/usr/share/gap/lib/clasperm.gi is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 | #############################################################################
##
#W clasperm.gi GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the functions that calculate ordinary and rational
## classes for permutation groups.
##
#############################################################################
##
#M Enumerator( <xorb> ) . . . . . . . . . for conj. classes in perm. groups
##
## The only difference to the enumerator for external orbits is a better
## `Position' (and `PositionCanonical') method.
##
BindGlobal( "NumberElement_ConjugacyClassPermGroup", function( enum, elm )
local xorb, G, rep;
xorb := UnderlyingCollection( enum );
G := ActingDomain( xorb );
rep := RepOpElmTuplesPermGroup( true, G, [ elm ],
[ Representative( xorb ) ],
TrivialSubgroup( G ), StabilizerOfExternalSet( xorb ) );
if rep = fail then
return fail;
else
return PositionCanonical( enum!.rightTransversal, rep ^ -1 );
fi;
end );
InstallMethod( Enumerator,
[ IsConjugacyClassPermGroupRep ],
xorb -> EnumeratorByFunctions( xorb, rec(
NumberElement := NumberElement_ConjugacyClassPermGroup,
ElementNumber := ElementNumber_ExternalOrbitByStabilizer,
rightTransversal := RightTransversal( ActingDomain( xorb ),
StabilizerOfExternalSet( xorb ) ) ) ) );
#############################################################################
##
#M <cl1> = <cl2> . . . . . . . . . . . . . . . . . . . for conjugacy classes
##
InstallMethod( \=,"classes for perm group", IsIdenticalObj,
[ IsConjugacyClassPermGroupRep, IsConjugacyClassPermGroupRep ],
function( cl1, cl2 )
if not IsIdenticalObj( ActingDomain( cl1 ), ActingDomain( cl2 ) ) then
TryNextMethod();
fi;
return RepOpElmTuplesPermGroup( true, ActingDomain( cl1 ),
[ Representative( cl1 ) ],
[ Representative( cl2 ) ],
StabilizerOfExternalSet( cl1 ),
StabilizerOfExternalSet( cl2 ) ) <> fail;
end );
#############################################################################
##
#M <g> in <cl> . . . . . . . . . . . . . . . . . . . . for conjugacy classes
##
InstallMethod( \in,"perm class rep", IsElmsColls,
[ IsPerm, IsConjugacyClassPermGroupRep ],
function( g, cl )
local G;
if HasAsList(cl) or HasAsSSortedList(cl) then
TryNextMethod();
fi;
G := ActingDomain( cl );
return RepOpElmTuplesPermGroup( true, ActingDomain( cl ),
[ g ], [ Representative( cl ) ],
TrivialSubgroup( G ),
StabilizerOfExternalSet( cl ) ) <> fail;
end );
#############################################################################
##
#M Enumerator( <rcl> ) . . . . . . . . . of rational class in a perm. group
##
## The only difference to the enumerator for rational classes is a better
## `Position' (and `PositionCanonical') method.
##
BindGlobal( "NumberElement_RationalClassPermGroup", function( enum, elm )
local rcl, G, rep, gal, T, pow, t;
rcl := UnderlyingCollection( enum );
G := ActingDomain( rcl );
rep := Representative( rcl );
gal := RightTransversalInParent( GaloisGroup( rcl ) );
T := enum!.rightTransversal;
for pow in [ 1 .. Length( gal ) ] do
# if gal[pow]=0 then the rep is the identity , no need to worry.
t := RepOpElmTuplesPermGroup( true, G,
[ elm ], [ rep ^ Int( gal[ pow ] ) ],
TrivialSubgroup( G ),
StabilizerOfExternalSet( rcl ) );
if t <> fail then
break;
fi;
od;
if t = fail then
return fail;
else
return ( pow - 1 ) * Length( T ) + PositionCanonical( T, t ^ -1 );
fi;
end );
InstallMethod( Enumerator,
[ IsRationalClassPermGroupRep ],
rcl -> EnumeratorByFunctions( rcl, rec(
NumberElement := NumberElement_RationalClassPermGroup,
ElementNumber := ElementNumber_RationalClassGroup,
rightTransversal := RightTransversal( ActingDomain( rcl ),
StabilizerOfExternalSet( rcl ) ) ) ) );
InstallOtherMethod( CentralizerOp, [ IsRationalClassGroupRep ],
StabilizerOfExternalSet );
#############################################################################
##
#M <cl1> = <cl2> . . . . . . . . . . . . . . . . . . . for rational classes
##
InstallMethod( \=, IsIdenticalObj, [ IsRationalClassPermGroupRep,
IsRationalClassPermGroupRep ],
function( cl1, cl2 )
if ActingDomain( cl1 ) <> ActingDomain( cl2 ) then
TryNextMethod();
fi;
# the Galois group of the identity is <0>, therefore we have to do this
# extra test.
return Order(Representative(cl1))=Order(Representative(cl2)) and
ForAny( RightTransversalInParent( GaloisGroup( cl1 ) ), e ->
RepOpElmTuplesPermGroup( true, ActingDomain( cl1 ),
[ Representative( cl1 ) ],
[ Representative( cl2 ) ^ Int( e ) ],
StabilizerOfExternalSet( cl1 ),
StabilizerOfExternalSet( cl2 ) ) <> fail );
end );
#############################################################################
##
#M <g> in <cl> . . . . . . . . . . . . . . . . . . . . for rational classes
##
InstallMethod( \in, true, [ IsPerm, IsRationalClassPermGroupRep ], 0,
function( g, cl )
local G;
G := ActingDomain( cl );
# the Galois group of the identity is <0>, therefore we have to do this
# extra test.
return Order(Representative(cl))=Order(g) and
ForAny( RightTransversalInParent( GaloisGroup( cl ) ), e ->
RepOpElmTuplesPermGroup( true, G,
[ g ^ Int( e ) ],
[ Representative( cl ) ],
TrivialSubgroup( G ),
StabilizerOfExternalSet( cl ) ) <> fail );
end );
#############################################################################
##
#F CompleteGaloisGroupPElement( <cl>, <gal>, <power>, <p> ) add the p'-part
##
## This function assumes that the <p>-part of the Galois group of the
## rational class <cl> is already bound to '<cl>.galoisGroup'. It then
## computes the <p>'-part and finds an element of the normalizer which
## induces an inner automorphism representing the generating residue of the
## Galois group. <power> must the <p>-th power of <cl> . If <p> = 2, there
## is nothing to be done, since the Galois group is a 2-group then.
##
InstallGlobalFunction( CompleteGaloisGroupPElement, function( class, gal, power, p )
local G, rep, order, F,
phi, # size of the prime residue class group
primitiveRoot, # generator of the cyclic prime residue class group
sizeKnownPart, # size of the known part of the Galois group
sizeUnknownPart, # size of the unknown part of the Galois group
generatorUnknownPart,
# generator of the unknown part of the prime
# residue class group, whose powers are tested
# one by one
exp, # some power of 'generatorP_Part'
div, # divisors of $p-1$
q, # variable used in division test
fusingElement, # element that does the generating automorphism
i; # loop variable
# If $p=2$, there is nothing to do.
if p > 2 then
G := ActingDomain( class );
rep := Representative( class );
order := Order( rep );
F := FamilyObj( One( ZmodnZ( order ) ) );
# <power> = 1 means that the power is the identity class.
if power = 1 then
power := RationalClass( G, One( G ) );
SetStabilizerOfExternalSet( power, G );
SetGaloisGroup( power, GroupByPrimeResidues( [ ], 1 ) );
power!.fusingElement := One( G );
fi;
# Get the size of the prime residue class group and of the known part
# of the Galois group (already known from the calculation in the
# Sylow subgroup).
phi := order / p * ( p - 1 );
sizeKnownPart := Size( gal );
sizeUnknownPart := GcdInt( p - 1, phi / sizeKnownPart );
primitiveRoot := ZmodnZObj( F, PrimitiveRootMod( order ) );
generatorUnknownPart := primitiveRoot ^ ( phi / sizeUnknownPart );
q := Size( G ) / Size( StabilizerOfExternalSet( class ) ) /
sizeKnownPart;
# Now run through all the divisors <d> of 'sizeUnknownPart' testing
# if there is an automorphism of order 'sizeKnownPart * <d>'.
div := DivisorsInt( sizeUnknownPart );
i := Length( div ) + 1;
fusingElement := fail;
repeat
i := i - 1;
# If such an automorphism exists, its order times the centralizer
# order must divide the group order.
if q mod div[ i ] = 0 then
exp := generatorUnknownPart ^ ( sizeUnknownPart/div[i] );
# If $C_G(g) = C_G(g^p)$, then Gal(<g>) must be generated
# by a power of the generator of Gal(<g>^<p>).
if Size( StabilizerOfExternalSet( class ) ) =
Size( StabilizerOfExternalSet( power ) ) then
if sizeKnownPart*div[i]>Size(GaloisGroup(power)) then
fusingElement := fail;
else
fusingElement := power!.fusingElement ^
(Size(GaloisGroup(power)) /
(sizeKnownPart*div[i]));
if rep ^ fusingElement <> rep ^ Int( exp ) then
fusingElement := fail;
fi;
fi;
elif order = p
or LogMod( Int( exp ), PrimitiveRootMod( order / p ),
order / p ) mod
IndexInParent( GaloisGroup( power ) ) = 0 then
if IsPerm( rep ) then
fusingElement := RepOpElmTuplesPermGroup( true, G,
[ rep ], [ rep ^ Int( exp ) ],
StabilizerOfExternalSet( class ),
StabilizerOfExternalSet( class ) );
else
fusingElement := RepresentativeAction( G,
rep, rep ^ Int( exp ) );
fi;
fi;
fi;
until fusingElement <> fail;
# Construct the Galois group as subgroup of a prime residue class
# group and enter the conjugating element which induces the
# generating automorphism into the class record.
gal := GroupByPrimeResidues(
[ primitiveRoot ^ ( phi / sizeKnownPart / div[ i ] ) ],
order );
class!.fusingElement := fusingElement;
fi;
return gal;
end );
#############################################################################
##
#F RatClasPElmArrangeClasses( <T>, <list>, <roots>, <power> )
##
InstallGlobalFunction( RatClasPElmArrangeClasses, function( T, list, roots, power )
local i, j, allRoots;
allRoots := [ power ];
for i in [ 2 .. Length( T ) ] do
if T[ i ].power = power then
j := Length( list ) + 1;
list[ j ] := i;
roots[ j ] := [ ];
Append( roots[ j ],RatClasPElmArrangeClasses(T,list,roots,i));
Append( allRoots, roots[ j ] );
fi;
od;
return allRoots;
end );
#############################################################################
##
#F SortRationalClasses( <rationalClasses>, <p> ) . . sort a list of classes
##
## Sort the classes according to increasing order, then decreasing <p>-part
## of centralizer order, then decreasing <p>-part of Galois group order.
##
InstallGlobalFunction( SortRationalClasses, function( rationalClasses, p )
Sort( rationalClasses, function( cl1, cl2 )
local ppart;
if Order( cl1.representative ) <
Order( cl2.representative ) then
return true;
elif Order( cl1.representative ) >
Order( cl2.representative ) then
return false;
else
ppart := p ^ LogInt( Size( cl1.centralizer ), p );
if Size( cl2.centralizer ) mod ppart <> 0 then
return true;
elif Size( cl2.centralizer ) mod ( ppart * p ) = 0 then
return false;
else
ppart := p ^ LogInt( Size( cl1!.galoisGroup ), p );
return Size( cl2!.galoisGroup ) mod ppart <> 0;
fi;
fi;
end );
end );
#############################################################################
##
#F FusionRationalClassesPSubgroup( <N>, <S>, <rationalClasses> ) pre-fusion
##
InstallGlobalFunction( FusionRationalClassesPSubgroup, function( N, S, rationalClasses )
local representatives, classreps, classimages, fusedClasses,
gens, gensS, gensNmodS, genimages, gen,
prm, i, orbs, orb, cl, pos, porb;
if Size( N ) > Size( S ) then
# Construct the fusing operation of the group <N>.
representatives := List( rationalClasses, cl -> cl.representative );
classreps := [ ];
# gens := TryPcgsPermGroup( [ N, S, TrivialSubgroup( N ) ],
# false, false, false );
# if not IsPcgs( gens ) then
gens := GeneratorsOfGroup( N );
# fi;
gensS := [ ]; gensNmodS := [ ];
for gen in gens do
if gen in S then
Add( gensS, gen );
else
Add( gensNmodS, gen );
Append( classreps, OnTuples( representatives, gen ) );
fi;
od;
classimages := List( RationalClassesSolvableGroup( S, 1,
rec(candidates:= classreps) ),
cl -> cl.representative );
genimages := [ ];
for i in [ 1 .. Length( gensNmodS ) ] do
prm := List( [ 1 + ( i - 1 ) * Length( rationalClasses )
.. i * Length( rationalClasses ) ],
x -> Position( representatives, classimages[ x ] ) );
Add( genimages, PermList( prm ) );
od;
orbs := ExternalOrbitsStabilizers( N,
[ 1 .. Length( rationalClasses ) ],
Concatenation( gensNmodS, gensS ),
Concatenation( genimages, List( gensS, g -> () ) ) );
# `genimages' arose from `PermList'
fusedClasses := [ ];
for orb in orbs do
cl := rationalClasses[ Representative( orb ) ];
#
#T We may *NOT* set a known (larger) centralizer here as the centralizers
# themselves are used later to arrange the classes correctly (Lemma 3.3 in
# Heiko's diploma thesis, page 59/60). AH
#
# cl.centralizer := Centralizer
# ( StabilizerOfExternalSet( orb ), cl.representative,
# cl.centralizer );
Add( fusedClasses, cl );
od;
# Update the `.power' entries.
porb := [ ];
for i in [ 1 .. Length( fusedClasses ) ] do
pos := Position( representatives,
fusedClasses[ i ].power.representative );
porb[ i ] := PositionProperty( orbs, o -> pos in AsList( o ) );
od;
for i in [ 1 .. Length( fusedClasses ) ] do
fusedClasses[ i ].power := fusedClasses[ porb[ i ] ];
od;
return fusedClasses;
else
return rationalClasses;
fi;
end );
#############################################################################
##
#F RationalClassesPElements( <G>, <p> ) . . rational classes of p-elements
##
InstallGlobalFunction( RationalClassesPElements, function( arg )
local G, # the group
p, # the prime
minprime, # is <p> the minimal prime dividing $|G|$?
sumSizes, # sum of all class lengths known so far, optional
rationalClasses, # rational classes of <p>-elements, result
S, # Sylow <p> subgroup of <G>
gen, # generator of <S> in the cyclic case
N, # solvable subgroup of N_G(S)
rationalSClasses,# rational <S>-classes under conjugation by <N>
list, # list of class indices for order of treatment
roots, # list of indices of roots of a class
found, # classes already found
movedTo, # list of new positions of fused classes
power, gal, # power and Galois group of current class
i, j, cl, Scl; # loop variables
Error("`RationalClassesPElements' is not guaranteed to work");
# Get the arguments.
G := arg[ 1 ];
p := arg[ 2 ];
minprime := p = 2 or p = Set( FactorsInt( Size( G ) ) )[ 1 ];
if Length( arg ) > 2 then sumSizes := arg[ 3 ];
else sumSizes := -1; fi;
Info( InfoClasses, 1, "Calculating Sylow ", p, "-subgroup of |G| = ",
Size( G ) );
S := SylowSubgroup( G, p );
# Treat the cyclic case.
if IsCyclic( S ) then
# Find a generator that generates the whole cyclic group.
if IsTrivial( S ) then
gen := One( S );
else
gen := First( GeneratorsOfGroup( S ),
gen -> Order( gen ) = Size( S ) );
fi;
rationalClasses := [ ];
j := LogInt( Size( S ), p );
for i in [ 1 .. j ] do
cl := RationalClass( G, gen ^ ( p ^ ( j - i ) ) );
SetStabilizerOfExternalSet( cl, Centralizer( G,
Representative( cl ), S ) );
gal := GroupByPrimeResidues( [ ], p ^ i );
if i = 1 then power := 1;
else power := rationalClasses[ i - 1 ]; fi;
SetGaloisGroup( cl, CompleteGaloisGroupPElement
( cl, gal, power, p ) );
Add( rationalClasses, cl );
od;
return rationalClasses;
fi;
N := Normalizer( G, S );
# Special treatment for elementary abelian Sylow subgroups.
if IsElementaryAbelian( S ) then
rationalClasses := RationalClassesInEANS( N, S );
rationalSClasses := [ ];
for cl in rationalClasses do
Scl := rec( representative := Representative( cl ),
centralizer := StabilizerOfExternalSet( cl ),
galoisGroup := GroupByPrimeResidues( [ ],
Order( Representative( cl ) ) ),
power := rec( representative := One( S ) ) );
Add( rationalSClasses, Scl );
od;
else
Info( InfoClasses, 1,
"Calculating rational classes in Sylow subgroup" );
rationalSClasses := RationalClassesSolvableGroup( S, 3 );
# Fuse the classes with the Sylow normalizer.
rationalSClasses := FusionRationalClassesPSubgroup
( N, S, rationalSClasses );
fi;
# Sort the classes. Change the `.power' entries so that they contain the
# index of the power class.
SortRationalClasses( rationalSClasses, p );
for cl in rationalSClasses do
cl.power := PositionProperty( rationalSClasses,
c -> c.representative = cl.power.representative );
od;
Info( InfoClasses, 1, Length( rationalSClasses ), " classes to fuse" );
# Determine the order in which to process the <S>-classes.
list := [ 1 ];
roots := [ [ ] ];
RatClasPElmArrangeClasses( rationalSClasses, list, roots, 1 );
found := [ 1 ];
movedTo := [ 0 ];
# Make <G>-classes out of the <N>-classes, putting them in a new list.
rationalClasses := [ ];
j := 1;
while j < Length( list )
and sumSizes < Size( G ) do
j := j + 1;
if not list[ j ] in found then
Scl := rationalSClasses[ list[ j ] ];
# If the class is central, since we have already considered the
# Sylow normalizer, it will not fuse to any other central class,
# so it can be added to the list.
if IsBound( Scl.isCentral ) then
i := fail;
else
i := PositionProperty( rationalClasses, c -> ForAny
( RightTransversalInParent( Scl.galoisGroup ), e ->
RepOpElmTuplesPermGroup( true, G,
[ Scl.representative ],
[ Representative( c ) ^ Int( e ) ],
Scl.centralizer,
StabilizerOfExternalSet( c ) ) <> fail ) );
fi;
if i = fail then
i := Length( rationalClasses ) + 1;
fi;
movedTo[ list[ j ] ] := i;
if i > Length( rationalClasses ) then
cl := RationalClass( G, Scl.representative );
SetStabilizerOfExternalSet( cl, Centralizer( G,
Representative( cl ), Scl.centralizer ) );
if movedTo[ Scl.power ] = 0 then
power := 1;
else
power := rationalClasses[ movedTo[ Scl.power ] ];
fi;
if minprime or IsBound( Scl.isCentral ) then
SetGaloisGroup( cl, Scl.galoisGroup );
else
SetGaloisGroup( cl, CompleteGaloisGroupPElement
( cl, Scl.galoisGroup, power, p ) );
fi;
Add( rationalClasses, cl );
if sumSizes >= 0 then
sumSizes := sumSizes + Size( cl );
Info( InfoClasses, 2, "Still missing ",
Size( G ) - sumSizes, " elements" );
fi;
else
UniteSet( found, roots[ j ] );
fi;
fi;
od;
return rationalClasses;
end );
#############################################################################
##
#F RationalClassesPermGroup(<G>[,<primes>]) rational classes for perm groups
##
InstallGlobalFunction( RationalClassesPermGroup, function( G, primes )
local rationalClasses, # rational classes of <G>, result
p, # next (largest) prime to be processed
pRationalClasses, # rational classes of <p>-elements in <G>
pClass, # one class from <pRationalClasses>
z, r, # <z> is the repr. of <pClass> of order <p>^<r>
C, # the centralizer of <z> in <G>
Hom, # block homomorphism determined by the cycles
# of <z>
C_, # image of <C> under <Hom>
rationalClasses_, # rational classes in <C_>
found, # classes whose preimages are already found
pos, # position of class among constructed classes
class_, # one class from <rationalClasses_>
y_, t, # <y_> is the repr. of <class_> of order <t>
moduli, # moduli for Chinese remainder theorem
y, oy, # preimage of <y_> that is a root of <z>, order
s, rs, a, b, gcd, # auxiliary variables in the calculation of <y>
class, # class to be constructed from <y>
ji, # generator of the cyclic Galois group of <z>
gi, # element inducing the conjugation corr. to <ji>
conj, # result of conjugacy test $Hom(y^g)$ to $y_^m$
m, # auxiliary variable in calculation of $Gal(y)$
gens, gen, # generators of the Galois group of <y>.
i, k, cl; # loop variables
# Treat the trivial case.
rationalClasses := [ ];
if IsTrivial( G ) then
return rationalClasses;
fi;
for k in [ 1 .. Length( primes ) ] do
p := primes[ k ];
if Size( G ) mod p = 0 then
if k = Length( primes )
and IsSubset( primes, FactorsInt( Size( G ) ) ) then
pRationalClasses := RationalClassesPElements( G, p,
Sum( rationalClasses, Size ) );
else
pRationalClasses := RationalClassesPElements( G, p );
fi;
Append( rationalClasses, pRationalClasses );
if k < Length( primes ) then
if p = 2 then
Error( "case p = 2 not implemented" );
fi;
for pClass in pRationalClasses do
z := Representative( pClass );
C := StabilizerOfExternalSet( pClass );
r := LogInt( Order( z ), p );
# Set up the blocks homomorphism C -> C_ and find the
# rational classes in C_.
Hom := ActionHomomorphism( C, List( Cycles( z,
MovedPoints( G ) ), Set ), OnSets );
C_ := ImagesSource( Hom );
rationalClasses_ := RationalClassesPermGroup
( C_, primes{ [ k + 1 .. Length( primes ) ] } );
# Pull back the rational classes and the Galois groups
# from C_ to C.
Info( InfoClasses, 1, "Lifting back from |C_| = ",
Size( C_ ), " to |G| = ", Size( G ) );
found := [ ];
for i in [ 1 .. Length( rationalClasses_ ) ] do
if not i in found then
class_ := rationalClasses_[ i ];
y_ := Representative( class_ );
t := Order( y_ );
moduli := [ p ^ r, t ];
# Find a preimage of <y_> that really is a root of
# <z>.
y := PreImagesRepresentative( Hom, y_ );
s := LogInt( Order( y ), p );
rs := Maximum( r, s );
gcd := Gcdex( t, p ^ rs );
a := gcd.coeff1;
b := gcd.coeff2;
y := y ^ ( b * p ^ rs ) * z ^ a;
oy := Order( y );
# Let <g> be an element conjugating <z> to $z^j$ and
# generating $Gal(z)$. Find the smallest power $g^i$
# such that $Hom(y^{g^i})$ is rationally conjugate to
# $Hom(y)$. Then $j^i$ times a cofactor is the
# generator of one direct factor of $Gal(y)$. All
# preimages of elements $Hom(y^{g^l})$ with $l<i$ are
# rationally conjugate to <y>.
gi := One( G );
ji := One( GaloisGroup( pClass ) );
if not IsTrivial( GaloisGroup( pClass ) ) then
repeat
gi :=gi*pClass!.fusingElement;
ji :=ji*GeneratorsOfGroup(GaloisGroup(pClass))[1];
cl :=( y ^ gi ) ^ Hom;
pos := i - 1;
repeat
pos := pos + 1;
for m in RightTransversalInParent
(GaloisGroup(rationalClasses_[pos])) do
conj := RepOpElmTuplesPermGroup( true, C_,
[ cl ], [ Representative
(rationalClasses_[pos])^Int(m) ],
TrivialSubgroup( C_ ),
StabilizerOfExternalSet
(rationalClasses_[ pos ]) );
if conj <> fail then break; fi;
od;
until conj <> fail;
AddSet( found, pos );
until pos = i;
else
cl := Representative( class_ );
m := One( GaloisGroup( class_ ) );
conj := One( G );
fi;
# Now $Hom(y^{g^i}) ~ Hom(y^m)$. $Gal(y)$ is the
# direct product of $Gal(Hom(y))$ and the subgroup
# generated by $mj^i$.
gens := [ ChineseRem( moduli, [ Int(ji), Int(m) ] ) ];
for gen in GeneratorsOfGroup( GaloisGroup( class_ ) )
do
Add( gens, ChineseRem( moduli, [ 1, Int(gen)] ) );
od;
class := RationalClass( G, y );
SetStabilizerOfExternalSet( class, Centralizer
( PreImages( Hom, StabilizerOfExternalSet(class_) ),
y ) );
SetGaloisGroup( class, GroupByPrimeResidues
( gens, oy ) );
Add( rationalClasses, class );
fi;
od;
od;
fi;
fi;
od;
return rationalClasses;
end );
# #############################################################################
# ##
# #M RationalClasses( <G> ) . . . . . . . . . . . . . . . . . . of perm group
# ##
# InstallMethod( RationalClasses, "perm group", [ IsPermGroup ],
# function( G )
# local cl;
#
# if IsPrimePowerInt( Size( G ) ) and not HasIsNilpotentGroup(G) then
# SetIsNilpotentGroup( G, true );
# return RationalClasses(G);
# else
# cl := RationalClass( G, One( G ) );
# SetStabilizerOfExternalSet( cl, G );
# SetGaloisGroup( cl, GroupByPrimeResidues( [ ], 1 ) );
# return Concatenation( [ cl ], RationalClassesPermGroup
# ( G, Reversed( Set( FactorsInt( Size( G ) ) ) ) ) );
# fi;
# end );
# #############################################################################
# ##
# #M ConjugacyClasses( <G> )
# ##
# InstallMethod( ConjugacyClasses, "perm group",
# [ IsPermGroup and HasRationalClasses ],
# G -> Concatenation( List( RationalClasses( G ),
# DecomposedRationalClass ) ) );
#############################################################################
##
#E
|