mark><A>settopr</A> </Mark>
## <Item>
## setter filter of <A>opr</A>.
## </Item>
## </List>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "FACTOR_MAINTAINED_INFO", [] );
#############################################################################
##
#O UseFactorRelation( <numer>, <denom>, <factor> )
##
## <#GAPDoc Label="UseFactorRelation">
## <ManSection>
## <Oper Name="UseFactorRelation" Arg='numer, denom, factor'/>
##
## <Description>
## Methods for this operation transfer possibly useful information from the
## domain <A>numer</A> or its subset <A>denom</A> to the domain
## <A>factor</A> that is isomorphic to the factor of <A>numer</A> by
## <A>denom</A>, and vice versa.
## <A>denom</A> may be <K>fail</K>, for example if <A>factor</A> is just
## known to be a factor of <A>numer</A> but <A>denom</A> is not available as
## a &GAP; object;
## in this case those factor relations are used that are installed without
## special requirements for <A>denom</A>.
## <P/>
## <Ref Oper="UseFactorRelation"/> is designed to be called automatically
## whenever factor structures of domains are constructed.
## So the methods must be <E>cheap</E>, and the requirements should be as
## sharp as possible!
## <P/>
## To achieve that <E>all</E> applicable methods are executed, all methods
## for this operation except the default method must end with a call to
## <Ref Func="TryNextMethod"/>.
## This default method deals with the information that is available by
## the calls of <Ref Func="InstallFactorMaintenance"/> in the &GAP; library.
## <P/>
## <Example><![CDATA[
## gap> g:= Group( (1,2,3,4), (1,2) );; h:= Group( (1,2,3), (1,2) );;
## gap> IsSolvableGroup( g ); HasIsSolvableGroup( h );
## true
## false
## gap> UseFactorRelation(g, Subgroup( g, [ (1,2)(3,4), (1,3)(2,4) ] ), h);;
## gap> HasIsSolvableGroup( h ); IsSolvableGroup( h );
## true
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "UseFactorRelation",
[ IsCollection, IsObject, IsCollection ] );
InstallMethod( UseFactorRelation,
"default method that checks maintenances and then returns `true'",
true,
[ IsCollection, IsObject, IsCollection ],
# Make sure that this method is installed with ``real'' rank zero.
- 2 * RankFilter( IsCollection )-RankFilter(IsObject),
function( num, den, fac )
local entry;
for entry in FACTOR_MAINTAINED_INFO do
if entry[1]( num ) and entry[2]( den ) and entry[3]( fac )
and not entry[5]( fac ) then
entry[6]( fac, entry[4]( num ) );
fi;
od;
return true;
end );
#############################################################################
##
#F InstallFactorMaintenance( <opr>, <numer_req>, <denom_req>, <factor_req> )
##
## <#GAPDoc Label="InstallFactorMaintenance">
## <ManSection>
## <Func Name="InstallFactorMaintenance"
## Arg='opr, numer_req, denom_req, factor_req'/>
##
## <Description>
## <A>opr</A> must be a property or an attribute.
## The call of <Ref Func="InstallFactorMaintenance"/> has the effect that
## for collections <M>N</M>, <M>D</M>, <M>F</M> in the filters
## <A>numer_req</A>, <A>denom_req</A>, and <A>factor_req</A>, respectively,
## the call <C>UseFactorRelation</C><M>( N, D, F )</M>
## (see <Ref Func="UseFactorRelation"/>)
## sets a known value of <A>opr</A> for <M>N</M> as value of <A>opr</A> also
## for <M>F</M>.
## A typical example for which <Ref Func="InstallFactorMaintenance"/> is
## applied is given by <A>opr</A> <C>= IsFinite</C>,
## <A>numer_req</A> <C>= IsCollection and IsFinite</C>,
## <A>denom_req</A> <C>= IsCollection</C>,
## and <A>factor_req</A> <C>= IsCollection</C>.
## <P/>
## For the other direction, if <A>numer_req</A> involves the filter
## <A>opr</A> then a known <K>false</K> value of <A>opr</A> for <M>F</M>
## implies a <K>false</K> value for <M>D</M> provided that <M>D</M> lies in
## the filter obtained from <A>numer_req</A> by removing <A>opr</A>.
## <P/>
## Note that an implication of a factor relation holds in particular for the
## case of isomorphisms.
## So one need <E>not</E> install an isomorphism maintained method when
## a factor maintained method is already installed.
## For example, <Ref Func="UseIsomorphismRelation"/>
## will transfer a known <Ref Prop="IsFinite"/> value because of the
## installed factor maintained method.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "InstallFactorMaintenance",
function( opr, numer_req, denom_req, factor_req )
local tester;
# Information that is maintained under taking factors
# is especially maintained under isomorphisms.
InstallIsomorphismMaintenance( opr, numer_req, factor_req );
tester:= Tester( opr );
ADD_LIST( FACTOR_MAINTAINED_INFO,
[ IsCollection and Tester( numer_req ) and numer_req and tester,
Tester( denom_req ) and denom_req,
IsCollection and Tester( factor_req ) and factor_req,
opr,
tester,
Setter( opr ) ] );
#T not yet available in the new implementation
# if FLAGS_FILTER( opr ) <> false
# and IS_EQUAL_FLAGS( FLAGS_FILTER( opr and factor_req ),
# FLAGS_FILTER( numer_req ) ) then
# InstallMethod( UseFactorRelation, infostring, IsFamFamX,
# [ factor_req, denom_req, factor_req ], 0,
# function( numer, denom, factor )
# if tester( factor ) and not opr( factor ) then
# setter( numer, false );
# fi;
# TryNextMethod();
# end );
# fi;
end );
#############################################################################
##
#O Iterator( <listorcoll> ) . . . . . . . iterator for a list or collection
##
## <#GAPDoc Label="Iterator">
## <ManSection>
## <Oper Name="Iterator" Arg='listorcoll'/>
## <Filt Name="IsStandardIterator" Arg='listorcoll'/>
##
## <Description>
## Iterators provide a possibility to loop over the elements of a
## (countable) collection or list <A>listorcoll</A>, without repetition.
## For many collections <M>C</M>,
## an iterator of <M>C</M> need not store all elements of <M>C</M>,
## for example it is possible to construct an iterator of some infinite
## domains, such as the field of rational numbers.
## <P/>
## <Ref Func="Iterator"/> returns a mutable <E>iterator</E> <M>iter</M> for
## its argument.
## If this argument is a list (which may contain holes),
## then <M>iter</M> iterates over the elements (but not the holes) of this
## list in the same order (see <Ref Func="IteratorList"/> for details).
## If this argument is a collection but not a list then <M>iter</M> iterates
## over the elements of this collection in an unspecified order,
## which may change for repeated calls of <Ref Func="Iterator"/>.
## Because iterators returned by <Ref Func="Iterator"/> are mutable
## (see <Ref Sect="Mutability and Copyability"/>),
## each call of <Ref Func="Iterator"/> for the same argument returns a
## <E>new</E> iterator.
## Therefore <Ref Func="Iterator"/> is not an attribute
## (see <Ref Sect="Attributes"/>).
## <P/>
## The only operations for iterators are <Ref Func="IsDoneIterator"/>,
## <Ref Func="NextIterator"/>, and <Ref Func="ShallowCopy"/>.
## In particular, it is only possible to access the next element of the
## iterator with <Ref Func="NextIterator"/> if there is one,
## and this can be checked with <Ref Func="IsDoneIterator"/>
## For an iterator <M>iter</M>, <Ref Func="ShallowCopy"/> returns a
## mutable iterator <M>new</M> that iterates over the remaining elements
## independent of <M>iter</M>;
## the results of <Ref Func="IsDoneIterator"/> for <M>iter</M> and
## <M>new</M> are equal,
## and if <M>iter</M> is mutable then also the results of
## <Ref Func="NextIterator"/> for <M>iter</M> and <M>new</M> are equal;
## note that <C>=</C> is not defined for iterators,
## so the equality of two iterators cannot be checked with <C>=</C>.
## <P/>
## When <Ref Func="Iterator"/> is called for a <E>mutable</E> collection
## <M>C</M> then it is not defined whether <M>iter</M> respects changes to
## <M>C</M> occurring after the construction of <M>iter</M>,
## except if the documentation explicitly promises a certain behaviour.
## The latter is the case if the argument is a mutable list
## (see <Ref Func="IteratorList"/> for subtleties in this case).
## <P/>
## It is possible to have <K>for</K>-loops run over mutable iterators
## instead of lists.
## <P/>
## In some situations, one can construct iterators with a special
## succession of elements,
## see <Ref Func="IteratorByBasis"/> for the possibility to loop over
## the elements of a vector space w.r.t. a given basis.
## <!-- (also for perm. groups, w.r.t. a given stabilizer chain?)-->
## <P/>
## For lists, <Ref Func="Iterator"/> is implemented by
## <Ref Func="IteratorList"/>.
## For collections <M>C</M> that are not lists, the default method is
## <C>IteratorList( Enumerator( </C><M>C</M><C> ) )</C>.
## Better methods depending on <M>C</M> should be provided if possible.
## <P/>
## For random access to the elements of a (possibly infinite) collection,
## <E>enumerators</E> are used.
## See <Ref Sect="Enumerators"/> for the facility to compute a list
## from <M>C</M>, which provides a (partial) mapping from <M>C</M> to the
## positive integers.
## <P/>
## The filter <Ref Filt="IsStandardIterator"/> means that the iterator is
## implemented as a component object and has components <C>IsDoneIterator</C>
## and <C>NextIterator</C> which are bound to the methods of the operations of
## the same name for this iterator.
## <!-- (This is used to avoid overhead when looping over such iterators.) -->
## <!-- We wanted to admit an iterator as first argument of <C>Filtered</C>,-->
## <!-- <C>First</C>, <C>ForAll</C>, <C>ForAny</C>, <C>Number</C>.-->
## <!-- This is not yet implemented.-->
## <!-- (Note that the iterator is changed in the call,-->
## <!-- so the meaning of the operations would be slightly abused,-->
## <!-- or we must define that these operations first make a shallow copy.)-->
## <!-- (Additionally, the unspecified order of the elements makes it-->
## <!-- difficult to define what <C>First</C> and <C>Filtered</C> means for an iterator.)-->
## <Example><![CDATA[
## gap> iter:= Iterator( GF(5) );
## <iterator>
## gap> l:= [];;
## gap> for i in iter do Add( l, i ); od; l;
## [ 0*Z(5), Z(5)^0, Z(5), Z(5)^2, Z(5)^3 ]
## gap> iter:= Iterator( [ 1, 2, 3, 4 ] );; l:= [];;
## gap> for i in iter do
## > new:= ShallowCopy( iter );
## > for j in new do Add( l, j ); od;
## > od; l;
## [ 2, 3, 4, 3, 4, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter("IsStandardIterator");
DeclareOperation( "Iterator", [ IsListOrCollection ] );
#############################################################################
##
#O IteratorSorted( <C> ) . . . . . . . . . . . set iterator for a collection
#O IteratorSorted( <list> ) . . . . . . . . . . . . set iterator for a list
##
## <#GAPDoc Label="IteratorSorted">
## <ManSection>
## <Oper Name="IteratorSorted" Arg='listorcoll'/>
##
## <Description>
## <Ref Func="IteratorSorted"/> returns a mutable iterator.
## The argument must be a collection or a list that is not
## necessarily dense but whose elements lie in the same family
## (see <Ref Sect="Families"/>).
## It loops over the different elements in sorted order.
## <P/>
## For a collection <M>C</M> that is not a list, the generic method is
## <C>IteratorList( EnumeratorSorted( </C><A>C</A><C> ) )</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IteratorSorted", [ IsListOrCollection ] );
#############################################################################
##
#C IsIterator( <obj> ) . . . . . . . . . . test if an object is an iterator
##
## <#GAPDoc Label="IsIterator">
## <ManSection>
## <Filt Name="IsIterator" Arg='obj' Type='Category'/>
##
## <Description>
## Every iterator lies in the category <C>IsIterator</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsIterator", IsObject );
#############################################################################
##
#O IsDoneIterator( <iter> ) . . . . . . . test if an iterator is exhausted
##
## <#GAPDoc Label="IsDoneIterator">
## <ManSection>
## <Oper Name="IsDoneIterator" Arg='iter'/>
##
## <Description>
## If <A>iter</A> is an iterator for the list or collection <M>C</M> then
## <C>IsDoneIterator( <A>iter</A> )</C> is <K>true</K> if all elements of
## <M>C</M> have been returned already by <C>NextIterator( <A>iter</A> )</C>,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsDoneIterator", [ IsIterator ] );
#############################################################################
##
#O NextIterator( <iter> ) . . . . . . . . . . next element from an iterator
##
## <#GAPDoc Label="NextIterator">
## <ManSection>
## <Oper Name="NextIterator" Arg='iter'/>
##
## <Description>
## Let <A>iter</A> be a mutable iterator for the list or collection <M>C</M>.
## If <C>IsDoneIterator( <A>iter</A> )</C> is <K>false</K> then
## <Ref Func="NextIterator"/> is applicable to <A>iter</A>,
## and the result is the next element of <M>C</M>,
## according to the succession defined by <A>iter</A>.
## <P/>
## If <C>IsDoneIterator( <A>iter</A> )</C> is <K>true</K> then it is not
## defined what happens when <Ref Func="NextIterator"/> is called for
## <A>iter</A>;
## that is, it may happen that an error is signalled or that something
## meaningless is returned, or even that &GAP; crashes.
## <P/>
## <Example><![CDATA[
## gap> iter:= Iterator( [ 1, 2, 3, 4 ] );
## <iterator>
## gap> sum:= 0;;
## gap> while not IsDoneIterator( iter ) do
## > sum:= sum + NextIterator( iter );
## > od;
## gap> IsDoneIterator( iter ); sum;
## true
## 10
## gap> ir:= Iterator( Rationals );;
## gap> l:= [];; for i in [1..20] do Add( l, NextIterator( ir ) ); od; l;
## [ 0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 2/3, 3/2, 3, -1/3, -2/3, -3/2, -3,
## 1/4, 3/4, 4/3, 4, -1/4 ]
## gap> for i in ir do
## > if DenominatorRat( i ) > 10 then break; fi;
## > od;
## gap> i;
## 1/11
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "NextIterator", [ IsIterator and IsMutable ] );
#############################################################################
##
#F TrivialIterator( <elm> )
##
## <#GAPDoc Label="TrivialIterator">
## <ManSection>
## <Func Name="TrivialIterator" Arg='elm'/>
##
## <Description>
## is a mutable iterator for the collection <C>[ <A>elm</A> ]</C> that
## consists of exactly one element <A>elm</A>
## (see <Ref Func="IsTrivial"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TrivialIterator" );
#############################################################################
##
#F IteratorByFunctions( <record> )
##
## <#GAPDoc Label="IteratorByFunctions">
## <ManSection>
## <Func Name="IteratorByFunctions" Arg='record'/>
##
## <Description>
## <Ref Func="IteratorByFunctions"/> returns a (mutable) iterator
## <A>iter</A> for which <Ref Func="NextIterator"/>,
## <Ref Func="IsDoneIterator"/>,
## and <Ref Func="ShallowCopy"/>
## are computed via prescribed functions.
## <P/>
## Let <A>record</A> be a record with at least the following components.
## <List>
## <Mark><C>NextIterator</C></Mark>
## <Item>
## a function taking one argument <A>iter</A>,
## which returns the next element of <A>iter</A>
## (see <Ref Func="NextIterator"/>);
## for that, the components of <A>iter</A> are changed,
## </Item>
## <Mark><C>IsDoneIterator</C></Mark>
## <Item>
## a function taking one argument <A>iter</A>,
## which returns the <Ref Func="IsDoneIterator"/> value of <A>iter</A>,
## </Item>
## <Mark><C>ShallowCopy</C></Mark>
## <Item>
## a function taking one argument <A>iter</A>,
## which returns a record for which <Ref Func="IteratorByFunctions"/>
## can be called in order to create a new iterator that is independent
## of <A>iter</A> but behaves like <A>iter</A> w.r.t. the operations
## <Ref Func="NextIterator"/> and <Ref Func="IsDoneIterator"/>.
## </Item>
## <Mark><C>ViewObj</C> and <C>PrintObj</C></Mark>
## <Item>
## two functions that print what one wants to be printed when
## <C>View( <A>iter</A> )</C> or <C>Print( <A>item</A> )</C> is called
## (see <Ref Sect="View and Print"/>),
## if the <C>ViewObj</C> component is missing then the <C>PrintObj</C>
## method is used as a default.
## </Item>
## </List>
## Further (data) components may be contained in <A>record</A> which can be
## used by these function.
## <P/>
## <Ref Func="IteratorByFunctions"/> does <E>not</E> make a shallow copy of
## <A>record</A>, this record is changed in place
## (see Section <Ref Sect="Creating Objects"/>).
## <P/>
## Iterators constructed with <Ref Func="IteratorByFunctions"/> are in the
## filter <Ref Filt="IsStandardIterator"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IteratorByFunctions" );
#############################################################################
##
#P IsEmpty( <C> ) . . . . . . . . . . . . . . test if a collection is empty
#P IsEmpty( <list> ) . . . . . . . . . . . . . test if a collection is empty
##
## <#GAPDoc Label="IsEmpty">
## <ManSection>
## <Prop Name="IsEmpty" Arg='listorcoll'/>
##
## <Description>
## <Ref Func="IsEmpty"/> returns <K>true</K> if the collection or list
## <A>listorcoll</A> is <E>empty</E> (that is it contains no elements),
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsEmpty", IsListOrCollection );
#############################################################################
##
#P IsTrivial( <C> ) . . . . . . . . . . . . test if a collection is trivial
##
## <#GAPDoc Label="IsTrivial">
## <ManSection>
## <Prop Name="IsTrivial" Arg='C'/>
##
## <Description>
## <Ref Prop="IsTrivial"/> returns <K>true</K> if the collection <A>C</A>
## consists of exactly one element.
## <!-- 1996/08/08 M.Schönert is this a sensible definition?-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsTrivial", IsCollection );
InstallFactorMaintenance( IsTrivial,
IsCollection and IsTrivial, IsObject, IsCollection );
#############################################################################
##
#P IsNonTrivial( <C> ) . . . . . . . . . test if a collection is nontrivial
##
## <#GAPDoc Label="IsNonTrivial">
## <ManSection>
## <Prop Name="IsNonTrivial" Arg='C'/>
##
## <Description>
## <Ref Func="IsNonTrivial"/> returns <K>true</K> if the collection <A>C</A>
## is empty or consists of at least two elements
## (see <Ref Func="IsTrivial"/>).
## <P/>
## <!-- I need this to distinguish trivial rings-with-one from fields!-->
## <!-- (indication to introduce antifilters?)-->
## <!-- 1996/08/08 M.Schönert is this a sensible definition?-->
## <Example><![CDATA[
## gap> IsEmpty( [] ); IsEmpty( [ 1 .. 100 ] ); IsEmpty( Group( (1,2,3) ) );
## true
## false
## false
## gap> IsFinite( [ 1 .. 100 ] ); IsFinite( Integers );
## true
## false
## gap> IsTrivial( Integers ); IsTrivial( Group( () ) );
## false
## true
## gap> IsNonTrivial( Integers ); IsNonTrivial( Group( () ) );
## true
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsNonTrivial", IsCollection );
#############################################################################
##
#P IsFinite( <C> ) . . . . . . . . . . . . . test if a collection is finite
##
## <#GAPDoc Label="IsFinite">
## <ManSection>
## <Prop Name="IsFinite" Arg='C'/>
##
## <Description>
## <Index Subkey="for a list or collection">finiteness test</Index>
## <Ref Func="IsFinite"/> returns <K>true</K> if the collection <A>C</A>
## is finite, and <K>false</K> otherwise.
## <P/>
## The default method for <Ref Func="IsFinite"/> checks the size
## (see <Ref Func="Size"/>) of <A>C</A>.
## <P/>
## Methods for <Ref Func="IsFinite"/> may call <Ref Func="Size"/>,
## but methods for <Ref Func="Size"/> must <E>not</E> call
## <Ref Func="IsFinite"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsFinite", IsCollection );
InstallSubsetMaintenance( IsFinite,
IsCollection and IsFinite, IsCollection );
InstallFactorMaintenance( IsFinite,
IsCollection and IsFinite, IsObject, IsCollection );
InstallTrueMethod( IsFinite, IsTrivial );
#############################################################################
##
#P IsWholeFamily( <C> ) . . test if a collection contains the whole family
##
## <#GAPDoc Label="IsWholeFamily">
## <ManSection>
## <Prop Name="IsWholeFamily" Arg='C'/>
##
## <Description>
## <Ref Prop="IsWholeFamily"/> returns <K>true</K> if the collection
## <A>C</A> contains the whole family (see <Ref Sect="Families"/>)
## of its elements.
## <P/>
## <Example><![CDATA[
## gap> IsWholeFamily( Integers )
## > ; # all rationals and cyclotomics lie in the family
## false
## gap> IsWholeFamily( Integers mod 3 )
## > ; # all finite field elements in char. 3 lie in this family
## false
## gap> IsWholeFamily( Integers mod 4 );
## true
## gap> IsWholeFamily( FreeGroup( 2 ) );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsWholeFamily", IsCollection );
#############################################################################
##
#A Size( <C> ) . . . . . . . . . . . . . . . . . . . . size of a collection
#A Size( <list> ) . . . . . . . . . . . . . . . . . . size of a collection
##
## <#GAPDoc Label="Size">
## <ManSection>
## <Attr Name="Size" Arg='listorcoll'/>
##
## <Description>
## <Index Subkey="of a list or collection">size</Index>
## <Index Subkey="of a list, collection or domain">order</Index>
## <Ref Attr="Size"/> returns the size of the list or collection
## <A>listorcoll</A>, which is either an integer or <Ref Var="infinity"/>.
## If the argument is a list then the result is its length
## (see <Ref Func="Length"/>).
## <P/>
## The default method for <Ref Attr="Size"/> checks the length of an
## enumerator of <A>listorcoll</A>.
## <P/>
## Methods for <Ref Prop="IsFinite"/> may call <Ref Attr="Size"/>,
## but methods for <Ref Attr="Size"/> must not call <Ref Prop="IsFinite"/>.
## <P/>
## <Example><![CDATA[
## gap> Size( [1,2,3] ); Size( Group( () ) ); Size( Integers );
## 3
## 1
## infinity
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Size", IsListOrCollection );
InstallIsomorphismMaintenance( Size, IsCollection, IsCollection );
#############################################################################
##
#A Representative( <C> ) . . . . . . . . . . . . one element of a collection
##
## <#GAPDoc Label="Representative">
## <ManSection>
## <Attr Name="Representative" Arg='C'/>
##
## <Description>
## <Ref Attr="Representative"/> returns a <E>representative</E>
## of the collection <A>C</A>.
## <P/>
## Note that <Ref Attr="Representative"/> is free in choosing
## a representative if there are several elements in <A>C</A>.
## It is not even guaranteed that <Ref Attr="Representative"/> returns
## the same representative if it is called several times for one collection.
## The main difference between <Ref Attr="Representative"/> and
## <Ref Func="Random" Label="for a list or collection"/>
## is that <Ref Attr="Representative"/> is free
## to choose a value that is cheap to compute,
## while <Ref Func="Random" Label="for a list or collection"/>
## must make an effort to randomly distribute its answers.
## <P/>
## If <A>C</A> is a domain then there are methods for
## <Ref Attr="Representative"/> that try
## to fetch an element from any known generator list of <A>C</A>,
## see <Ref Chap="Domains and their Elements"/>.
## Note that <Ref Attr="Representative"/> does not try to <E>compute</E>
## generators of <A>C</A>,
## thus <Ref Attr="Representative"/> may give up and signal an error
## if <A>C</A> has no generators stored at all.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Representative", IsListOrCollection );
#############################################################################
##
#A RepresentativeSmallest( <C> ) . . . . . smallest element of a collection
##
## <#GAPDoc Label="RepresentativeSmallest">
## <ManSection>
## <Attr Name="RepresentativeSmallest" Arg='C'/>
##
## <Description>
## <Index Subkey="of a list or collection">representative</Index>
## returns the smallest element in the collection <A>C</A>, w.r.t. the
## ordering <Ref Func="\<"/>.
## While the operation defaults to comparing all elements,
## better methods are installed for some collections.
## <P/>
## <Example><![CDATA[
## gap> Representative( Rationals );
## 0
## gap> Representative( [ -1, -2 .. -100 ] );
## -1
## gap> RepresentativeSmallest( [ -1, -2 .. -100 ] );
## -100
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RepresentativeSmallest", IsListOrCollection );
#############################################################################
##
#O Random( <C> ) . . . . . . . . . . random element of a list or collection
#O Random( <list> ) . . . . . . . . random element of a list or collection
#O Random( <from>, <to> )
##
## <#GAPDoc Label="Random:coll">
## <ManSection>
## <Oper Name="Random" Arg='listorcoll' Label="for a list or collection"/>
## <Oper Name="Random" Arg='from, to' Label="for lower and upper bound"/>
##
## <Description>
## <!-- to get this on top of results for ?Random -->
## <Index Key="Random"><Ref Func="Random"
## Label="for a list or collection"/></Index>
## <Ref Oper="Random" Label="for a list or collection"/> returns a
## (pseudo-)random element of the list or collection <A>listorcoll</A>.
## <P/>
## As lists or ranges are restricted in length (<M>2^{28}-1</M> or
## <M>2^{60}-1</M> depending on your system), the second form returns a
## random integer in the range <A>from</A> to <A>to</A> (inclusive) for
## arbitrary integers <A>from</A> and <A>to</A>.
## <P/>
## The distribution of elements returned by
## <Ref Oper="Random" Label="for a list or collection"/> depends
## on the argument.
## For a list the distribution is uniform (all elements are equally likely).
## The same holds usually for finite collections that are
## not lists.
## For infinite collections some reasonable distribution is used.
## <P/>
## See the chapters of the various collections to find out
## which distribution is being used.
## <P/>
## For some collections ensuring a reasonable distribution can be
## difficult and require substantial runtime (for example for large
## finite groups). If speed is more important than a guaranteed
## distribution,
## the operation <Ref Func="PseudoRandom"/> should be used instead.
## <P/>
## Note that <Ref Oper="Random" Label="for a list or collection"/>
## is of course <E>not</E> an attribute.
## <P/>
## <Example><![CDATA[
## gap> Random([1..6]);
## 6
## gap> Random(1, 2^100);
## 866227015645295902682304086250
## gap> g:= Group( (1,2,3) );; Random( g ); Random( g );
## (1,3,2)
## ()
## gap> Random(Rationals);
## -4
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Random", [ IsListOrCollection ] );
DeclareOperation( "Random", [ IS_INT, IS_INT ] );
#############################################################################
##
## <#GAPDoc Label="[2]{coll}">
## The method used by &GAP; to obtain random elements may depend on the
## type object.
## <P/>
## Most methods which produce random elements in &GAP; use a global random
## number generator (see <Ref Var="GlobalMersenneTwister"/>).
## This random number generator is (deliberately) initialized to the same
## values when &GAP; is started, so different runs of &GAP; with the same
## input will always produce the same result, even if random calculations
## are involved.
## <P/>
## See <Ref Oper="Reset"/> for a description of how to reset the
## random number generator to a previous state.
## <P/>
##
## <!-- all outdated? (FL)
## Many random methods in the library are eventually based on the function
## <Ref Func="RandomList"/>.
## As <Ref Func="RandomList"/> is restricted to lists of <M>2^{28}</M>
## elements, this may create problems for very large collections. Also note
## that the method used by <Ref Func="RandomList"/> is intended to provide
## a fast algorithm rather than to produce high quality randomness for
## statistical purposes.
## <P/>
## If you implement your own
## <Ref Func="Random" Label="for a list or collection"/> methods we recommend
## that they initialize their seed to a defined value when they are loaded
## to permit to reproduce calculations even if they involved random
## elements.
## -->
## <#/GAPDoc>
##
#############################################################################
##
#F RandomList( <list> )
##
## <#GAPDoc Label="RandomList">
## <ManSection>
## <Func Name="RandomList" Arg='list'/>
##
## <Description>
## <Index>random seed</Index>
## For a dense list <A>list</A>,
## <Ref Func="RandomList"/> returns a (pseudo-)random element with equal
## distribution.
## <P/>
## This function uses the <Ref Var="GlobalMersenneTwister"/> to produce the
## random elements (a source of high quality random numbers).
## <P/>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RandomList" );
#############################################################################
##
#O PseudoRandom( <C> ) . . . . . . . . pseudo random element of a collection
#O PseudoRandom( <list> ) . . . . . . . . . pseudo random element of a list
##
## <#GAPDoc Label="PseudoRandom">
## <ManSection>
## <Oper Name="PseudoRandom" Arg='listorcoll'/>
##
## <Description>
## <Ref Oper="PseudoRandom"/> returns a pseudo random element
## of the list or collection <A>listorcoll</A>,
## which can be roughly described as follows.
## For a list, <Ref Oper="PseudoRandom"/> returns the same as
## <Ref Oper="Random" Label="for a list or collection"/>.
## For collections that are not lists,
## the elements returned by <Ref Oper="PseudoRandom"/> are
## <E>not</E> necessarily equally distributed,
## even for finite collections;
## the idea is that <Ref Oper="Random" Label="for a list or collection"/>
## returns elements according to
## a reasonable distribution, <Ref Oper="PseudoRandom"/> returns elements
## that are cheap to compute but need not satisfy this strong condition, and
## <Ref Attr="Representative"/> returns arbitrary elements,
## probably the same element for each call.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PseudoRandom", [ IsListOrCollection ] );
#############################################################################
##
#A PseudoRandomSeed( <C> )
##
## <ManSection>
## <Attr Name="PseudoRandomSeed" Arg='C'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "PseudoRandomSeed", IsListOrCollection, "mutable" );
#############################################################################
##
#A Enumerator( <C> ) . . . . . . . . . . . list of elements of a collection
#A Enumerator( <list> ) . . . . . . . . . . . . list of elements of a list
##
## <#GAPDoc Label="Enumerator">
## <ManSection>
## <Attr Name="Enumerator" Arg='listorcoll'/>
##
## <Description>
## <Ref Func="Enumerator"/> returns an immutable list <M>enum</M>.
## If the argument is a list (which may contain holes),
## then <C>Length( </C><M>enum</M><C> )</C> is the length of this list,
## and <M>enum</M> contains the elements (and holes) of this list in the
## same order.
## If the argument is a collection that is not a list,
## then <C>Length( </C><M>enum</M><C> )</C> is the number of different
## elements of <A>C</A>,
## and <M>enum</M> contains the different elements of the collection in an
## unspecified order, which may change for repeated calls of
## <Ref Func="Enumerator"/>.
## <M>enum[pos]</M> may not execute in constant time
## (see <Ref Func="IsConstantTimeAccessList"/>),
## and the size of <M>enum</M> in memory is as small as is feasible.
## <P/>
## For lists, the default method is <Ref Func="Immutable"/>.
## For collections that are not lists, there is no default method.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Enumerator", IsListOrCollection );
#############################################################################
##
#A EnumeratorSorted( <C> ) . . . . . proper set of elements of a collection
#A EnumeratorSorted( <list> ) . . . . . . proper set of elements of a list
##
## <#GAPDoc Label="EnumeratorSorted">
## <ManSection>
## <Attr Name="EnumeratorSorted" Arg='listorcoll'/>
##
## <Description>
## <Ref Func="EnumeratorSorted"/> returns an immutable list <M>enum</M>.
## The argument must be a collection or a list <A>listorcoll</A>
## which may contain holes but whose elements lie in the same family
## (see <Ref Sect="Families"/>).
## <C>Length( </C><M>enum</M><C> )</C> is the number of different elements
## of the argument,
## and <M>enum</M> contains the different elements in sorted order,
## w.r.t. <C><</C>.
## <M>enum[pos]</M> may not execute in constant time
## (see <Ref Func="IsConstantTimeAccessList"/>),
## and the size of <M>enum</M> in memory is as small as is feasible.
## <P/>
## <Example><![CDATA[
## gap> Enumerator( [ 1, 3,, 2 ] );
## [ 1, 3,, 2 ]
## gap> enum:= Enumerator( Rationals );; elm:= enum[ 10^6 ];
## -69/907
## gap> Position( enum, elm );
## 1000000
## gap> IsMutable( enum ); IsSortedList( enum );
## false
## false
## gap> IsConstantTimeAccessList( enum );
## false
## gap> EnumeratorSorted( [ 1, 3,, 2 ] );
## [ 1, 2, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "EnumeratorSorted", IsListOrCollection );
#############################################################################
##
#F EnumeratorOfSubset( <list>, <blist>[, <ishomog>] )
##
## <ManSection>
## <Func Name="EnumeratorOfSubset" Arg='list, blist[, ishomog]'/>
##
## <Description>
## Let <A>list</A> be a list, and <A>blist</A> a Boolean list of the same
## length (see <Ref Chap="Boolean Lists"/>).
## <Ref Func="EnumeratorOfSubset"/> returns a list <A>new</A> of length
## equal to the number of <K>true</K> entries in <A>blist</A>,
## such that <C><A>new</A>[i]</C>, if bound, equals the entry of <A>list</A>
## at the <A>i</A>-th <K>true</K> position in <A>blist</A>.
## <P/>
## If <A>list</A> is homogeneous then also <A>new</A> is homogeneous.
## If <A>list</A> is <E>not</E> homogeneous then the third argument
## <A>ishomog</A> must be present and equal to <K>true</K> or <K>false</K>,
## saying whether or not <A>new</A> is homogeneous.
## <P/>
## This construction is used for example in the situation that <A>list</A>
## is an enumerator of a large set,
## and <A>blist</A> describes a union of orbits in an action on this set.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "EnumeratorOfSubset" );
#############################################################################
##
#F EnumeratorByFunctions( <D>, <record> )
#F EnumeratorByFunctions( <Fam>, <record> )
##
## <#GAPDoc Label="EnumeratorByFunctions">
## <Heading>EnumeratorByFunctions</Heading>
## <ManSection>
## <Func Name="EnumeratorByFunctions" Arg='D, record'
## Label="for a domain and a record"/>
## <Func Name="EnumeratorByFunctions" Arg='Fam, record'
## Label="for a family and a record"/>
##
## <Description>
## <Ref Func="EnumeratorByFunctions" Label="for a domain and a record"/>
## returns an immutable, dense, and duplicate-free list <M>enum</M> for
## which <Ref Func="IsBound" Label="for a list index"/>,
## element access via <Ref Func="\[\]"/>,
## <Ref Func="Length"/>, and <Ref Func="Position"/>
## are computed via prescribed functions.
## <P/>
## Let <A>record</A> be a record with at least the following components.
## <List>
## <Mark><C>ElementNumber</C></Mark>
## <Item>
## a function taking two arguments <A>enum</A> and <A>pos</A>,
## which returns <C><A>enum</A>[ <A>pos</A> ]</C>
## (see <Ref Sect="Basic Operations for Lists"/>);
## it can be assumed that the argument <A>pos</A> is a positive integer,
## but <A>pos</A> may be larger than the length of <A>enum</A>
## (in which case an error must be signalled);
## note that the result must be immutable since <A>enum</A> itself is
## immutable,
## </Item>
## <Mark><C>NumberElement</C></Mark>
## <Item>
## a function taking two arguments <A>enum</A> and <A>elm</A>,
## which returns <C>Position( <A>enum</A>, <A>elm</A> )</C>
## (see <Ref Func="Position"/>);
## it cannot be assumed that <A>elm</A> is really contained in
## <A>enum</A> (and <K>fail</K> must be returned if not);
## note that for the three argument version of <Ref Func="Position"/>,
## the method that is available for duplicate-free lists suffices.
## </Item>
## </List>
## <P/>
## Further (data) components may be contained in <A>record</A>
## which can be used by these function.
## <P/>
## If the first argument is a domain <A>D</A> then <A>enum</A> lists the
## elements of <A>D</A> (in general <A>enum</A> is <E>not</E> sorted),
## and methods for <Ref Attr="Length"/>,
## <Ref Func="IsBound" Label="for a list index"/>,
## and <Ref Func="PrintObj"/> may use <A>D</A>.
## <!-- is this really true for Length?-->
## <P/>
## If one wants to describe the result without creating a domain then the
## elements are given implicitly by the functions in <A>record</A>,
## and the first argument must be a family <A>Fam</A> which will become the
## family of <A>enum</A>;
## if <A>enum</A> is not homogeneous then <A>Fam</A> must be
## <C>ListsFamily</C>,
## otherwise it must be the collections family of any element in <A>enum</A>.
## In this case, additionally the following component in <A>record</A> is
## needed.
## <P/>
## <List>
## <Mark><C>Length</C></Mark>
## <Item>
## a function taking the argument <A>enum</A>,
## which returns the length of <A>enum</A>
## (see <Ref Func="Length"/>).
## </Item>
## </List>
## <P/>
## The following components are optional; they are used if they are present
## but default methods are installed for the case that they are missing.
## <List>
## <Mark><C>IsBound\[\]</C></Mark>
## <Item>
## a function taking two arguments <A>enum</A> and <A>k</A>,
## which returns <C>IsBound( <A>enum</A>[ <A>k</A> ] )</C>
## (see <Ref Sect="Basic Operations for Lists"/>);
## if this component is missing then <Ref Func="Length"/> is used for
## computing the result,
## </Item>
## <Mark><C>Membership</C></Mark>
## <Item>
## a function taking two arguments <A>elm</A> and <A>enum</A>,
## which returns <K>true</K> is <A>elm</A> is an element of <A>enum</A>,
## and <K>false</K> otherwise
## (see <Ref Sect="Basic Operations for Lists"/>);
## if this component is missing then <C>NumberElement</C> is used
## for computing the result,
## </Item>
## <Mark><C>AsList</C></Mark>
## <Item>
## a function taking one argument <A>enum</A>, which returns a list with
## the property that the access to each of its elements will take
## roughly the same time
## (see <Ref Func="IsConstantTimeAccessList"/>);
## if this component is missing then
## <Ref Func="ConstantTimeAccessList"/> is used for computing the result,
## </Item>
## <Mark><C>ViewObj</C> and <C>PrintObj</C></Mark>
## <Item>
## two functions that print what one wants to be printed when
## <C>View( <A>enum</A> )</C> or <C>Print( <A>enum</A> )</C> is called
## (see <Ref Sect="View and Print"/>),
## if the <C>ViewObj</C> component is missing then the <C>PrintObj</C>
## method is used as a default.
## </Item>
## </List>
## <P/>
## If the result is known to have additional properties such as being
## strictly sorted (see <Ref Func="IsSSortedList"/>) then it can be
## useful to set these properties after the construction of the enumerator,
## before it is used for the first time.
## And in the case that a new sorted enumerator of a domain is implemented
## via <Ref Func="EnumeratorByFunctions" Label="for a domain and a record"/>,
## and this construction is
## installed as a method for the operation <Ref Func="Enumerator"/>,
## then it should be installed also as a method for
## <Ref Func="EnumeratorSorted"/>.
## <P/>
## Note that it is <E>not</E> checked that
## <Ref Func="EnumeratorByFunctions" Label="for a domain and a record"/>
## really returns a dense and duplicate-free list.
## <Ref Func="EnumeratorByFunctions" Label="for a domain and a record"/>
## does <E>not</E> make a shallow copy of <A>record</A>,
## this record is changed in place,
## see <Ref Sect="Creating Objects"/>.
## <P/>
## It would be easy to implement a slightly generalized setup for
## enumerators that need not be duplicate-free (where the three argument
## version of <Ref Func="Position"/> is supported),
## but the resulting overhead for the methods seems not to be justified.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "EnumeratorByFunctions" );
#############################################################################
##
#A UnderlyingCollection( <enum> )
##
## <ManSection>
## <Attr Name="UnderlyingCollection" Arg='enum'/>
##
## <Description>
## An enumerator of a domain can delegate the task to compute its length to
## <C>Size</C> for the underlying domain, and <C>ViewObj</C> and <C>PrintObj</C> methods
## may refer to this domain.
## </Description>
## </ManSection>
##
DeclareAttribute( "UnderlyingCollection", IsListOrCollection );
#############################################################################
##
#F List( <list>[, <func>] ) . . . . . . . list of elements of a collection
#F List( <C> )
##
## <#GAPDoc Label="List:list">
## <ManSection>
## <Func Name="List" Arg='list[, func]' Label="for a list (and a function)"/>
##
## <Description>
## This function returns a new mutable list <C>new</C> of the same length
## as the list <A>list</A> (which may have holes). The entry <C>new[i]</C>
## is unbound if <C><A>list</A>[i]</C> is unbound. Otherwise
## <C>new[i] = <A>func</A>(<A>list</A>[i])</C>. If the argument <A>func</A> is
## omitted, its default is <Ref Func="IdFunc"/>, so this function does the
## same as <Ref Oper="ShallowCopy"/> (see also
## <Ref Sect="Duplication of Lists"/>).
## <P/>
## <Example><![CDATA[
## gap> List( [1,2,3], i -> i^2 );
## [ 1, 4, 9 ]
## gap> List( [1..10], IsPrime );
## [ false, true, true, false, true, false, true, false, false, false ]
## gap> List([,1,,3,4], x-> x > 2);
## [ , false,, true, true ]
## ]]></Example>
## <P/>
## (See also <Ref Func="List" Label="for a collection"/>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
## <#GAPDoc Label="List:coll">
## <ManSection>
## <Func Name="List" Arg='C' Label="for a collection"/>
##
## <Description>
## For a collection <A>C</A> (see <Ref Chap="Collections"/>)
## that is not a list, <Ref Func="List" Label="for a collection"/> returns
## a new mutable list <A>new</A> such that <C>Length( <A>new</A> )</C>
## is the number of different elements of <A>C</A>,
## and <A>new</A> contains the different elements of <A>C</A> in an
## unspecified order which may change for repeated calls.
## <C><A>new</A>[<A>pos</A>]</C> executes in constant time
## (see <Ref Func="IsConstantTimeAccessList"/>),
## and the size of <A>new</A> is proportional to its length.
## The generic method for this case is
## <C>ShallowCopy( Enumerator( <A>C</A> ) )</C>.
## <!-- this is not reasonable since <C>ShallowCopy</C> need not guarantee to return-->
## <!-- a constant time access list-->
## <P/>
## <Example><![CDATA[
## gap> l:= List( Group( (1,2,3) ) );
## [ (), (1,3,2), (1,2,3) ]
## gap> IsMutable( l ); IsSortedList( l ); IsConstantTimeAccessList( l );
## true
## false
## true
## ]]></Example>
## <P/>
## (See also <Ref Func="List" Label="for a list (and a function)"/>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "List" );
DeclareOperation( "ListOp", [ IsListOrCollection ] );
DeclareOperation( "ListOp", [ IsListOrCollection, IsFunction ] );
#############################################################################
##
#O SortedList( <C> )
#O SortedList( <list> )
##
## <#GAPDoc Label="SortedList">
## <ManSection>
## <Oper Name="SortedList" Arg='listorcoll'/>
##
## <Description>
## <Ref Func="SortedList"/> returns a new mutable and dense list <A>new</A>.
## The argument must be a collection or list <A>listorcoll</A> which may
## contain holes but whose elements lie in the same family
## (see <Ref Sect="Families"/>).
## <C>Length( <A>new</A> )</C> is the number of elements of
## <A>listorcoll</A>,
## and <A>new</A> contains the elements in sorted order,
## w.r.t. <C><=</C>.
## <C><A>new</A>[<A>pos</A>]</C> executes in constant time
## (see <Ref Func="IsConstantTimeAccessList"/>),
## and the size of <A>new</A> in memory is proportional to its length.
## <P/>
## <Example><![CDATA[
## gap> l:= SortedList( Group( (1,2,3) ) );
## [ (), (1,2,3), (1,3,2) ]
## gap> IsMutable( l ); IsSortedList( l ); IsConstantTimeAccessList( l );
## true
## true
## true
## gap> SortedList( [ 1, 2, 1,, 3, 2 ] );
## [ 1, 1, 2, 2, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SortedList", [ IsListOrCollection ] );
#############################################################################
##
#O SSortedList( <C> ) . . . . . . . . . . . set of elements of a collection
#O SSortedList( <list> ) . . . . . . . . . . . . . set of elements of a list
#O Set( <C> )
##
## <#GAPDoc Label="SSortedList">
## <ManSection>
## <Oper Name="SSortedList" Arg='listorcoll'/>
## <Oper Name="Set" Arg='C'/>
##
## <Description>
## <Ref Func="SSortedList"/> (<Q>strictly sorted list</Q>) returns a new
## dense, mutable, and duplicate free list <A>new</A>.
## The argument must be a collection or list <A>listorcoll</A>
## which may contain holes but whose elements lie in the same family
## (see <Ref Sect="Families"/>).
## <C>Length( <A>new</A> )</C> is the number of different elements of
## <A>listorcoll</A>,
## and <A>new</A> contains the different elements in strictly sorted order,
## w.r.t. <Ref Func="\<"/>.
## <C><A>new</A>[<A>pos</A>]</C> executes in constant time
## (see <Ref Func="IsConstantTimeAccessList"/>),
## and the size of <A>new</A> in memory is proportional to its length.
## <P/>
## <Ref Func="Set"/> is simply a synonym for <Ref Func="SSortedList"/>.
## <!-- <P/> -->
## <!-- For collections that are not lists, the default method is-->
## <!-- <C>ShallowCopy( EnumeratorSorted( <A>C</A> ) )</C>.-->
## <P/>
## <Example><![CDATA[
## gap> l:= SSortedList( Group( (1,2,3) ) );
## [ (), (1,2,3), (1,3,2) ]
## gap> IsMutable( l ); IsSSortedList( l ); IsConstantTimeAccessList( l );
## true
## true
## true
## gap> SSortedList( [ 1, 2, 1,, 3, 2 ] );
## [ 1, 2, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SSortedList", [ IsListOrCollection ] );
DeclareSynonym( "Set", SSortedList );
#############################################################################
##
#A AsList( <C> ) . . . . . . . . . . . . . list of elements of a collection
#A AsList( <list> ) . . . . . . . . . . . . . . list of elements of a list
##
## <#GAPDoc Label="AsList">
## <ManSection>
## <Attr Name="AsList" Arg='listorcoll'/>
##
## <Description>
## <Ref Func="AsList"/> returns a immutable list <A>imm</A>.
## If the argument is a list (which may contain holes),
## then <C>Length( <A>imm</A> )</C> is the <Ref Func="Length"/> value of
## this list,
## and <A>imm</A> contains the elements (and holes) of of the list
## in the same order.
## If the argument is a collection that is not a list,
## then <C>Length( <A>imm</A> )</C> is the number of different elements
## of this collection, and <A>imm</A> contains the different elements of
## the collection in an unspecified order,
## which may change for repeated calls of <Ref Func="AsList"/>.
## <C><A>imm</A>[<A>pos</A>]</C> executes in constant time
## (see <Ref Func="IsConstantTimeAccessList"/>),
## and the size of <A>imm</A> in memory is proportional to its length.
## <P/>
## If you expect to do many element tests in the resulting list, it might
## be worth to use a sorted list instead, using <Ref Func="AsSSortedList"/>.
## <!-- <P/> -->
## <!-- For both lists and collections, the default method is-->
## <!-- <C>ConstantTimeAccessList( Enumerator( <A>C</A> ) )</C>.-->
## <P/>
## <Example><![CDATA[
## gap> l:= AsList( [ 1, 3, 3,, 2 ] );
## [ 1, 3, 3,, 2 ]
## gap> IsMutable( l ); IsSortedList( l ); IsConstantTimeAccessList( l );
## false
## false
## true
## gap> AsList( Group( (1,2,3), (1,2) ) );
## [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsList", IsListOrCollection );
#############################################################################
##
#A AsSortedList( <C> )
#A AsSortedList( <list> )
##
## <#GAPDoc Label="AsSortedList">
## <ManSection>
## <Attr Name="AsSortedList" Arg='listorcoll'/>
##
## <Description>
## <Ref Func="AsSortedList"/> returns a dense and immutable list <A>imm</A>.
## The argument must be a collection or list <A>listorcoll</A>
## which may contain holes but whose elements lie in the same family
## (see <Ref Sect="Families"/>).
## <C>Length( <A>imm</A> )</C> is the number of elements of the argument,
## and <A>imm</A> contains the elements in sorted order,
## w.r.t. <C><=</C>.
## <C><A>new</A>[<A>pos</A>]</C> executes in constant time
## (see <Ref Func="IsConstantTimeAccessList"/>),
## and the size of <A>imm</A> in memory is proportional to its length.
## <P/>
## The only difference to the operation <Ref Func="SortedList"/>
## is that <Ref Func="AsSortedList"/> returns an <E>immutable</E> list.
## <P/>
## <Example><![CDATA[
## gap> l:= AsSortedList( [ 1, 3, 3,, 2 ] );
## [ 1, 2, 3, 3 ]
## gap> IsMutable( l ); IsSortedList( l ); IsConstantTimeAccessList( l );
## false
## true
## true
## gap> IsSSortedList( l );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsSortedList", IsListOrCollection );
#############################################################################
##
#A AsSSortedList( <C> ) . . . . . . . . . . set of elements of a collection
#A AsSSortedList( <list> ) . . . . . . . . . . . . set of elements of a list
#A AsSet( <C> )
##
## <#GAPDoc Label="AsSSortedList">
## <ManSection>
## <Attr Name="AsSSortedList" Arg='listorcoll'/>
## <Attr Name="AsSet" Arg='listorcoll'/>
##
## <Description>
## <Index Subkey="of a list or collection">elements</Index>
## <Ref Func="AsSSortedList"/> (<Q>as strictly sorted list</Q>) returns
## a dense, immutable, and duplicate free list <A>imm</A>.
## The argument must be a collection or list <A>listorcoll</A>
## which may contain holes but whose elements lie in the same family
## (see <Ref Sect="Families"/>).
## <C>Length( <A>imm</A> )</C> is the number of different elements
## of <A>listorcoll</A>,
## and <A>imm</A> contains the different elements in strictly sorted order,
## w.r.t. <Ref Func="\<"/>.
## <C><A>imm</A>[<A>pos</A>]</C> executes in constant time
## (see <Ref Func="IsConstantTimeAccessList"/>),
## and the size of <A>imm</A> in memory is proportional to its length.
## <P/>
## Because the comparisons required for sorting can be very expensive for
## some kinds of objects, you should use <Ref Func="AsList"/> instead
## if you do not require the result to be sorted.
## <P/>
## The only difference to the operation <Ref Func="SSortedList"/>
## is that <Ref Attr="AsSSortedList"/> returns an <E>immutable</E> list.
## <P/>
## <Ref Attr="AsSet"/> is simply a synonym for <Ref Attr="AsSSortedList"/>.
## <P/>
## In general a function that returns a set of elements is free, in fact
## encouraged, to return a domain instead of the proper set of its elements.
## This allows one to keep a given structure, and moreover the
## representation by a domain object is usually more space efficient.
## <Ref Attr="AsSSortedList"/> must of course <E>not</E> do this,
## its only purpose is to create the proper set of elements.
## <!-- <P/> -->
## <!-- For both lists and collections, the default method is-->
## <!-- <C>ConstantTimeAccessList( EnumeratorSorted( <A>C</A> ) )</C>.-->
## <P/>
## <Example><![CDATA[
## gap> l:= AsSSortedList( l );
## [ 1, 2, 3 ]
## gap> IsMutable( l ); IsSSortedList( l ); IsConstantTimeAccessList( l );
## false
## true
## true
## gap> AsSSortedList( Group( (1,2,3), (1,2) ) );
## [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsSSortedList", IsListOrCollection );
DeclareSynonym( "AsSet", AsSSortedList );
#############################################################################
##
#A AsSSortedListNonstored( <C> )
##
## <ManSection>
## <Attr Name="AsSSortedListNonstored" Arg='C'/>
##
## <Description>
## returns the <Ref Func="AsSSortedList"/> value of the list or collection
## <A>C</A> but ensures that this list
## (nor a permutation or substantial subset) will not be
## stored in attributes of <A>C</A> unless such a list is already stored.
## This permits to obtain an element list once
## without danger of clogging up memory in the long run.
## <P/>
## Because of this guarantee of nonstorage, methods for
## <Ref Func="AsSSortedListNonstored"/> may not default to
## <Ref Func="AsSSortedList"/>, but only vice versa.
## </Description>
## </ManSection>
##
DeclareOperation( "AsSSortedListNonstored", [IsListOrCollection] );
#############################################################################
##
#F Elements( <C> )
##
## <#GAPDoc Label="Elements">
## <ManSection>
## <Func Name="Elements" Arg='C'/>
##
## <Description>
## <Ref Func="Elements"/> does the same as <Ref Func="AsSSortedList"/>,
## that is, the return value is a strictly sorted list of the elements in
## the list or collection <A>C</A>.
## <P/>
## <Ref Func="Elements"/> is only supported for backwards compatibility.
## In many situations, the sortedness of the <Q>element list</Q> for a
## collection is in fact not needed, and one can save a lot of time by
## asking for a list that is <E>not</E> necessarily sorted,
## using <Ref Func="AsList"/>.
## If one is really interested in the strictly sorted list of elements in
## <A>C</A> then one should use <Ref Func="AsSet"/> or
## <Ref Func="AsSSortedList"/> instead.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Elements" );
#############################################################################
##
#F Sum( <list>[, <init>] ) . . . . . . . . . . sum of the elements of a list
#F Sum( <C>[, <init>] ) . . . . . . . . sum of the elements of a collection
#F Sum( <list>, <func>[, <init>] ) . . . . . sum of images under a function
#F Sum( <C>, <func>[, <init>] ) . . . . . . sum of images under a function
##
## <#GAPDoc Label="Sum">
## <ManSection>
## <Func Name="Sum" Arg='listorcoll[, func][, init]'/>
##
## <Description>
## Called with one argument, a dense list or collection <A>listorcoll</A>,
## <Ref Func="Sum"/> returns the sum of the elements of <A>listorcoll</A>
## (see <Ref Chap="Collections"/>).
## <P/>
## Called with a dense list or collection <A>listorcoll</A> and a function
## <A>func</A>, which must be a function taking one argument,
## <Ref Func="Sum"/> applies the function <A>func</A>
## to the elements of <A>listorcoll</A>, and returns the sum of the results.
## In either case <Ref Func="Sum"/> returns <C>0</C> if the first argument
## is empty.
## <P/>
## The general rules for arithmetic operations apply
## (see <Ref Sect="Mutability Status and List Arithmetic"/>),
## so the result is immutable if and only if all summands are immutable.
## <P/>
## If <A>listorcoll</A> contains exactly one element then this element
## (or its image under <A>func</A> if applicable) itself is returned,
## not a shallow copy of this element.
## <P/>
## If an additional initial value <A>init</A> is given,
## <Ref Func="Sum"/> returns the sum of <A>init</A> and the elements of the
## first argument resp. of their images under the function <A>func</A>.
## This is useful for example if the first argument is empty and a different
## zero than <C>0</C> is desired, in which case <A>init</A> is returned.
## <P/>
## <Example><![CDATA[
## gap> Sum( [ 2, 3, 5, 7, 11, 13, 17, 19 ] );
## 77
## gap> Sum( [1..10], x->x^2 );
## 385
## gap> Sum( [ [1,2], [3,4], [5,6] ] );
## [ 9, 12 ]
## gap> Sum( GF(8) );
## 0*Z(2)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Sum" );
#############################################################################
##
#O SumOp( <C> )
#O SumOp( <C>, <func> )
#O SumOp( <C>, <init> )
#O SumOp( <C>, <func>, <init> )
##
## <ManSection>
## <Oper Name="SumOp" Arg='C'/>
## <Oper Name="SumOp" Arg='C, func'/>
## <Oper Name="SumOp" Arg='C, init'/>
## <Oper Name="SumOp" Arg='C, func, init'/>
##
## <Description>
## <C>SumOp</C> is the operation called by <C>Sum</C>
## if <A>C</A> is not an internal list.
## </Description>
## </ManSection>
##
DeclareOperation( "SumOp", [ IsListOrCollection ] );
#############################################################################
##
#F Product( <list>[, <init>] ) . . . . . . product of the elements of a list
#F Product( <C>[, <init>] ) . . . . product of the elements of a collection
#F Product( <list>, <func>[, <init>] ) . product of images under a function
#F Product( <C>, <func>[, <init>] ) . . product of images under a function
##
## <#GAPDoc Label="Product">
## <ManSection>
## <Func Name="Product" Arg='listorcoll[, func][, init]'/>
##
## <Description>
## Called with one argument, a dense list or collection <A>listorcoll</A>,
## <Ref Func="Product"/> returns the product of the elements of
## <A>listorcoll</A> (see <Ref Chap="Collections"/>).
## <P/>
## Called with a dense list or collection <A>listorcoll</A> and a function
## <A>func</A>, which must be a function taking one argument,
## <Ref Func="Product"/> applies the function <A>func</A>
## to the elements of <A>listorcoll</A>, and returns the product of the
## results.
## In either case <Ref Func="Product"/> returns <C>1</C> if the first
## argument is empty.
## <P/>
## The general rules for arithmetic operations apply
## (see <Ref Sect="Mutability Status and List Arithmetic"/>),
## so the result is immutable if and only if all summands are immutable.
## <P/>
## If <A>listorcoll</A> contains exactly one element then this element
## (or its image under <A>func</A> if applicable) itself is returned,
## not a shallow copy of this element.
## <P/>
## If an additional initial value <A>init</A> is given,
## <Ref Func="Product"/> returns the product of <A>init</A> and the elements
## of the first argument resp. of their images under the function
## <A>func</A>.
## This is useful for example if the first argument is empty and a different
## identity than <C>1</C> is desired, in which case <A>init</A> is returned.
## <P/>
## <Example><![CDATA[
## gap> Product( [ 2, 3, 5, 7, 11, 13, 17, 19 ] );
## 9699690
## gap> Product( [1..10], x->x^2 );
## 13168189440000
## gap> Product( [ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) ] );
## (1,4)(2,3)
## gap> Product( GF(8) );
## 0*Z(2)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Product" );
#############################################################################
##
#O ProductOp( <C> )
#O ProductOp( <C>, <func> )
#O ProductOp( <C>, <init> )
#O ProductOp( <C>, <func>, <init> )
##
## <ManSection>
## <Oper Name="ProductOp" Arg='C'/>
## <Oper Name="ProductOp" Arg='C, func'/>
## <Oper Name="ProductOp" Arg='C, init'/>
## <Oper Name="ProductOp" Arg='C, func, init'/>
##
## <Description>
## <C>ProductOp</C> is the operation called by <C>Product</C>
## if <A>C</A> is not an internal list.
## </Description>
## </ManSection>
##
DeclareOperation( "ProductOp", [ IsListOrCollection ] );
#############################################################################
##
#F Filtered( <list>, <func> ) . . . . extract elements that have a property
#F Filtered( <C>, <func> ) . . . . . . extract elements that have a property
##
## <#GAPDoc Label="Filtered">
## <ManSection>
## <Func Name="Filtered" Arg='listorcoll, func'/>
##
## <Description>
## returns a new list that contains those elements of the list or collection
## <A>listorcoll</A> (see <Ref Chap="Collections"/>), respectively,
## for which the unary function <A>func</A> returns <K>true</K>.
## <P/>
## If the first argument is a list, the order of the elements in the result
## is the same as the order of the corresponding elements of this list.
## If an element for which <A>func</A> returns <K>true</K> appears several
## times in the list it will also appear the same number of times
## in the result.
## The argument list may contain holes,
## they are ignored by <Ref Func="Filtered"/>.
## <P/>
## For each element of <A>listorcoll</A>,
## <A>func</A> must return either <K>true</K> or <K>false</K>,
## otherwise an error is signalled.
## <P/>
## The result is a new list that is not identical to any other list.
## The elements of that list however are identical to the corresponding
## elements of the argument list (see <Ref Sect="Identical Lists"/>).
## <P/>
## List assignment using the operator <Ref Func="\{\}"/>
## (see <Ref Sect="List Assignment"/>) can be used to extract
## elements of a list according to indices given in another list.
## <P/>
## <Example><![CDATA[
## gap> Filtered( [1..20], IsPrime );
## [ 2, 3, 5, 7, 11, 13, 17, 19 ]
## gap> Filtered( [ 1, 3, 4, -4, 4, 7, 10, 6 ], IsPrimePowerInt );
## [ 3, 4, 4, 7 ]
## gap> Filtered( [ 1, 3, 4, -4, 4, 7, 10, 6 ],
## > n -> IsPrimePowerInt(n) and n mod 2 <> 0 );
## [ 3, 7 ]
## gap> Filtered( Group( (1,2), (1,2,3) ), x -> Order( x ) = 2 );
## [ (2,3), (1,2), (1,3) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Filtered" );
#############################################################################
##
#O FilteredOp( <C>, <func> )
##
## <ManSection>
## <Oper Name="FilteredOp" Arg='C, func'/>
##
## <Description>
## <C>FilteredOp</C> is the operation called by <C>Filtered</C>
## if <A>C</A> is not an internal list.
## </Description>
## </ManSection>
##
DeclareOperation( "FilteredOp", [ IsListOrCollection, IsFunction ] );
#############################################################################
##
#F Number( <list> )
#F Number( <list>, <func> ) . . . . . . count elements that have a property
#F Number( <C>, <func> ) . . . . . . . . count elements that have a property
##
## <#GAPDoc Label="Number">
## <ManSection>
## <Func Name="Number" Arg='listorcoll[, func]'/>
##
## <Description>
## Called with a list <A>listorcoll</A>, <Ref Func="Number"/> returns the
## number of bound entries in this list.
## For dense lists <Ref Func="Number"/>, <Ref Func="Length"/>,
## and <Ref Func="Size"/> return the same value;
## for lists with holes <Ref Func="Number"/> returns the number of bound
## entries, <Ref Func="Length"/> returns the largest index of a bound entry,
## and <Ref Func="Size"/> signals an error.
## <P/>
## Called with two arguments, a list or collection <A>listorcoll</A> and a
## unary function <A>func</A>, <Ref Func="Number"/> returns the number of
## elements of <A>listorcoll</A> for which <A>func</A> returns <K>true</K>.
## If an element for which <A>func</A> returns <K>true</K> appears several
## times in <A>listorcoll</A> it will also be counted the same number of
## times.
## <P/>
## For each element of <A>listorcoll</A>,
## <A>func</A> must return either <K>true</K> or <K>false</K>,
## otherwise an error is signalled.
## <P/>
## <Ref Func="Filtered"/> allows you to extract the elements of a list
## that have a certain property.
## <P/>
## <Example><![CDATA[
## gap> Number( [ 2, 3, 5, 7 ] );
## 4
## gap> Number( [, 2, 3,, 5,, 7,,,, 11 ] );
## 5
## gap> Number( [1..20], IsPrime );
## 8
## gap> Number( [ 1, 3, 4, -4, 4, 7, 10, 6 ], IsPrimePowerInt );
## 4
## gap> Number( [ 1, 3, 4, -4, 4, 7, 10, 6 ],
## > n -> IsPrimePowerInt(n) and n mod 2 <> 0 );
## 2
## gap> Number( Group( (1,2), (1,2,3) ), x -> Order( x ) = 2 );
## 3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Number" );
#############################################################################
##
#O NumberOp( <C>, <func> )
##
## <ManSection>
## <Oper Name="NumberOp" Arg='C, func'/>
##
## <Description>
## <C>NumberOp</C> is the operation called by <C>Number</C>
## if <A>C</A> is not an internal list.
## </Description>
## </ManSection>
##
DeclareOperation( "NumberOp", [ IsListOrCollection, IsFunction ] );
#############################################################################
##
#F ForAll( <list>, <func> )
#F ForAll( <C>, <func> )
##
## <#GAPDoc Label="ForAll">
## <ManSection>
## <Func Name="ForAll" Arg='listorcoll, func'/>
##
## <Description>
## tests whether the unary function <A>func</A> returns <K>true</K>
## for all elements in the list or collection <A>listorcoll</A>.
## <P/>
## <Example><![CDATA[
## gap> ForAll( [1..20], IsPrime );
## false
## gap> ForAll( [2,3,4,5,8,9], IsPrimePowerInt );
## true
## gap> ForAll( [2..14], n -> IsPrimePowerInt(n) or n mod 2 = 0 );
## true
## gap> ForAll( Group( (1,2), (1,2,3) ), i -> SignPerm(i) = 1 );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ForAll" );
#############################################################################
##
#O ForAllOp( <C>, <func> )
##
## <ManSection>
## <Oper Name="ForAllOp" Arg='C, func'/>
##
## <Description>
## <C>ForAllOp</C> is the operation called by <C>ForAll</C>
## if <A>C</A> is not an internal list.
## </Description>
## </ManSection>
##
DeclareOperation( "ForAllOp", [ IsListOrCollection, IsFunction ] );
#############################################################################
##
#F ForAny( <list>, <func> )
#F ForAny( <C>, <func> )
##
## <#GAPDoc Label="ForAny">
## <ManSection>
## <Func Name="ForAny" Arg='listorcoll, func'/>
##
## <Description>
## tests whether the unary function <A>func</A> returns <K>true</K>
## for at least one element in the list or collection <A>listorcoll</A>.
## <P/>
## <Example><![CDATA[
## gap> ForAny( [1..20], IsPrime );
## true
## gap> ForAny( [2,3,4,5,8,9], IsPrimePowerInt );
## true
## gap> ForAny( [2..14],
## > n -> IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n) );
## false
## gap> ForAny( Integers, i -> i > 0
## > and ForAll( [0,2..4], j -> IsPrime(i+j) ) );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ForAny" );
#############################################################################
##
#O ForAnyOp( <C>, <func> )
##
## <ManSection>
## <Oper Name="ForAnyOp" Arg='C, func'/>
##
## <Description>
## <C>ForAnyOp</C> is the operation called by <C>ForAny</C>
## if <A>C</A> is not an internal list.
## </Description>
## </ManSection>
##
DeclareOperation( "ForAnyOp", [ IsListOrCollection, IsFunction ] );
#############################################################################
##
#O ListX( <arg1>, <arg2>, ... <argn>, <func> )
##
## <#GAPDoc Label="ListX">
## <ManSection>
## <Func Name="ListX" Arg='arg1, arg2, ... argn, func'/>
##
## <Description>
## <Ref Func="ListX"/> returns a new list constructed from the arguments.
## <P/>
## Each of the arguments <A>arg1</A>, <A>arg2</A>, <M>\ldots</M> <A>argn</A>
## must be one of the following:
## <List>
## <Mark>a list or collection</Mark>
## <Item>
## this introduces a new for-loop in the sequence of nested
## for-loops and if-statements;
## </Item>
## <Mark>a function returning a list or collection</Mark>
## <Item>
## this introduces a new for-loop in the sequence of nested
## for-loops and if-statements, where the loop-range depends on
## the values of the outer loop-variables; or
## </Item>
## <Mark>a function returning <K>true</K> or <K>false</K></Mark>
## <Item>
## this introduces a new if-statement in the sequence of nested
## for-loops and if-statements.
## </Item>
## </List>
## <P/>
## The last argument <A>func</A> must be a function,
## it is applied to the values of the loop-variables
## and the results are collected.
## <P/>
## Thus <C>ListX( <A>list</A>, <A>func</A> )</C> is the same as
## <C>List( <A>list</A>, <A>func</A> )</C>,
## and <C>ListX( <A>list</A>, <A>func</A>, x -> x )</C> is the same as
## <C>Filtered( <A>list</A>, <A>func</A> )</C>.
## <P/>
## As a more elaborate example, assume <A>arg1</A> is a list or collection,
## <A>arg2</A> is a function returning <K>true</K> or <K>false</K>,
## <A>arg3</A> is a function returning a list or collection, and
## <A>arg4</A> is another function returning <K>true</K> or <K>false</K>,
## then
## <P/>
## <C><A>result</A> := ListX( <A>arg1</A>, <A>arg2</A>, <A>arg3</A>,
## <A>arg4</A>, <A>func</A> );</C>
## <P/>
## is equivalent to
## <P/>
## <Listing><![CDATA[
## result := [];
## for v1 in arg1 do
## if arg2( v1 ) then
## for v2 in arg3( v1 ) do
## if arg4( v1, v2 ) then
## Add( result, func( v1, v2 ) );
## fi;
## od;
## fi;
## od;
## ]]></Listing>
## <P/>
## The following example shows how <Ref Func="ListX"/> can be used to
## compute all pairs and all strictly sorted pairs of elements in a list.
## <P/>
## <Example><![CDATA[
## gap> l:= [ 1, 2, 3, 4 ];;
## gap> pair:= function( x, y ) return [ x, y ]; end;;
## gap> ListX( l, l, pair );
## [ [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 1 ], [ 2, 2 ],
## [ 2, 3 ], [ 2, 4 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ], [ 3, 4 ],
## [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ] ]
## ]]></Example>
## <P/>
## In the following example, <Ref Func="\<"/> is the comparison
## operation:
## <P/>
## <Example><![CDATA[
## gap> ListX( l, l, \<, pair );
## [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 2, 4 ], [ 3, 4 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ListX" );
#############################################################################
##
#O SetX( <arg1>, <arg2>, ... <func> )
##
## <#GAPDoc Label="SetX">
## <ManSection>
## <Func Name="SetX" Arg='arg1, arg2, ... func'/>
##
## <Description>
## The only difference between <Ref Func="SetX"/> and <Ref Func="ListX"/>
## is that the result list of <Ref Func="SetX"/> is strictly sorted.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SetX" );
#############################################################################
##
#O SumX( <arg1>, <arg2>, ... <func> )
##
## <#GAPDoc Label="SumX">
## <ManSection>
## <Func Name="SumX" Arg='arg1, arg2, ... func'/>
##
## <Description>
## <Ref Func="SumX"/> returns the sum of the elements in the list obtained
## by <Ref Func="ListX"/> when this is called with the same arguments.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SumX" );
#############################################################################
##
#O ProductX( <arg1>, <arg2>, ... <func> )
##
## <#GAPDoc Label="ProductX">
## <ManSection>
## <Func Name="ProductX" Arg='arg1, arg2, ... func'/>
##
## <Description>
## <Ref Func="ProductX"/> returns the product of the elements in the list
## obtained by <Ref Func="ListX"/> when this is called with the same
## arguments.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ProductX" );
#############################################################################
##
#O Perform( <list>, <func>)
##
## <#GAPDoc Label="Perform">
## <ManSection>
## <Func Name="Perform" Arg='list, func'/>
##
## <Description>
## <Ref Func="Perform"/> applies the function <A>func</A> to every element
## of the list <A>list</A>, discarding any return values.
## It does not return a value.
## <P/>
## <Example><![CDATA[
## gap> l := [1, 2, 3];; Perform(l,
## > function(x) if IsPrimeInt(x) then Print(x,"\n"); fi; end);
## 2
## 3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Perform" );
#############################################################################
##
#O IsSubset( <C1>, <C2> ) . . . . . . . . . test for subset of collections
##
## <#GAPDoc Label="IsSubset">
## <ManSection>
## <Oper Name="IsSubset" Arg='C1, C2'/>
##
## <Description>
## <Index Subkey="for collections">subset test</Index>
## <Ref Oper="IsSubset"/> returns <K>true</K> if <A>C2</A>,
## which must be a collection, is a <E>subset</E> of <A>C1</A>,
## which also must be a collection, and <K>false</K> otherwise.
## <P/>
## <A>C2</A> is considered a subset of <A>C1</A> if and only if each element
## of <A>C2</A> is also an element of <A>C1</A>.
## That is <Ref Oper="IsSubset"/> behaves as if implemented as
## <C>IsSubsetSet( AsSSortedList( <A>C1</A> ), AsSSortedList( <A>C2</A> ) )</C>,
## except that it will also sometimes, but not always,
## work for infinite collections,
## and that it will usually work much faster than the above definition.
## Either argument may also be a proper set
## (see <Ref Sect="Sorted Lists and Sets"/>).
## <P/>
## <Example><![CDATA[
## gap> IsSubset( Rationals, Integers );
## true
## gap> IsSubset( Integers, [ 1, 2, 3 ] );
## true
## gap> IsSubset( Group( (1,2,3,4) ), [ (1,2,3) ] );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsSubset", [ IsListOrCollection, IsListOrCollection ] );
#############################################################################
##
#F Intersection( <C1>, <C2> ... ) . . . . . . . intersection of collections
#F Intersection( <list> ) . . . . . . . . . . . intersection of collections
#O Intersection2( <C1>, <C2> ) . . . . . . . . . intersection of collections
##
## <#GAPDoc Label="Intersection">
## <ManSection>
## <Heading>Intersection</Heading>
## <Func Name="Intersection" Arg='C1, C2 ...'
## Label="for various collections"/>
## <Func Name="Intersection" Arg='list' Label="for a list"/>
## <Oper Name="Intersection2" Arg='C1, C2'/>
##
## <Description>
## <Index Subkey="of collections">intersection</Index>
## In the first form
## <Ref Func="Intersection" Label="for various collections"/> returns the
## intersection of the collections <A>C1</A>, <A>C2</A>, etc.
## In the second form <A>list</A> must be a <E>nonempty</E> list of
## collections and <Ref Func="Intersection" Label="for a list"/> returns
## the intersection of those collections.
## Each argument or element of <A>list</A> respectively may also be a
## homogeneous list that is not a proper set,
## in which case <Ref Func="Intersection" Label="for a list"/> silently
## applies <Ref Func="Set"/> to it first.
## <P/>
## The result of <Ref Func="Intersection" Label="for a list"/> is the set
## of elements that lie in every of the collections <A>C1</A>, <A>C2</A>,
## etc.
## If the result is a list then it is mutable and new, i.e., not identical
## to any of <A>C1</A>, <A>C2</A>, etc.
## <P/>
## Methods can be installed for the operation <Ref Func="Intersection2"/>
## that takes only two arguments.
## <Ref Func="Intersection" Label="for a list"/> calls
## <Ref Func="Intersection2"/>.
## <P/>
## Methods for <Ref Func="Intersection2"/> should try to maintain as much
## structure as possible, for example the intersection of two permutation
## groups is again a permutation group.
## <P/>
## <Example><![CDATA[
## gap> # this is one of the rare cases where the intersection of two
## gap> # infinite domains works ('CF' is a shorthand for 'CyclotomicField'):
## gap> Intersection( CyclotomicField(9), CyclotomicField(12) );
## CF(3)
## gap> D12 := Group( (2,6)(3,5), (1,2)(3,6)(4,5) );;
## gap> Intersection( D12, Group( (1,2), (1,2,3,4,5) ) );
## Group([ (1,5)(2,4) ])
## gap> Intersection( D12, [ (1,3)(4,6), (1,2)(3,4) ] )
## > ; # note that the second argument is not a proper set
## [ (1,3)(4,6) ]
## gap> # although the result is mathematically a group it is returned as a
## gap> # proper set because the second argument is not regarded as a group:
## gap> Intersection( D12, [ (), (1,2)(3,4), (1,3)(4,6), (1,4)(5,6) ] );
## [ (), (1,3)(4,6) ]
## gap> Intersection( Group( () ), [1,2,3] );
## [ ]
## gap> Intersection( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] )
## > ; # two or more lists or collections as arguments are legal
## [ ]
## gap> Intersection( [ [1,2,4], [2,3,4], [1,3,4] ] )
## > ; # or one list of lists or collections
## [ 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Intersection" );
DeclareOperation( "Intersection2",
[ IsListOrCollection, IsListOrCollection ] );
#############################################################################
##
#F Union( <C1>, <C2> ... ) . . . . . . . . . . . . . . union of collections
#F Union( <list> ) . . . . . . . . . . . . . . . . . . union of collections
#O Union2( <C1>, <C2> ) . . . . . . . . . . . . . . . union of collections
##
## <#GAPDoc Label="Union">
## <ManSection>
## <Heading>Union</Heading>
## <Func Name="Union" Arg='C1, C2 ...' Label="for various collections"/>
## <Func Name="Union" Arg='list' Label="for a list"/>
## <Oper Name="Union2" Arg='C1, C2'/>
##
## <Description>
## <Index Subkey="of collections">union</Index>
## In the first form <Ref Func="Union" Label="for various collections"/>
## returns the union of the collections <A>C1</A>, <A>C2</A>, etc.
## In the second form <A>list</A> must be a list of collections
## and <Ref Func="Union" Label="for a list"/> returns the union of those
## collections.
## Each argument or element of <A>list</A> respectively may also be a
## homogeneous list that is not a proper set,
## in which case <Ref Func="Union" Label="for a list"/> silently applies
## <Ref Func="Set"/> to it first.
## <P/>
## The result of <Ref Func="Union" Label="for a list"/> is the set of
## elements that lie in any of the collections <A>C1</A>, <A>C2</A>, etc.
## If the result is a list then it is mutable and new, i.e., not identical
## to any of <A>C1</A>, <A>C2</A>, etc.
## <P/>
## Methods can be installed for the operation <Ref Oper="Union2"/>
## that takes only two arguments.
## <Ref Func="Union" Label="for a list"/> calls <Ref Func="Union2"/>.
## <P/>
## <Example><![CDATA[
## gap> Union( [ (1,2,3), (1,2,3,4) ], Group( (1,2,3), (1,2) ) );
## [ (), (2,3), (1,2), (1,2,3), (1,2,3,4), (1,3,2), (1,3) ]
## gap> Union( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] )
## > ; # two or more lists or collections as arguments are legal
## [ 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 20, 25 ]
## gap> Union( [ [1,2,4], [2,3,4], [1,3,4] ] )
## > ; # or one list of lists or collections
## [ 1, 2, 3, 4 ]
## gap> Union( [ ] );
## [ ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Union" );
DeclareOperation( "Union2", [ IsListOrCollection, IsListOrCollection ] );
#############################################################################
##
#O Difference( <C1>, <C2> ) . . . . . . . . . . . difference of collections
##
## <#GAPDoc Label="Difference">
## <ManSection>
## <Oper Name="Difference" Arg='C1, C2'/>
##
## <Description>
## <Index Subkey="of collections">set difference</Index>
## <Ref Func="Difference"/> returns the set difference of the collections
## <A>C1</A> and <A>C2</A>.
## Either argument may also be a homogeneous list that is not a proper set,
## in which case <Ref Func="Difference"/> silently applies <Ref Func="Set"/>
## to it first.
## <P/>
## The result of <Ref Func="Difference"/> is the set of elements that lie in
## <A>C1</A> but not in <A>C2</A>.
## Note that <A>C2</A> need not be a subset of <A>C1</A>.
## The elements of <A>C2</A>, however, that are not elements of <A>C1</A>
## play no role for the result.
## If the result is a list then it is mutable and new, i.e., not identical
## to <A>C1</A> or <A>C2</A>.
## <P/>
## <Example><![CDATA[
## gap> Difference( [ (1,2,3), (1,2,3,4) ], Group( (1,2,3), (1,2) ) );
## [ (1,2,3,4) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Difference", [ IsListOrCollection, IsListOrCollection ] );
#############################################################################
##
#P CanEasilyCompareElements( <obj> )
#F CanEasilyCompareElementsFamily( <fam> )
#P CanEasilySortElements( <obj> )
#F CanEasilySortElementsFamily( <fam> )
##
## <#GAPDoc Label="CanEasilyCompareElements">
## <ManSection>
## <Prop Name="CanEasilyCompareElements" Arg='obj'/>
## <Func Name="CanEasilyCompareElementsFamily" Arg='fam'/>
## <Prop Name="CanEasilySortElements" Arg='obj'/>
## <Func Name="CanEasilySortElementsFamily" Arg='fam'/>
##
## <Description>
## For some objects a <Q>normal form</Q> is hard to compute
## and thus equality of elements of a domain might be expensive to test.
## Therefore &GAP; provides a (slightly technical) property with which an
## algorithm can test whether an efficient equality test is available
## for elements of a certain kind.
## <P/>
## <Ref Func="CanEasilyCompareElements"/> indicates whether the elements in
## the family <A>fam</A> of <A>obj</A> can be easily compared with
## <Ref Func="\="/>.
## <P/>
## The default method for this property is to ask the family of <A>obj</A>,
## the default method for the family is to return <K>false</K>.
## <P/>
## The ability to compare elements may depend on the successful computation
## of certain information. (For example for finitely presented groups it
## might depend on the knowledge of a faithful permutation representation.)
## This information might change over time and thus it might not be a good
## idea to store a value <K>false</K> too early in a family. Instead the
## function <Ref Func="CanEasilyCompareElementsFamily"/> should be called
## for the family of <A>obj</A> which returns <K>false</K> if the value of
## <Ref Func="CanEasilyCompareElements"/> is not known for the family
## without computing it. (This is in fact what the above mentioned family
## dispatch does.)
## <P/>
## If a family knows ab initio that it can compare elements this property
## should be set as implied filter <E>and</E> filter for the family
## (the 3rd and 4th argument of <Ref Func="NewFamily"/>
## respectively).
## This guarantees that code which directly asks the family gets a right
## answer.
## <P/>
## The property <Ref Func="CanEasilySortElements"/> and the function
## <Ref Func="CanEasilySortElementsFamily"/> behave exactly in the same way,
## except that they indicate that objects can be compared via
## <Ref Func="\<"/>.
## This property implies <Ref Func="CanEasilyCompareElements"/>,
## as the ordering must be total.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "CanEasilyCompareElements", IsObject );
DeclareGlobalFunction( "CanEasilyCompareElementsFamily" );
DeclareProperty( "CanEasilySortElements", IsObject );
DeclareGlobalFunction( "CanEasilySortElementsFamily" );
InstallTrueMethod(CanEasilyCompareElements,CanEasilySortElements);
#############################################################################
##
#O CanComputeIsSubset( <A>, <B> )
##
## <#GAPDoc Label="CanComputeIsSubset">
## <ManSection>
## <Oper Name="CanComputeIsSubset" Arg='A, B'/>
##
## <Description>
## This filter indicates that &GAP; can test (via <Ref Func="IsSubset"/>)
## whether <A>B</A> is a subset of <A>A</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CanComputeIsSubset", [IsObject,IsObject] );
#############################################################################
##
#F CanComputeSize( <dom> )
##
## <#GAPDoc Label="CanComputeSize">
## <ManSection>
## <Func Name="CanComputeSize" Arg='dom'/>
##
## <Description>
## This filter indicates whether the size of the domain <A>dom</A>
## (which might be <Ref Var="infinity"/>) can be computed.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "CanComputeSize" );
InstallTrueMethod( CanComputeSize, HasSize );
DeclareOperation( "Randomizer", [IsCollection] );
DeclareOperation( "CheapRandomizer", [IsCollection] );
DeclareAttribute( "RandomizerAttr", IsCollection );
DeclareAttribute( "CheapRandomizerAttr", IsCollection );
# to allow for recusive calls
DeclareGlobalFunction("JoinRanges");
#############################################################################
##
#E
|